Persistent HTTP: Padmanabhan
and Mogul [Padmanabhan95a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann

Key ideas

e improving HTTP latency
« performance problems (the old way)

— many connections
« servers have to keep track of lots of state per
connects

— TCP setup costs (3wh)
— [authentication]
« their solution

— persistent connections: reuse the same
connection across multiple requests

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann

FTP Review (application-level exchanges)
connect,
FTP uses two TCP ‘ johnh ‘
connections Mq\.

— control: send commands [

— data: retrieve data X
(directory listings, files,

fo]

et
etc.) /

HTTP motivation: just e
use one connection \d\‘
— goal: avoid server-side W
state /
pub lib etc

— use a simpler protocol

(Digression: what about m
this protocol is NAT ‘y
unfriendly?) s

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann

HTTP Basics

- & ©-_ @
S =

/ =
Hello world! CK
o
e,
>Hello world!
IN
Aok

and at TCP R

the idea, at the HTTP
level

12b_Padmanabhan95a: CSciS51 SP2006 © John Heidemann 9

Web Page Content

» But web pages consist of multiple
objects
-HTML
—images
— (also maybe Java, or CSS, or other

things)

e HTTP/1.0: each object is a separate
HTTP request, and so is a separate
TCP connection

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann

HTTP/1.0 in Practice

(application level) (transport level)

Cliant Sorver
Hello world!

GET /h.png ; g -
/ AR - |y trom disk
.png data] ARTT o e DAT =
Tage begng T

1 aam

[Padmanabhan95a,figure 3-1]

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 11

What are the problems here?

» TCP/HTTP costs
— allocating resources (ex: TCB)
— connection establishment
* 3wh takes 2 RTTs
« slow start can be a big deal with short connections
* propgation delay itself can’t be changed
* but we can

— reduce the number of interactions

— cache stuff in proxy server (RTT to local proxy less than
RTT to distant server)

— or the server could place replicas around the globe (again,
hopefully closer to you)

— state left after connection tear-down

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 17

Proposed Solutions

* Persistent connections (P-HTTP):
— use one TCP connection for multiple HTTP
request/responses
—inHTTP/1.1
* Pipelining:
— don’t wait for complete response before
sending next request
— try to send multiple requests at same time (in
same packet)
— suggestions: GETALL, GETLIST

* not standardized
12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 18

Persistent Connection Example

Client Server

0 RTT——-

Client sends HTTP request for HTML.
Server reads from disk
v

1RTF— gl ACK

Client parses HTML DAT
Client sends HTTP request for image

2 RTF—— /

Server reads from disk
v

Image begins to arrive

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 19

P-HTTP Questions

» How to multiplex requests?
— how to distinguish multiple requests and multiple
responses from each other in the TCP bytestream
— if pipelining, need to keep track of which response
belongs to which request
— indicating end of file
close the connection

provide the length of the file (but must know beforehand the
file length)

end-of-file delimiter (but doesn’t work—no easy way to
separate delimiter from data)

chunking

12b_Padmanabhan95a: CSciS51 SP2006 © John Heidemann 25

Complement: Parallel Connections

¢ Open multiple TCP connections (4)
— first done in Netscape
e pros:

— faster: get to overlap connection establishment, slow
start

* cons:
— still have state problem
— doesn’t help with large objects

— interaction with congestion control: 4 connections get
more bandwidth, also is hard on the network, no
sharing in learning about congestion

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 30

o Plp_ellnlnq
« Serialized requests still have extra RTTs
* Pipelining requests
— GETALL - request HTML document and all embeds
* Requires server to parse HTML files
« Doesn’t consider client cached documents
— GETLIST - request a set of documents
 Implemented as a simple set of GETs
« (but which ones to list?)

— http/1.1 intstead just recommends issuing multiple
requests for individual objects, but without waiting

* Also could prefetching
— but risk getting data you may not need

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 31

Persistent Connection
Performance

« Benefits greatest for small objects
— Up to 2x improvement in response time
— why are benefits for large objects no more than for
medium size objects?
* cost of startup is amortized over a larger connection
 Server resource utilization reduced due to fewer
connection establishments and fewer active
connections
* TCP behavior improved

— Longer connections help adaptation to available
bandwidth

— Larger congestion window improves loss recovery

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 33

Performance Results

10 T

seconds)

n i SONBCHIons
LI re A& New protocel with pipelining
=2 & .
z 4 ~ -m
4 e . .
* -
] o ..om A
5 2f o, a -
F B i - s
N - 1 I ! !
] 2 4 i 8
Number of inlined images
Figure 6-1: Latencies for a remote server, image size = 2544 byles

RTT ~70ms, bottleneck bandwidth: 1.5Mb/s

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann

10

up to 2x
w/10
images and
pipelining

34

Other questions/observations?

* is this standard?

— persistent connections and pipelining are
in HTTP/1.2

—not GETALL, etc.
» what about http/1.0 or /0.9
—why one connection per object?
e guess: inspired by FTP, much simplier
—why not UDP for requests?
« probably TCP reliability

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 36

