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Persistent HTTP: Padmanabhan
and Mogul [Padmanabhan95a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann
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Key ideas
• improving HTTP latency
• performance problems (the old way)

– many connections
• servers have to keep track of lots of state per 

connects
– TCP setup costs (3wh)
– [authentication]

• their solution
– persistent connections: reuse the same 

connection across multiple requests

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 8

FTP Review
• FTP uses two TCP 

connections
– control: send commands
– data: retrieve data 

(directory listings, files, 
etc.)

• HTTP motivation: just 
use one connection
– goal: avoid server-side 

state
– use a simpler protocol

• (Digression: what about 
this protocol is NAT 
unfriendly?)

client server

pub    lib    etc

connect,
user johnh

password?
xyz

OK

directory?

OK, port 1234

cd pub
OK

…

(application-level exchanges)
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HTTP Basics

client serverGET /

<b>Hello</b> world!

the idea, at the HTTP
level

client serverSYN

SYN-ACK

ACK
GET /

<b>Hello</b> world!
ACK

FIN-ACK

ACK

FIN
and at TCP
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Web Page Content
• But web pages consist of multiple

objects
– HTML
– images
– (also maybe Java, or CSS, or other 

things)
• HTTP/1.0: each object is a separate 

HTTP request, and so is a separate 
TCP connection
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HTTP/1.0 in Practice

client serverGET /

<b>Hello</b> world!
<img src=“h.png”>

GET /h.png

[h.png data]

[Padmanabhan95a,figure 3-1]

(application level) (transport level)
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What are the problems here?
• TCP/HTTP costs

– allocating resources (ex: TCB)
– connection establishment

• 3wh takes 2 RTTs
• slow start can be a big deal with short connections
• propgation delay itself can’t be changed
• but we can

– reduce the number of interactions
– cache stuff in proxy server (RTT to local proxy less than 

RTT to distant server)
– or the server could place replicas around the globe (again, 

hopefully closer to you)
– state left after connection tear-down
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Proposed Solutions
• Persistent connections (P-HTTP):

– use one TCP connection for multiple HTTP
request/responses

– in HTTP/1.1
• Pipelining:

– don’t wait for complete response before 
sending  next request

– try to send multiple requests at same time (in 
same packet)

– suggestions: GETALL, GETLIST
• not standardized
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Persistent Connection Example
Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from disk
Client sends HTTP request for HTML

Client parses HTML
Client sends HTTP request for image

Image begins to arrive

DAT
Server reads from disk

DAT
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P-HTTP Questions
• How to multiplex requests?

– how to distinguish multiple requests and multiple 
responses from each other in the TCP bytestream

– if pipelining, need to keep track of which response 
belongs to which request

– indicating end of file
• close the connection
• provide the length of the file (but must know beforehand the 

file length)
• end-of-file delimiter (but doesn’t work—no easy way to 

separate delimiter from data)
• chunking
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Complement: Parallel Connections
• Open multiple TCP connections (4)

– first done in Netscape
• pros:

– faster: get to overlap connection establishment, slow 
start

• cons:
– still have state problem
– doesn’t help with large objects
– interaction with congestion control: 4 connections get 

more bandwidth, also is hard on the network, no 
sharing in learning about congestion
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Pipelining
• Serialized requests still have extra RTTs
• Pipelining requests

– GETALL – request HTML document and all embeds
• Requires server to parse HTML files
• Doesn’t consider client cached documents

– GETLIST – request a set of documents
• Implemented as a simple set of GETs
• (but which ones to list?)

– http/1.1 intstead just recommends issuing multiple 
requests for individual objects, but without waiting

• Also could prefetching
– but risk getting data you may not need
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Persistent Connection 
Performance

• Benefits greatest for small objects
– Up to 2x improvement in response time
– why are benefits for large objects no more than for 

medium size objects?
• cost of startup is amortized over a larger connection

• Server resource utilization reduced due to fewer 
connection establishments and fewer active 
connections

• TCP behavior improved
– Longer connections help adaptation to available 

bandwidth
– Larger congestion window improves loss recovery
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Performance Results

up to 2x
w/10
images and
pipelining

RTT ~70ms, bottleneck bandwidth: 1.5Mb/s
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Other questions/observations?
• is this standard?

– persistent connections and pipelining are 
in HTTP/1.2

– not GETALL, etc.
• what about http/1.0 or /0.9

– why one connection per object?
• guess: inspired by FTP, much simplier

– why not UDP for requests?
• probably TCP reliability


