
1

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 1

Persistent HTTP: Padmanabhan
and Mogul [Padmanabhan95a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 7

Key ideas
• improving HTTP latency
• performance problems (the old way)

– many connections
• servers have to keep track of lots of state per

connects
– TCP setup costs (3wh)
– [authentication]

• their solution
– persistent connections: reuse the same

connection across multiple requests

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 8

FTP Review
• FTP uses two TCP

connections
– control: send commands
– data: retrieve data

(directory listings, files,
etc.)

• HTTP motivation: just
use one connection
– goal: avoid server-side

state
– use a simpler protocol

• (Digression: what about
this protocol is NAT
unfriendly?)

client server

pub lib etc

connect,
user johnh

password?
xyz

OK

directory?

OK, port 1234

cd pub
OK

…

(application-level exchanges)

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 9

HTTP Basics

client serverGET /

Hello world!

the idea, at the HTTP
level

client serverSYN

SYN-ACK

ACK
GET /

Hello world!
ACK

FIN-ACK

ACK

FIN
and at TCP

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 10

Web Page Content
• But web pages consist of multiple

objects
– HTML
– images
– (also maybe Java, or CSS, or other

things)
• HTTP/1.0: each object is a separate

HTTP request, and so is a separate
TCP connection

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 11

HTTP/1.0 in Practice

client serverGET /

Hello world!

GET /h.png

[h.png data]

[Padmanabhan95a,figure 3-1]

(application level) (transport level)

2

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 17

What are the problems here?
• TCP/HTTP costs

– allocating resources (ex: TCB)
– connection establishment

• 3wh takes 2 RTTs
• slow start can be a big deal with short connections
• propgation delay itself can’t be changed
• but we can

– reduce the number of interactions
– cache stuff in proxy server (RTT to local proxy less than

RTT to distant server)
– or the server could place replicas around the globe (again,

hopefully closer to you)
– state left after connection tear-down

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 18

Proposed Solutions
• Persistent connections (P-HTTP):

– use one TCP connection for multiple HTTP
request/responses

– in HTTP/1.1
• Pipelining:

– don’t wait for complete response before
sending next request

– try to send multiple requests at same time (in
same packet)

– suggestions: GETALL, GETLIST
• not standardized

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 19

Persistent Connection Example
Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from disk
Client sends HTTP request for HTML

Client parses HTML
Client sends HTTP request for image

Image begins to arrive

DAT
Server reads from disk

DAT

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 25

P-HTTP Questions
• How to multiplex requests?

– how to distinguish multiple requests and multiple
responses from each other in the TCP bytestream

– if pipelining, need to keep track of which response
belongs to which request

– indicating end of file
• close the connection
• provide the length of the file (but must know beforehand the

file length)
• end-of-file delimiter (but doesn’t work—no easy way to

separate delimiter from data)
• chunking

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 30

Complement: Parallel Connections
• Open multiple TCP connections (4)

– first done in Netscape
• pros:

– faster: get to overlap connection establishment, slow
start

• cons:
– still have state problem
– doesn’t help with large objects
– interaction with congestion control: 4 connections get

more bandwidth, also is hard on the network, no
sharing in learning about congestion

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 31

Pipelining
• Serialized requests still have extra RTTs
• Pipelining requests

– GETALL – request HTML document and all embeds
• Requires server to parse HTML files
• Doesn’t consider client cached documents

– GETLIST – request a set of documents
• Implemented as a simple set of GETs
• (but which ones to list?)

– http/1.1 intstead just recommends issuing multiple
requests for individual objects, but without waiting

• Also could prefetching
– but risk getting data you may not need

3

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 33

Persistent Connection
Performance

• Benefits greatest for small objects
– Up to 2x improvement in response time
– why are benefits for large objects no more than for

medium size objects?
• cost of startup is amortized over a larger connection

• Server resource utilization reduced due to fewer
connection establishments and fewer active
connections

• TCP behavior improved
– Longer connections help adaptation to available

bandwidth
– Larger congestion window improves loss recovery

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 34

Performance Results

up to 2x
w/10
images and
pipelining

RTT ~70ms, bottleneck bandwidth: 1.5Mb/s

12b_Padmanabhan95a: CSci551 SP2006 © John Heidemann 36

Other questions/observations?
• is this standard?

– persistent connections and pipelining are
in HTTP/1.2

– not GETALL, etc.
• what about http/1.0 or /0.9

– why one connection per object?
• guess: inspired by FTP, much simplier

– why not UDP for requests?
• probably TCP reliability

