
An Overview of Embedded Sensor Networks

ISI TR-2004-594?

John Heidemann1 and Ramesh Govindan2

1 University of Southern California/Information Sciences Institute, johnh@isi.edu
2 University of Southern California, Computer Science Department,
ramesh@usc.edu

1 Introduction

An embedded sensor network is a network of embedded computers placed
in the physical world that interacts with the environment. These embedded
computers, or sensor nodes, are often physically small, relatively inexpensive
computers, each with some set of sensors or actuators. These sensor nodes
are deployed in situ, physically placed in the environment near the objects
they are sensing. Sensor nodes are networked, allowing them to communicate
and cooperate with each other to monitor the environment and (possibly)
effect changes to it. Current sensor networks are usually stationary, although
sensors may be attached to moving objects or may even be capable of indepen-
dent movement. These characteristics: being embedded, and being capable of
sensing, actuation, and the ability to communicate, define the field of sensor
networking and differentiate it from remote sensing, mobile computing with
laptop computers, and traditional centralized sensing systems.

Although research in sensor networks dates back to the 1990s or earlier, the
field exploded around the year 2000 with the availability of relatively inexpen-
sive (sub-$1000) nodes, sensors, and radios. As of 2004, sensor networking is
a very active research area with well-established hardware platforms, a grow-
ing body of software, and increasing commercial interest. Sensor networks
are seeing broader research and commercial deployments in military, scien-
tific, and commercial applications including monitoring of biological habitats,
agriculture, and industrial processes.

Sensor networks present challenges in three key areas. First, energy con-

sumption is a common problem in sensor network design. Sensors are often
battery operated and placed in remote locations, so any activity drains the
sensor battery, and bringing the node closer to death [54]. Second, how sensors

?A version of this technical report appears as a chapter in Handbook of Net-
worked and Embedded Control Systems, D. Hristu-Varsakelis and W.S. Levine, edi-
tors, Springer-Verlag, 2004.

2 John Heidemann and Ramesh Govindan

sense and interact with the physical world is of great interest. Sensor networks
focus on collaborative signal processing algorithms to exploit multiple, physi-
cally separate views on the environment. Finally, with tens, hundreds, or even
thousands of sensor nodes, the network and applications as a whole must be
self-configuring.

This chapter reviews each of these areas of sensor network design, begin-
ning with common hardware platforms, then considering networking software
and applications.

2 Hardware Platforms and Sensors

The wide availability of common hardware platforms, radios, and sensors has
been an enabler for sensor networking in both the research and commercial
communities.

Node hardware

A typical sensor node contains a general-purpose CPU and working mem-
ory, some kind of long-term stable storage such as flash memory or disk, and
I/O capabilities to support sensors. Sensor nodes have evolved into two broad
categories: small devices with 8-bit microcontrollers as CPUs, 10–100KB of
working memory, and 100–1000KB of flash secondary storage; and larger de-

vices with 32-bit CPUs and megabytes each of working memory and secondary
storage.

Motes are representative of the smaller class of devices [33]. The cur-
rent generation of Mica-2 motes uses an Atmega128 embedded processor run-
ning at about 4 MHz, providing 128KB flash memory for program code, 4KB
working RAM, 8-channels of analog-to-digital converts, 48 digital I/O lines, a
universal asynchronous receiver/transmitter (UART) and a serial peripheral
interface (SPI). Motes have evolved significantly over the last several years;
originally designed at Berkeley, they are now commercially available from sev-
eral companies including Crossbow [15], Dust Networks [17], and Telos [72].
Similar classes of embedded-controller-based devices are available from other
academic and commercial institutions, with examples including the Nymph
from the University of Colorado [1], and BTnodes from ETH Zurich [57].

The larger class of devices is exemplified by products such as the Stargate
(designed by Intel, available from Crossbow Technologies) or the Cerfcube
(from Intrinsyc [37]). These devices are used in a variety of embedded appli-
cations. In the sensor network context, they are typically used as gateways to
a collection of motes, or for applications that require heavier-duty signal pro-
cessing. Each such device employs an X-Scale or ARM-based processor, has
upwards of 64MB working memory and 1GB of flash-based secondary storage.
They support many connectivity options including USB and 802.11 wireless,
and a 51-pin mote connector allowing use of a mote and its radio.

An Overview of Embedded Sensor Networks ISI TR-2004-594 3

Power management is a concern in both classes of devices. Individual con-
trol of hardware components (CPU, storage, radio, sensors) is necessary for
power management. Many systems are battery powered. Energy harvesting is
of growing importance, often via solar cells or vibration harvesting [60].

Sensors

Sensing technology has also kept pace with miniaturization of radios and pro-
cessors, especially with the proliferation of microelectronmechanical system
(MEMS) sensors. Many such sensors have been incorporated into existing
sensor node platforms.

Despite their diversity, the principle of operation behind most of these
MEMS sensors is the same. They all rely on environmental factors inducing
changes in the electrical properties of appropriately chosen materials. The
sensors incorporate sensitive circuitry to detect changes in these electrical
properties, and are calibrated to correctly measure the corresponding envi-
ronmental phenomenon. For example, a temperature sensor relies on changes
in the resistivity of certain materials with temperature. The choice of material
ranges from metals to semiconductors and is dictated by the required sensing
range and sensitivity. Similarly, a light sensor uses photoconductive materials
whose electrical characteristics vary with the amount of light falling on them.
Finally, accelerometers measure the voltage induced by structural deforma-
tions of piezo-electric materials; these deformations are caused by vibrations
or by acceleration.

There is a very large industry devoted to manufacturing small MEMS
sensors. This industry is segmented by application (e.g., companies such as
Delphi cater to automotive manufacturers) and by sensor type (e.g. Silicon
Designs focuses entirely on vibration sensors). However, only a handful of
companies (examples include Ember [20], and Millenial Net [47]), focus on
applications of wireless networked sensing.

3 Software and Protocols

Sensor networking has seen an enormous amount of research activity in the
last five years, making it difficult to do justice to this large body of literature.
Our exposition takes a systems approach, describing the components of an
emerging general-purpose sensor networking infrastructure.

3.1 Networking

As the name implies, networking is a central component of sensor networks.
Networking is important because it provides the glue that allows individual
nodes to collaborate. In addition, the radio is a major consumer of energy in
small sensor nodes, often 20–40% of the power draw when all components are

4 John Heidemann and Ramesh Govindan

on. Thus optimizing networking protocols can greatly extend the lifetime of
the sensor network as a whole.

This section considers networking in sensor nets at the link layer, with
media-access control (MAC) protocols, and at the network layer, with routing
protocols. We also consider topology control, a service that can be part of either
layer, or could be considered in between these two layers.

MAC protocols

Energy conservation is a key concern at the MAC protocols, and so before
reviewing protocols we briefly describe MAC-related sources of energy con-
sumption [79]. Packet collisions waste energy by forcing packets to be retrans-
mitted, idle listening is the cost of actively listening for potential packets,
overhearing is the cost of receiving packets intended for other destinations,
and control traffic represents MAC-level maintenance overhead. Since many
sensor networks are quiescent between sensor readings, idle listening can easily
become the largest energy cost in a sensor net.

The IEEE 802.11 protocol [35] (popularly known as “wi-fi”) is contention-
based MAC (carrier-sense, multiple-access or CSMA) now seeing wide com-
mercial deployment. Intended for laptop computers, it provides good high-
speed communication (up to 54Mb/s in some versions) for larger sensor net-
work nodes. Unfortunately, the ad hoc mode of 802.11 that is required for
peer-to-peer communications in a sensor network has very little support for
energy conservation, and many sensor networks require bit rates less than
100kb/s, so the protocol is unsuitable for smaller and more power-constrained
nodes.

Time-division multiple-access (TDMA) protocols were used in early sensor
networks [68]. By scheduling media access they can largely avoid collisions,
idle listening, and overhearing, thus greatly reducing energy consumption.
Their disadvantage is that they often assume clustering, taxing the cluster
head and making mobile operation more difficult.

Small sensor networks generally require relatively low-speed (20–40kb/s),
simple protocols, precluding high-speed 802.11 and more complex TDMA pro-
tocols. Recent research has proposed 802.11-like MAC protocols designed to
conserve energy by avoiding overhearing (PAMAS [67]) and idle listening (S-
MAC [79, 80]). As an example protocol, S-MAC synchronizes most nodes into
a sleep-schedule. Nodes regularly wake up, contend for the media if they have
data to send, then either transmit data or go to sleep. By adjusting the sleep
duration, duty cycles of 1–50% are possible to reduce the cost of idle listen-
ing. Adaptive listen [80] and future-Request-to-Send of T-MAC [73] extended
these ideas to provide better throughput when there are multiple packets to
send or when data travels over multiple hops.

IEEE 802.15.4 (also known as “Zigbee”) is a recently standardized protocol
targeted at sensor network and home automation applications. It includes an
optional fixed duty cycle to avoid idle listening similar to research protocols

An Overview of Embedded Sensor Networks ISI TR-2004-594 5

such as we described previously. Although it is still too early to see how this
protocol compares to current research, a standard protocol in this domain
should spur commercial developments.

Network layer

As with MAC protocols, overhead is an important concern for sensor network
routing protocols. Here the major source of overhead is control traffic: the
number of routing update- or request-messages that are required. We next
review routing protocols, both Internet protocol (IP)-based ad hoc networking
and non-IP-based schemes.

The Internet Engineering Task Force (IETF) is standardizing ad hoc rout-
ing protocols for wireless, IP-based networks. Ad hoc routing protocols are
usually grouped into pro-active protocols (for example, DSDV [52]) which
pre-compute routes to some or all destinations, and reactive protocols (for
example, AODV [51] and DSR [38]), which compute routes to specific desti-
nations only when prompted by traffic. Broch et al. compare several of these
protocols [6]. The control traffic overhead of these protocols is proportional
to the rate at which links change and, for reactive protocols, the rate traf-
fic is sent to new destinations. Reactive protocols are a good match for very
dynamic networks, such as those with many mobile nodes, since they only
maintain routes to active destinations. Many sensor networks today have only
stationary nodes. In these cases, pro-active protocols may be preferred be-
cause links change relatively infrequently, and such protocols are simpler and
have no delay searching for a route when traffic is sent to a new destination.

In addition to IP-based routing protocols, geographic routing and directed
diffusion are protocols more specific to sensor networks. Although originally
proposed for wired networks, geographic routing protocols such as GPSR and
similar protocols [3, 40] exploit the spatial nature of sensor networks and the
spatial-dominated nature of radio propagation.

Directed diffusion combines a distance-vector-like, reactive routing pro-
tocol with an attribute-based routing scheme and an emphasis on process-
ing data in the network [36]. Variants of directed diffusion provide several
different routing mechanisms under the same interface [29]. Diffusion uses
attribute-based routing instead of address-based or geographic routing. Diffu-
sion combines attribute-based resource discovery with routing, and it allows
applications to focus on the desired data rather than specific sensors. Diffu-
sion suggests that processing data in the network is important for efficiency.
Examples of in-network processing are duplicate suppression, data aggrega-
tion, and statistical filtering. When data is generated from multiple sensors,
in-network processing can merge this data near those sites rather than sending
all data out, thus greatly reducing energy consumption. (This approach has
been adopted by several non-diffusion systems as well, for example, TinyDB,
described below.)

6 John Heidemann and Ramesh Govindan

3.2 Systems services

Beyond the lower-level networking primitives, a usable sensor networking sys-
tem must provide several additional services. Many of these services, such
as operating systems, security, time synchronization, and resource discovery,
are also found in traditional wired and wireless networks. However, some ser-
vices, such as localization, are unique to sensor networks. In this subsection,
we briefly discuss some of the services that sensor networks will implement,
and describe challenges in the design of these services.

Operating systems and code development tools

The sensor networking community typically uses embedded (and, possibly,
real-time) versions of existing operating systems such as Linux for the larger
devices discussed above. These embedded versions provide largely the same
programming support as their regular counterparts, but with additional
device-level support for embedded controllers, flash memory, and other periph-
erals specific to these devices. As such, not much research has been required
on new operating systems support for these larger devices.

By contrast, the smaller devices (such as the motes) have required novel
directions in operating system design. One such direction has been the devel-
opment of a POSIX-compliant multi-threaded OS for these small devices [1].
TinyOS [32], an operating system for the motes and widely used by many
research groups as well as in some segments of industry, departs signifi-
cantly from the traditional multi-threaded model of modern operating sys-
tems. Rather, TinyOS relies on the observation that most sensor networking
applications will be event-driven: i.e., that applications will react to external
sensed events. It is structured such that components (software modules that
provide a distinct abstraction, either of a hardware device or of some software
functionality such as a send-receive networking interface) can invoke events in
other components. Typically, in response to a sensed event or some hardware
interrupt, a chain of such component invocations can be used to process the
event. In addition, TinyOS also provides two other abstractions: a task, which
enables components to effectively use the idle processor for computations, and
a command, which is invoked in order to get a component to perform an action
(such as sending a network message or setting some device parameters).

Taken together, these abstractions allow a programmer to write an appli-
cation as a component graph: nodes in this graph are components, and links
signify event and command invocations from components or their associated
tasks. In addition, the emphasis on event-driven programming rather than
multi-threading avoids the memory cost of run-time stacks for each thread.
This powerful functionality promotes code reuse, improves modularity (easy
reuse of components), and minimizes object code size for memory-constrained
devices.

Associated with TinyOS is a programming language called nesC, which
contains language-level constructs for TinyOS’s abstractions: components,

An Overview of Embedded Sensor Networks ISI TR-2004-594 7

tasks, events, and commands. This approach promotes compile-time program
checking, as well as automated construction and management of the compo-
nent graph. In addition, it provides support for parameterized, compile-time
memory allocation to avoid the memory costs of dynamic memory allocation.

Finally, the community uses several simulation and emulation tools that
enable code development, debugging, and system evaluation. One is ns-2, a
general-purpose networking simulator, together with its wireless extensions.
Ns-2 was widely used to develop and evaluate sensor networking routing proto-
cols [5]. More recently, sensor network specific simulators have seen increased
use. Among these, TOSSIM [43] enables developers to simulate a network of
motes and run actual application and protocol code on this network. Em-
star [23] is a flexible programming environment for larger sensor nodes. As a
simulation environment, it includes support for simulation of hybrid networks
of large and small devices and several radio propagation and sensor models.

Node localization

Localization is the functionality by which nodes autonomously determine their
position in two or three dimensions. This is a crucial service for sensor net-
works since location provides invaluable context in interpreting sensed data.
In recent years, there has been significant work in localization for sensor net-
works and networks of embedded devices.

An important focus of the localization literature has been robust tech-
niques for estimating distances between nodes (ranging). The networking
community has focused on two classes of ranging techniques: radio frequency
(RF)-based ranging and acoustic ranging. RF-based ranging, as exemplified
by the SpotON [31] and Calamari [76] systems, is based on the premise that
by measuring received signal strength a receiver can determine its distance to
a transmitter. This presumes that RF propagation in an environment can be
accurately characterized by a simple path loss model with known parameters.
Using this technique, nodes can estimate distances to all neighbors within
radio range. Range errors upwards of 10% of the nominal radio range have
been reported in the literature [76], usually after a fairly involved calibra-
tion step that estimates the path loss parameters and adjusts for variations
in transceiver characteristics. As an alternative to modeling radio propaga-
tion, wireless systems sometimes use a database of receive signal strength at
various locations in order to determine node position. This approach requires
surveying the environment to pre-compute the database and assumes propa-
gation is relatively time invariant. A second class of ranging schemes is based
on measuring the time-of-flight of an acoustic or ultrasound signal [24, 64].
More precisely, these techniques measure the difference in arrival times of
simultaneously transmitted radio and ultrasound signals, then estimate dis-
tances knowing the speed of sound. Some approaches in acoustic ranging use
spread spectrum approaches for resilience to multipath effects, and employ
techniques to correct for latencies induced by other system components [24].

8 John Heidemann and Ramesh Govindan

Such techniques provide an order of magnitude better accuracy (1–2% error)
than simple time-of-flight over distances of 3–6 meters.

Ranging is a component of a localization system of which there are, broadly
speaking, two kinds: infrastructure-based and ad hoc. Systems in the former
class fix node positions by assuming the existence of some external infras-
tructure (typically beacons with known positions and with known or prede-
termined deployments). In this class, there has been extensive work on dis-
tributed position inference using specialized beacons [7], optimization methods
for centrally estimating locations [16], in-building localization systems that en-
able position for context-aware applications [28, 55, 2], systems for estimating
orientation of handheld devices [56], and systems for placing nodes within a
relative coordinate system [10], and optimization of placement of additional
beacons [8].

Similarly, a large body of work has examined algorithms for ad hoc lo-
calization schemes. Perhaps the earliest pieces of work in the area of sensor
network localization can be attributed to Bulusu et al. [7], Niculescu and
Nath [49] and Savvides et al. [63, 64]. Niculescu and Nath propose that nodes
first estimate their distances to anchors using one of several techniques (DV-
hop, DV-distance, and a Euclidean scheme), then fix their own position using
these distances. Savvides et al. proposes an N -hop multilateration scheme.
That work also discusses a Kalman filtering-based position refinement phase
to improve position estimates. In later work, they discuss the error char-
acteristics and the dependence on network size and anchor density of their
schemes [62]. Savarese et al. [61] propose a three-phase scheme, where they
obtain crude position estimates and use an iterative multi-lateration based
scheme to refine the estimates. Each node uses the locations of its neighbors
to multi-laterate and re-estimate its position. Finally, Langendoen and Rei-
jers [41] discuss a fairly detailed comparison of the above schemes in the face
of ranging errors, different node densities, and anchor fractions.

Time synchronization

Sensor networks are predicated on the ability of sensor nodes to collaboratively

detect events. Time synchronization is often a crucial requirement for collabo-
rative detection—collaborating nodes may need to temporally correlate their
sensor readings. The problem of node time synchronization has received ex-
tensive attention in the sensor networks literature. Much of this literature
borrows heavily from early work on Internet time synchronization [48].

Networked time synchronization relies on time stamping a message at both
the sender and receiver, and reconciling their clocks based on one or more
such message exchanges. Between sending a message and receiving it there
are several kinds of delays introduced: sender-side processing delay, message
propagation delay, message transmission delay, and receiver-side processing
delays. Techniques for time synchronization differ in how they estimate or
eliminate various sources of delay.

An Overview of Embedded Sensor Networks ISI TR-2004-594 9

For example, the simplest approach time stamps messages close to the
radio hardware (thereby eliminating processing delays). Thus, a single mes-
sage is sufficient to reconcile clocks if it is assumed that propagation delay
is negligible. Two messages are sufficient to account for propagation delay as
well [21, 74]. Reference Broadcast Synchronization (RBS) avoids error intro-
duced by variance in sender-side timing by comparing the same broadcast
message received at the two receivers, and estimating receiver processing by
averaging over several received packets [19]. As an aside, many of these tech-
niques can be used to synchronize nodes after the occurrence of an event, an
approach called post-facto synchronization [18].

Thus far, we have discussed how two nodes synchronize their clocks with
each other. Some research has looked at synchronizing clocks network-wide to
a reference [21, 19, 74]. Most of these techniques rely on using one of the above
methods to synchronize all the clocks to a reference clock hop by hop. Using
such techniques, clock synchronization error increases linearly with network
diameter. The existence of techniques that have better error characteristics is
known theoretically [70], but no practical implementations of such techniques
exist.

Resource discovery

Resource discovery is a problem growing out of the field of ubiquitous comput-
ing: When a device enters an area, how can it identify relevant local resources?
In ubiquitous computing, relevant resources are network services such as print-
ers and mail servers, to be used by people. Jini [75] includes resource discovery
services for a local network, while web search engines such as Google can be
thought of as Internet-wide resource discovery services.

Sensor networks today are typically more application specific and homo-
geneous, and so today there is little need to locate shared services. In many
sensor networks today the only service not present at all nodes is a wide-area
network connection; discovery of an Internet connection is easily integrated
with routing. As sensor networks become more complex, we expect that indi-
vidual nodes will become more heterogeneous. As cameras, additional storage,
and other services are deployed, service discovery will become more important.
In sensor networks today, directed diffusion combines resource discovery with
routing [29]. Other protocols, such as ReOrg, support service heterogeneity
(in its case, wall-powered nodes) integrated with the topology configuration
protocol [14].

Databases and storage services

Individual sensor nodes in a sensor network produce many sensor readings.
Nodes may also collaboratively detect events by exchanging these readings.
We will collectively refer to readings and events as sensor data. An impor-
tant systems challenge for sensor networking is the design of mechanisms for
retrieving sensor data.

10 John Heidemann and Ramesh Govindan

Protocols such as directed diffusion suggest data-centric communication
as an architectural principle that governs the design of low-level mechanisms
for accessing sensor data. At a higher level, a natural paradigm for accessing
sensor data is to treat the sensor network as a distributed relational database.
The Cougar [78] and TinyDB [45] systems allow users to specify sensor data
of interest in a declarative fashion, using an SQL query of the form

SELECT AVG(temp)

FROM sensors

WHERE loc in (35,40,100,120) and light > 1525 lux

SAMPLE PERIOD 35 seconds

Such a query allows the user to obtain the average temperature seen at all
nodes observing a sufficiently high light intensity which are located within
a specified region. These systems can be seen as providing a powerful, yet
widely used, programming paradigm for sensor networks.

Both systems are implemented using data-centric communication primi-
tives. For example, in TinyDB a query is flooded throughout the network, and
nodes whose sensor data match the query respond. In principle, this is similar
to interests and data messages in directed diffusion. Indeed, TinyDB can be
implemented using directed diffusion.

While TinyDB and Cougar work well for continuous queries (those for
which responses stream back continuously), the high overhead of flooding
makes it unsuitable for one-shot queries. Researchers have focused on a class
of systems that more efficiently support one-shot queries. These systems are
built on an efficient rendezvous mechanism called data-centric storage [65].
In data-centric storage, a hash function is used to map a key associated with
a data item to a geographic location. A geographic routing protocol called
GPSR [40] is used to store the item at that location. A node wishing to retrieve
items matching that key would use the same hash function and route a query
to that node. Such a mechanism avoids flooding the query throughout the
network. Depending on how the hash function is constructed, this mechanism
can be used to construct a variety of storage structures that support sophis-
ticated queries. These storage structures include distributed hash tables [58],
distributed multi-dimensional indices [44], and storage hierarchies [22, 26].

Remote programming

Reprogrammability is a key characteristic of software systems. While simple
sensor networks may be configured “in the factory” and then discarded, sen-
sors deployed for longer periods of time in remote locations motivate in situ
reprogrammability to meet changing application requirements or just to fix
bugs. Several flavors of reprogramming have been reconsidered by the commu-
nity. Retasking usually refers to reconfiguring an application’s parameters to
match some pre-anticipated needs. Scripting and virtual machines represent

An Overview of Embedded Sensor Networks ISI TR-2004-594 11

the ability to reconfigure a sensor network at a high level, often by recom-
bining pre-deployed lower-level components. Finally, true reprogramming is
reserved for replacing the complete operating image of the sensor node.

Retasking has been explored in several environments. One example of re-
tasking is directed diffusion [36] and filters [30], where application-specific
attributes can be used to tune a fielded application. Another widely used ex-
ample is TinyDB [45], where new queries are downloaded into the network. In
both of these cases, run-time information is distributed through the network
to reconfigure pre-deployed filters or database operators.

A more generic facility is possible with scripting or virtual machines.
In SensorWare [4], pre-configured components are reconfigured on-the-fly by
commands distributed over the network. Scripting is distinguished from re-
tasking because the configuration information is provided by a script in a
high-level language (Tcl, in the case of SensorWare), allowing more sophisti-
cated reconfiguration than is possible with the static data structures of simple
retasking. Virtual machines were popularized with Java; Maté is an example
of virtual machines applied to sensor networks [42]. While traditional virtual
machines provide a primitive, low-level instruction set, Maté emphasizes very
high-level, application-specific instructions to maximize code density.

Reprogramming the complete sensor node is a delicate process in which a
software image is transferred over one or more hops, verified, and then the sen-
sor node is carefully rebooted to run the new code. Two recent systems have
described mote-level reprogrammability: Hui and Culler’s system [34] and
MOAP [69]. Both carefully segment and transfer a relatively large (multi-
kilobyte) software image; Hui’s system emphasizes rapidly propagating the
image throughout the entire network with pipelining, while MOAP strives to
transfer a complete image to nearby neighbors before forwarding data further.
Orthogonal to these approaches, Reijers and Langendoen propose a differenc-
ing mechanism to minimize the size of the transferred image by comparing it
to the previously stored image [59].

Many of the above approaches assume the entire sensor network is to be
reprogrammed. Since messages in diffusion are addressed to nodes identified by
particular attributes it is easy to retask part of a sensor network. SensorWare
has also used scripts to reprogram parts of a network. In principle, similar
techniques could be applied to the other approaches.

Security

Security issues have not received as much attention as some of the other
research areas in sensor networks. This is understandable, since often inter-
esting security research is spurred by vulnerabilities learned from large-scale
deployments, of which there are relatively few. There is, of course, a gen-
eral acceptance that security is of paramount importance in sensor networks.
They are vulnerable to a wide variety of denial of service attacks at all levels,
ranging from the physical to the application layer [77].

12 John Heidemann and Ramesh Govindan

Existing sensor network security research has mostly focused on adapt-
ing security mechanisms to the computational and messaging constraints im-
posed by tiny sensor devices [53, 39]. This line of research attempts to im-
plement encryption and message authentication mechanisms by relying on
shared symmetric or group keys augmented with message counters. Some of
these mechanisms have been implemented on the motes in order to provide
secure communication at the link layer.

3.3 Application primitives

Sensor networks will, in general, be used to sense phenomena of different kinds.
Broadly speaking, phenomena may be of two kinds: diffuse phenomena like
fires, clouds, contaminants, etc., and point phenomena like animals, tanks, and
other targets. Generic techniques for sensing these kinds of phenomena might
form useful application-level primitives which ease the task of developing new
applications. Some sensor networks research has focused on primitives for
these two kinds of phenomena.

Diffuse phenomena are distinguished by their spatial extent, which is gen-
erally larger than the average inter-sensor spacing. Thus, an important prim-
itive for such phenomena is one that detects and tracks the boundary of the
phenomenon. Not much research attention has been bestowed on this class of
problems, aside from isolated pieces of work that have discussed a technique
to compute the approximate boundary of a phenomenon along a hierarchical
structure [50], and techniques to robustly, yet locally, estimate whether a node
lies on the boundary of a phenomenon or not [13].

Rather more attention has been devoted to application-level primitives for
point phenomena. One can decompose the problem of sensing such phenomena
into two smaller problems: target localization, which determines where the
point phenomenon or target is, and tracking, which updates the path of the
target as it moves. Both of these problems have been examined in the sensor
network context.

For target localization, a simple technique would be to use the “closest
point of approach”, i.e., to say that the location of the target is the location of
the sensor which detects the target with the highest intensity. Variants of this
algorithm might pinpoint the target as being located at the weighted centroid
of all sensors that sense the target. The accuracy of such techniques depends
heavily on deployment density. A more sophisticated approach, and one that
has been studied fairly extensively in the signal processing literature, relies
on triangulating the target position based on the observed delay differences in
the received signal at a cluster of sensors within the network. This technique
has been shown to work quite well [12].

Having localized the target, the next challenge is to track the target as
it moves through the sensor field. A simple representation of the target’s
track is the sequence of its locations over time, and this may be computed by
sending the target’s location periodically to a base station. This approach can

An Overview of Embedded Sensor Networks ISI TR-2004-594 13

incur significant communication cost, so more sophisticated techniques rely
on handing off the track to sensors along the target’s path. Furthermore, it
is possible to be more energy efficient by waking up sensors in advance of a
target’s arrival. However, this requires techniques that can predict the target’s
track. A body of work has focused on information-directed approaches to solve
this problem [81]. These approaches maintain a continuously updated belief
state about target location that allows them to probabilistically determine to
which sensor the target’s track should be handed off.

4 Applications

The sensor network community is investigating several disciplines in which
sensor networks might be applicable for various purposes. The following para-
graphs discuss these potential applications briefly, sketching applications in
the military, the sciences and environmental monitoring, and civil and indus-
trial areas. For many of these applications, sensor networks will enable in situ
sensing at unprecedented spatial scales.

Military applications

Military applications supported much early work in sensor networks. Securing
an area to detect intruders and monitoring vehicle traffic on a road or in open
terrain were a focus of the DARPA SensIT program. More recently researchers
have demonstrated a sensor-network-based sniper localization system [66].

Environmental monitoring applications

Many current applications for sensor networks are in areas of biology and life
sciences, where a common theme is the ability of sensors to take observations
in much more detail and for much longer than is possible today. We briefly
evaluate habitat monitoring, marine microorganism monitoring, contaminant
transport, and precision farming.

Habitat monitoring has been the focus of great interest in the sensor net-
work community [71]. Examples include micro-climate monitoring at James
Reserve [11], nest monitoring at Great Duck Island [46]. These applications
provide an ideal testing ground for sensor networks because they require fairly
simple monitoring (light, temperature, sound, perhaps presence or absence of
an animal) at tens of stations. This level of monitoring is not possible with-
out sensor networks because human observations would be too invasive to the
environment and centralized or wired monitors cannot span the physical area.

Marine biologists envision using sensor networks to obtain data at fine
spatial scales (a few meters to tens of meters). There is a need for such data
in their application domain, and current instrumentation technology is inad-
equate or too expensive to fulfill this need. The time evolution of red tides
(rapidly formed colonies of algae that are harmful to fish and birds) is poorly

14 John Heidemann and Ramesh Govindan

understood, and appears to be triggered by small scale temperature, light,
and nutrient variations. Sensor networks can be deployed at this scale, and
have been used in a laboratory setting to gather data. An interesting twist
is the addition of limited actuation to such networks, where the sensors may
move (e.g., in a small boat) a little in order to obtain better quality data or
to vary spatial coverage.

A similar use is envisioned by environmental engineers, who see sensor
networks helping them build accurate models of contaminant seepage in soil.
Data at fine spatial scales can be used to more precisely model contaminant
flow [27] and thus predict contamination of scarce groundwater resources. In
the longer term, such networks can be used for monitoring the compliance of
industries to regulations that govern the release of contaminants into the soil.
A closely related area is precision farming, where detailed monitoring enabled
by dense sensor deployment could allow more effective use of fertilizers.

Civil and commercial applications

Finally, there is growing interest in sensor networks in civil engineering and
industrial applications.

Seismologists envision using sensor networks to understand the propaga-
tion of earthquakes at fine spatial scales. This propagation is critically affected
by soil conditions, and can impact how much earthquakes affect buildings and
other structures. A related application is structural monitoring [9]: sensor net-
works can be used to measure the response of a building to vibrations, and
the variation of these responses over time can be used to detect and localize
damage in a variety of structures (buildings, bridges, ships).

Transportation networks are an important economic part of all cities, and
it is not surprising that there is a fairly large investment in traditional fixed
sensors and centralized traffic monitoring systems. Researchers are exploring
how sensor networks can augment this infrastructure in two different ways.
Rapidly deployable sensor networks for traffic monitoring may be useful to
temporarily collect data for development or pollution-related traffic studies in
areas that do not warrant long-term monitoring [25]. More radically, several
research groups have proposed a future where each car has its own sensors
that can communicate with nearby cars, avoiding centralized management
and enabling new applications.

Finally, there is growing interest in industrial applications of sensor net-
works to closely monitor manufacturing and safety conditions. Although these
applications are just now emerging, promising areas include industrial mon-
itoring in the oil industry (Ember), environmental monitoring in semicon-
ductor processing facilities (Intel), and even monitoring of art in museums
(Sensicast).

An Overview of Embedded Sensor Networks ISI TR-2004-594 15

5 Conclusions

This chapter has surveyed embedded sensor networks. With recent hardware
advances for small, inexpensive, networked sensors, a growing body of software
components to link them together into a whole, and applications in many
areas, embedded sensor networks are an active and growing area of embedded
computing.

References

1. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng,
and R. Han. MANTIS: System support for MultimodAl NeTworks of In-situ
Sensors. In Proceedings of the 2nd ACM Workshop on Sensor Networks and
Applications, pages 50–59, San Diego, CA, USA, Sept. 2003. ACM.

2. P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user
location and tracking system. In Proceedings of the IEEE Infocom, pages 775–
784, Tel Aviv, Israel, Mar. 2000. IEEE.

3. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. In Proceedings of the Third ACM Inter-
national Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (Dial M), pages 48–55, Seattle, WA, USA, Aug. 1999.
ACM.

4. A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of
a framework for efficient and programmable sensor networks. In Proceedings
of the ACM/Usenix International Conference on Mobile Systems, Applications,
and Services (MobiSys), pages 187–200, San Francisco, CA, USA, May 2003.
ACM.

5. L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation.
IEEE Computer, 33(5):59–67, May 2000. (An expanded version is available as
USC CSD TR 99-702b.).

6. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-
mance comparision of multi-hop wireless ad hoc network routing protocols. In
Proceedings of the ACM International Conference on Mobile Computing and
Networking, pages 85–97, Dallas, Texas, USA, Oct. 1998. ACM.

7. N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor localization
for very small devices. IEEE Personal Communications Magazine, 7(5):28–34,
Oct. 2000.

8. N. Bulusu, J. Heidemann, D. Estrin, and T. Tran. Self-configuring localization
systems: Design and experimental evaluation. ACM Transactions on Embedded
Computing Systems, 3(1):24–60, Feb. 2004.

9. J. Caffrey, R. Govindan, E. Johnson, B. Krishnamachari, S. Masri, and
G. Sukhatme. Networked Sensing for Structural Health Monitoring. In Pro-
ceedings of the Fourth International Workshop on Structural Monitoring and
Control, June 2004.

10. S. Capkun, M. Hamdi, and J. P. Hubaux. GPS-Free Positioning in Mobile
Ad-Hoc Networks. Cluster Computing, 5(2), April 2002.

16 John Heidemann and Ramesh Govindan

11. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat
monitoring: Application driver for wireless communications technology. In Pro-
ceedings of the ACM SIGCOMM Workshop on Data Communications in Latin
America and the Caribbean, San Jose, Costa Rica, Apr. 2001. ACM.

12. J. Chen, L. Yip, J. Elson, H. Wang, D. M. R. Hudson, K. Yao, and D. Es-
trin. Coherent Acoustic Array Processing and Localization in Wireless Sensor
Networks. Proceedings of the IEEE, 2003.

13. K. Chintalapudi and R. Govindan. Localized Edge Detection in Sensor Fields.
Ad-hoc Networks Journal, 2003.

14. W. S. Conner, J. Chhabra, M. Yarvis, and L. Krishnamurthy. Experimental eval-
uation of synchronization and topology control for in-building sensor network
applications. In Proceedings of the Second ACM Workshop on Sensor Networks
and Applications, pages 38–49, San Diego, CA, USA, Sept. 2003. ACM.

15. Crossbow Technologies. http://www.xbow.com/.
16. L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex position estimation in

wireless sensor networks. In Proceedings of the IEEE Infocom, pages 1655–1663,
Anchorage, Alaska, USA, Apr. 2001. IEEE.

17. Dust Networks. http://www.dust-inc.com/.
18. J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In

Proceedings of the 15th IEEE International Parallel and Distributed Processing
Symposium, pages 1965–1970, San Francisco, CA, USA, Apr. 2001. IEEE.

19. J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI 2002), Boston, MA, December 2002.

20. Ember. http://www.ember.com/.
21. S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor

networks. In Proceedings of the First International Conference on Embedded
Networked Sensor Systems, pages 138–149. ACM Press, 2003.

22. D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need a
new data handling architecture for sensor networks? In Proceedings of the ACM
Workshop on Hot Topics in Networks, pages 143–148, Princeton, NJ, USA, Oct.
2002. ACM.

23. L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and D. Estrin.
Emstar: a software environment for developing and deploying wireless sensor
networks. In Proceedings of the USENIX Conference Proceedings, pages 283–
296, Boston, MA, USA, June 2004. USENIX.

24. L. Girod and D. Estrin. Robust Range Estimation Using Acoustic and Multi-
modal Sensing. In Proc. IEEE International Conference on Intelligent Robots
and Systems, Maui, HI, USA, Oct. 2001. IEEE.

25. G. Giuliano and J. Heidemann. Rapidly deployable sensors for vehicle count-
ing and classification. http://www.isi.edu/ilense/metrans/, 2004. Work in
progress.

26. B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A
Distributed Index for Features In Sensor Networks. In Proceedings of the IEEE
ICC Workshop on Sensor Network Protocols and Applications, Anchorage, AK,
April 2003.

27. T. Harmon. Networked Sensing in Support of Real-time Parameter Estimation.
Association of Environmental Engineering and Science Professors, 2003.

An Overview of Embedded Sensor Networks ISI TR-2004-594 17

28. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a
context-aware application. In Proceedings of the ACM International Conference
on Mobile Computing and Networking, pages 59–67, Seattle, WA, USA, Aug.
1999. ACM.

29. J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms
to application requirements. In Proceedings of the ACM SenSys Conference,
pages 218–229, Los Angeles, CA, USA, Nov. 2003. ACM.

30. J. Heidemann, F. Silva, Y. Yu, D. Estrin, and P. Haldar. Diffusion filters as a
flexible architecture for event notification in wireless sensor networks. Technical
Report ISI-TR-556, USC/Information Sciences Institute, Apr. 2002.

31. J. Hightower, C. Vakili, G. Borriello, and R. Want. Design and Calibration of
the SpotON Ad-Hoc Location Sensing System, 2001. Unpublished manuscript.

32. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
archtecture directions for networked sensors. SIGPLAN Not., 35(11):93–104,
2000.

33. J. L. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12–24, Nov/Dec 2002.

34. J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. In Proceedings of the 2nd ACM SenSys
Conference, pages 81–94, Baltimore, MD, USA, Nov. 2004. ACM.

35. IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications (IEEE 802.11). IEEE, 1997.

36. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In Proceedings of the
ACM International Conference on Mobile Computing and Networking, pages
56–67, Boston, MA, USA, Aug. 2000. ACM.

37. Intrinsyc. http://www.intrinsyc.com/.
38. D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc Wireless

Networks, chapter 5, pages 153–181. Kluwer Academic Publishers, 1996. in
Mobile Computing, edited by Tomasz Imielinski and Hank Korth.

39. C. Karlof, N. Sastry, and D. Wagner. TinySec: Link-Layer Encryption for Tiny
Devices. In Proceedings of the 2nd ACM SenSys Conference, pages 162–175,
2004.

40. B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wire-
less networks. In Proceedings of the ACM International Conference on Mobile
Computing and Networking, pages 243–254, Boston, MA USA, Aug. 2000. ACM.

41. K. Langendoen and N. Reijers. Distributed Localization in Wireless Sensor Net-
works: A Quantitative Comparison. Technical Report PDS-2002-003, Technical
University, Delft, November 2002.

42. P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 85–95, San Jose, CA,
USA, Oct. 2002. ACM.

43. P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable
simulation of entire tinyOS applications. In Proceedings of the first international
conference on Embedded networked sensor systems, pages 126–137, Los Angeles,
CA, USA, 2003. ACM Press.

44. X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional Range Queries
in Sensor Networks. In Proceedings of the ACM SenSys Conference, pages 63–75,
Los Angeles, CA, USA, Nov. 2003.

18 John Heidemann and Ramesh Govindan

45. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: Tiny AGgre-
gate queries in ad-hoc sensor networks. In Proceedings of the Usenix Symposium
on Operating Systems Design and Implementation, pages 131–146, Boston, MA,
USA, Dec. 2002. USENIX.

46. A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor net-
works for habitat monitoring. In Proceedings of the ACM Workshop on Sensor
Networks and Applications, pages 88–97, Atlanta, GA, USA, Sept. 2002. ACM.

47. Millenial Net. http://www.millenial.net/.
48. D. L. Mills. Internet time synchronization: The network time protocol. Network

Working Group Request for Comments: 1129, Oct. 1989.
49. D. Niculescu and B. Nath. Ad-hoc Positioning System. In Proceedings of IEEE

Globecom, 2001.
50. R. Nowak and U. Mitra. Boundary Estimation in Sensor Networks. In Proc.

of the First International Workshop on Information Processing in Sensor Net-
works, April 2003.

51. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector
(AODV) routing. RFC 3561, Internet Request For Comments, July 2003.

52. C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers. In Proceedings of the ACM SIG-
COMM Conference, pages 234–244. ACM, Aug. 1994.

53. A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS: Security
Protocols for Sensor Networks. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, pages 189–199. ACM Press,
2001.

54. G. Pottie. Personal communication, 1999.
55. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-

support system. In Proceedings of the 6thACM International Conference on
Mobile Computing and Networking, pages 32–43, Boston, MA, USA, Aug. 2000.

56. N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. Teller. The Cricket
Compass for Context-Aware Mobile Applications. In Proc. of Sixth ACM In-
ternational Conference on Mobile Computing and Networking (MOBICOM),
Rome, Italy, July 2001.

57. T. S.-I. Project. Smart-its home page. http://www.smart-its.org/, 2003.
58. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.

GHT: A geographic hash table for data-centric storage. In Proceedings of the
ACM Workshop on Sensor Networks and Applications, pages 78–87, Atlanta,
GA, USA, Sept. 2002. ACM.

59. N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor
networks. In Proceedings of the 2nd ACM Workshop on Sensor Networks and
Applications, pages 60–67, San Diego, CA, USA, Sept. 2003. ACM.

60. S. Roundy, P. K. Wright, and J. M. Rabaey. Energy Scavenging for Wireless
Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publish-
ers, 2004.

61. C. Savarese, K. Langendoen, and J. Rabaey. Robust Positioning Algorithms
for Distributed Ad-Hoc Wireless Sensor Networks. In Proc. Usenix Annual
Technical Conference, pages 317–327, Monterey, CA, June 2002.

62. A. Savvides, W. Garber, S. Adlakha, R. Moses, and M. Srivastava. On the Error
Characteristics of Multihop Node Localization in Wireless Sensor Networks.
In Proceedings of First International Workshop on Information Processing in
Sensor Networks, 2003.

An Overview of Embedded Sensor Networks ISI TR-2004-594 19

63. A. Savvides, C.-C. Han, and M. Srivastava. Dynamic Fine-Grained Localiza-
tion in Ad-Hoc Networks of Sensors. In Proc. of Seventh ACM International
Conference on Mobile Computing and Networking (MOBICOM), pages 166–179,
Rome, Italy, July 2001. ACM.

64. A. Savvides, H. Park, and M. Srivastava. The Bits and Flops of the N-hop
Multilateration Primitive for Node Localization Problems. In Proceedings of the
First International Workshop for Wireless Sensor Networks and Applications
(WSNA), 2002.

65. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-Centric
Storage in Sensornets. In Proc. ACM SIGCOMM Workshop on Hot Topics In
Networks, pages 137–144, Princeton, NJ, 2002.

66. G. Simon, A. Ledeczi, and M. Maroti. Sensor network-based countersniper sys-
tem. In Proceedings of the 2nd ACM SenSys Conference, pages 1–12, Baltimore,
MD, USA, Nov. 2004. ACM.

67. S. Singh and C. Raghavendra. PAMAS: Power aware multi-access protocol
with signalling for ad hoc networks. ACM Computer Communication Review,
28(3):5–26, July 1998.

68. K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. A self-organizing sensor net-
work. In Proceedings of the 37th Allerton Conference on Communication, Con-
trol, and Computing, Monticello, IL, USA, Sept. 1999.

69. T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mecha-
nism for wireless sensor networks. Technical Report CENS-TR-30, University of
California, Los Angeles, Center for Embedded Networked Sensing, Nov. 2003.

70. A. swol Hu and S. D. Servetto. Asymptotically optimal time synchronization in
dense sensor networks. In Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications, pages 1–10. ACM Press, 2003.

71. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Es-
trin. Application driven systems research: Habitat monitoring with sensor net-
works. Communications of the ACM, 47(6):34–40, June 2004.

72. Telos Corp. http://www.telos.com/.
73. T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for

wireless sensor networks. In Proceedings of the First ACM SenSys Conference,
pages 171–180, Los Angeles, CA, USA, Nov. 2003. ACM.

74. J. van Greunen and J. Rabaey. Lightweight time synchronization for sensor
networks. In Proceedings WSNA, San Diego, CA, USA., 2003.

75. J. Waldo. The Jini architecture for network-centric computing. Communications
of the ACM, 42(10):76–82, Oct. 1999.

76. K. Whitehouse and D. Culler. Calibration as a Parameter Estimation Problem
in Sensor Network. In Proceedings of the ACM Workshop on Sensor Networks
and Applications, Atlanta, GA, 2002.

77. A. D. Wood and J. A. Stankovic. Denial of service in sensor networks. IEEE
Computer, 35(10):54–62, Oct. 2002.

78. Y. Yao and J. Gehrke. The Cougar approach to in-network query processing in
sensor networks. In SIGMOD Record, September 2002.

79. W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for
wireless sensor networks. In Proceedings of the IEEE Infocom, pages 1567–1576,
New York, NY, USA, June 2002. USC/Information Sciences Institute, IEEE.

80. W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated,
adaptive sleeping for wireless sensor networks. ACM/IEEE Transactions on

20 John Heidemann and Ramesh Govindan

Networking, 12(3):493–506, June 2004. A preprint of this paper was available
as ISI-TR-2003-567.

81. F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration
for tracking applications. IEEE Signal Processing Magazine, 19(2):61–72, Mar.
2002.

