
1

Routing 1

Intra-Domain Routing

Forwarding v.s. Routing
• Forwarding: the process of moving 

packets from input to output based on:
– the forwarding table
– information in the packet.

• Routing: process by which the 
forwarding table is built and maintained:
– one or more routing protocols
– procedures (algorithms) to convert routing 

info to forwarding table.

Forwarding examples

• To forward unicast packets a router 
uses:
– destination IP address
– longest matching prefix in forwarding 

table
• To forward multicast packets:

– source + destination IP address and 
incoming interface

– longest and exact match algorithms



2

Factors affecting routing

4

3
6

2
1

9

1

1
D

A

F
E

B

C

• Routing algorithms view the network 
as a graph

• Problem: find lowest cost path 
between two nodes

• Factors
– static: topology
– dynamic: load
– policy

Two main approaches

• DV: Distance-vector protocols
• LS: Link state protocols

Distance Vector Protocols

• Employed in the early Arpanet
• Distributed next hop computation

– adaptive
• Unit of information exchange 

– vector of distances to destinations
• Distributed Bellman-Ford Algorithm



3

Distributed Bellman-Ford
Start Conditions:

Each router starts with a vector of (zero) distances
to all directly attached networks

Send step:
Each router advertises its current vector to all
neighboring routers.

Receive step:
Upon receiving vectors from each of its neighbors,
router computes its own distance to each neighbor.
Then, for every network X, router finds that neighbor
who is closer to X than to any other neighbor.
Router updates its cost to X. After doing this
for all X, router goes to send step.

Example - initial distances

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 ~

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 ~ 2

1

8
~
2
0

E

E receives D’s routes

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 ~

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 ~ 2

1

8
~
2
0

E



4

E updates cost to C

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 ~

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 4 2

1

8
~
2
0

E

A receives B’s routes

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 ~

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 4 2

1

8
~
2
0

E

A updates cost to C

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 8

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 4 2

1

8
~
2
0

E



5

A receives E’s routes

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 8

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

~

~
2
0

E 1 8 4 2

1

8
~
2
0

E

A updates cost to C and D

A

B

E

C

D

Info at
node

A
B
C
D

A B C

0 7 5

7 0 1
~ 1 0
~ ~ 2

7

1

1

2

28

Distance to node

D

3

~
2
0

E 1 8 4 2

1

8
~
2
0

E

Final distances

A

B C

D

Info at
node

A
B
C
D

A B C

0 6 5

6 0 1
5 1 0
3 3 2

7

1

1

2

28

Distance to node

D

3

3
2
0

E 1 5 4 2

1

5
4
2
0

E

E



6

Final distances after link 
failure

A

B C

D

Info at
node

A
B
C
D

A B C

0 7 8
7 0 1
8 1 0
10 3 2

7

1

1

2

28

Distance to node

D

10
3
2
0

E 1 8 9 11

1
8
9
11
0

E

E

View from a node

A

B

E

C

D

dest

A
B
C
D

A B D

1 14 5

7 8 5
6 9 4
4 11 2

7

1

1

2

28

Next hop

E’s routing table

The bouncing effect

A

25

1

1

B

C

B
C 2

1

dest cost
A
C 1

1

dest cost

A
B 1

2

dest cost



7

C sends routes to B

A

25 1

B

C

B
C 2

1

dest cost
A
C 1

~

dest cost

A
B 1

2

dest cost

B updates distance to A

A

25 1

B

C

B
C 2

1

dest cost
A
C 1

3

dest cost

A
B 1

2

dest cost

B sends routes to C

A

25 1

B

C

B
C 2

1

dest cost
A
C 1

3

dest cost

A
B 1

4

dest cost



8

C sends routes to B

A

25 1

B

C

B
C 2

1

dest cost
A
C 1

5

dest cost

A
B 1

4

dest cost

How are these loops caused?

• Observation 1:
– B’s metric increases

• Observation 2:
– C picks B as next hop to A
– But, the implicit path from C to A 

includes itself!

Solution 1: Holddowns

• If metric increases, delay 
propagating information
– in our example, B delays advertising 

route
– C eventually thinks B’s route is gone, 

picks its own route
– B then selects C as next hop

• Adversely affects convergence



9

Other “solutions”

• Split horizon
– B does not advertise route to C

• Poisoned reverse
– B advertises route to C with infinite 

distance
Works for two node loops

– does not work for loops with more nodes

Example where split horizon 
fails

1

11

1

A B

C

D

• When link breaks, C marks 
D as unreachable and 
reports that to A and B

• Suppose A learns it first. A 
now thinks best path to D 
is through B. A reports D 
unreachable to B and a 
route of cost=3 to C.

• C thinks D is reachable 
through A at cost 4 and 
reports that to B.

• B reports a cost 5 to A who 
reports new cost to C.

• etc...

Avoiding the Bouncing 
Effect

Select loop-free paths
• One way of doing this:

– each route advertisement carries entire 
path

– if a router sees itself in path, it rejects 
the route

BGP does it this way
Space proportional to diameter

Cheng, Riley et al



10

Computing Implicit Paths

• To reduce the space requirements
– propagate for each destination not only 

the cost but also its predecessor
– can recursively compute the path
– space requirements independent of 

diameter
x y z

w u

v
v u

u w

w z

z y

y z

Loop Freedom at Every 
Instant

• Does bouncing effect avoid loops?
– No! Transient loops are still possible
– Why? Because implicit path information 

may be stale
• Only way to fix this

– ensure that you have up-to-date 
information by explicitly querying

Distance Vector in Practice

• RIP and RIP2
– uses split-horizon/poison reverse

• BGP/IDRP
– propagates entire path
– path also used for effecting policies



11

Link State Algorithms

Basic steps

Each node assumed to know state of 
links to its neighbors

• Step 1: Each node broadcasts its 
state to all other nodes

• Step 2: Each node locally computes 
shortest paths to all other nodes 
from global state

Building blocks

• Reliable broadcast mechanism
– flooding
– sequence number issues

• Shortest path tree (SPT) algorithm
– Dijkstra’s SPT algorithm



12

Link state packets (LSPs)

Periodically, each node creates a Link 
state packet containing:

• Node ID
• List of neighbors and link cost
• Sequence number
• Time to live (TTL)
Node outputs LSP on all its links

Reliable flooding

When node i receives LSP from node j:
• If LSP is the most recent LSP from j 

that i has seen so far, i saves it in 
database and forwards a copy on all 
links except link LSP was received on.

• Otherwise, discard LSP.

• Problem: sequence number may wrap 
around

• Solution: treat space as circular, continue 
after wrap around:
– A is less than B if

• A<B and B-A < N/2, or
• A>B and A-B > N/2

Sequence number space 
issues

0 N

B A

Wrap around



13

Problem: router failure
• A failed router and comes up but does 

not remember the last sequence 
number it used before it crashed

• New LSPs may be ignored if they have 
lower sequence number

One solution: LSP Aging

• Nodes periodically decrement age 
(TTL) of stored LSPs

• LSPs expire when TTL reaches 0
– LSP is re-flooded once TTL = 0

• Rebooted router waits until all LSPs 
have expired

• Trade-off between frequency of 
LSPs and router wait after reboot

A better solution
Lollipop Sequence space [Perlman83]
• Divide sequence space N into 3 spaces:

– Negative space: -N/2 - 0
– The number 0
– Positive space: 0 to N/2 -1

-N/2
N/2 -1

0



14

Lollipop operation

• Router comes up and starts with -
N/2, then -N/2 + 1, -N/2 + 2, etc.

• When seq number becomes positive, 
wrap around as before

• a is older than b if:
– a < 0 and a < b, or
– a > 0, a < b and b - a < N/4,
– a > 0, b > 0, a > b, and a - b > N/4

..lollipop

• Newly booted router always starts 
with oldest seq num (-N/2)

• New rule:
– if router R1 gets older LSP from router 

R2, R1 informs R2 of the sequence 
number in R1’s LSP

• Newly booted router discovers its seq
num before it crashed and resumes

Is aging still needed?

• Yes! Stale LSPs are still possible
– suppose a router is down but not detected
– net partitions and then heals

• Aging ensures that old state is 
eventually flushed out of the network



15

SPT algorithm (Dijkstra)

SPT = {a}
for all nodes v

if v adjacent to a then D(v) = cost (a, v)
else D(v) = infinity

Loop
find w not in SPT, where D(w) is min
add w in SPT
for all v adjacent to w and not in SPT

D(v) = min (D(v), D(w) + C(w, v))

until all nodes are in SPT

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~

5

B C D E F

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~

5

B C D E F



16

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E

5

B C D E F

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E

5

B C D E F

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E

5

B C D E F



17

Example

A F

B

D E

C2

2

2

3

1

1

1

3

5

step SPT D(b), P(b) D(c), P(c) D(d), P(d) D(e), P(e) D(f), P(f)
0 A 2, A 5, A 1, A ~ ~
1 AD 2, A 4, D 2, D ~
2 ADE 2, A 3, E 4, E
3 ADEB 3, E 4, E
4 ADEBC 4, E
5 ADEBCF

5

B C D E F

Link State Algorithm
Flooding:

1) Periodically distribute link-state 
advertisement (LSA) to neighbors

- LSA contains delays to each
neighbor

2) Install received LSA in LS database
3) Re-distribute LSA to all neighbors

Path Computation
1) Use Dijkstra’s shortest path algorithm
to compute distances to all destinations
2) Install <destination, nexthop> pair in
forwarding table

Link State Characteristics

• With consistent LSDBs, all nodes 
compute consistent loop-free paths

• Limited by Dijkstra computation 
overhead, space requirements

• Can still have transient loops

A

B

C

D

1
3

5 2

1

Packet from C->A
may loop around BDC



18

LS v.s. DV

In DV send everything you know to your 
neighbors.

In LS send info about your neighbors to 
everyone.

• Msg size: small with LS, potentially 
large with DV

• Msg exchange: LS: O(nE), DV: only to 
neighbors

LS v.s. DV

• Convergence speed:
– LS: fast
– DV: fast with triggered updates

• Space requirements:
– LS maintains entire topology
– DV maintains only neighbor state

LS v.s. DV

Robustness:
• LS can broadcast 

incorrect/corrupted LSP
– localized problem

• DV can advertise incorrect paths to 
all destinations
– incorrect calculation can spread to 

entire network



19

LS v.s. DV

• In LS nodes must compute consistent 
routes independently - must protect 
against LSDB corruption

• In DV routes are computed relative 
to other nodes

Bottom line: no clear winner, but we see 
more frequent use of LS in the 
Internet


