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Routing 1

Intra-Domain Routing

Forwarding v.s. Routing
• Forwarding: the process of moving 

packets from input to output based on:
– the forwarding table
– information in the packet.

• Routing: process by which the 
forwarding table is built and maintained:
– one or more routing protocols
– procedures (algorithms) to convert routing 

info to forwarding table.

Forwarding examples

• To forward unicast packets a router 
uses:
– destination IP address
– longest matching prefix in forwarding 

table
• To forward multicast packets:

– source + destination IP address and 
incoming interface

– longest and exact match algorithms
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Factors affecting routing
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• Routing algorithms view the network 
as a graph

• Problem: find lowest cost path 
between two nodes

• Factors
– static: topology
– dynamic: load
– policy

Two main approaches

• DV: Distance-vector protocols
• LS: Link state protocols

Distance Vector Protocols

• Employed in the early Arpanet
• Distributed next hop computation

– adaptive
• Unit of information exchange 

– vector of distances to destinations
• Distributed Bellman-Ford Algorithm
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Distributed Bellman-Ford
Start Conditions:

Each router starts with a vector of (zero) distances
to all directly attached networks

Send step:
Each router advertises its current vector to all
neighboring routers.

Receive step:
Upon receiving vectors from each of its neighbors,
router computes its own distance to each neighbor.
Then, for every network X, router finds that neighbor
who is closer to X than to any other neighbor.
Router updates its cost to X. After doing this
for all X, router goes to send step.
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E updates cost to C
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A receives E’s routes
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Final distances after link 
failure
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C sends routes to B
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C sends routes to B
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How are these loops caused?

• Observation 1:
– B’s metric increases

• Observation 2:
– C picks B as next hop to A
– But, the implicit path from C to A 

includes itself!

Solution 1: Holddowns

• If metric increases, delay 
propagating information
– in our example, B delays advertising 

route
– C eventually thinks B’s route is gone, 

picks its own route
– B then selects C as next hop

• Adversely affects convergence
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Other “solutions”

• Split horizon
– B does not advertise route to C

• Poisoned reverse
– B advertises route to C with infinite 

distance
Works for two node loops

– does not work for loops with more nodes

Example where split horizon 
fails
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• When link breaks, C marks 
D as unreachable and 
reports that to A and B

• Suppose A learns it first. A 
now thinks best path to D 
is through B. A reports D 
unreachable to B and a 
route of cost=3 to C.

• C thinks D is reachable 
through A at cost 4 and 
reports that to B.

• B reports a cost 5 to A who 
reports new cost to C.

• etc...

Avoiding the Bouncing 
Effect

Select loop-free paths
• One way of doing this:

– each route advertisement carries entire 
path

– if a router sees itself in path, it rejects 
the route

BGP does it this way
Space proportional to diameter

Cheng, Riley et al
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Computing Implicit Paths

• To reduce the space requirements
– propagate for each destination not only 

the cost but also its predecessor
– can recursively compute the path
– space requirements independent of 

diameter
x y z

w u

v
v u

u w

w z

z y

y z

Loop Freedom at Every 
Instant

• Does bouncing effect avoid loops?
– No! Transient loops are still possible
– Why? Because implicit path information 

may be stale
• Only way to fix this

– ensure that you have up-to-date 
information by explicitly querying

Distance Vector in Practice

• RIP and RIP2
– uses split-horizon/poison reverse

• BGP/IDRP
– propagates entire path
– path also used for effecting policies
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Link State Algorithms

Basic steps

Each node assumed to know state of 
links to its neighbors

• Step 1: Each node broadcasts its 
state to all other nodes

• Step 2: Each node locally computes 
shortest paths to all other nodes 
from global state

Building blocks

• Reliable broadcast mechanism
– flooding
– sequence number issues

• Shortest path tree (SPT) algorithm
– Dijkstra’s SPT algorithm
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Link state packets (LSPs)

Periodically, each node creates a Link 
state packet containing:

• Node ID
• List of neighbors and link cost
• Sequence number
• Time to live (TTL)
Node outputs LSP on all its links

Reliable flooding

When node i receives LSP from node j:
• If LSP is the most recent LSP from j 

that i has seen so far, i saves it in 
database and forwards a copy on all 
links except link LSP was received on.

• Otherwise, discard LSP.

• Problem: sequence number may wrap 
around

• Solution: treat space as circular, continue 
after wrap around:
– A is less than B if

• A<B and B-A < N/2, or
• A>B and A-B > N/2

Sequence number space 
issues

0 N

B A

Wrap around
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Problem: router failure
• A failed router and comes up but does 

not remember the last sequence 
number it used before it crashed

• New LSPs may be ignored if they have 
lower sequence number

One solution: LSP Aging

• Nodes periodically decrement age 
(TTL) of stored LSPs

• LSPs expire when TTL reaches 0
– LSP is re-flooded once TTL = 0

• Rebooted router waits until all LSPs 
have expired

• Trade-off between frequency of 
LSPs and router wait after reboot

A better solution
Lollipop Sequence space [Perlman83]
• Divide sequence space N into 3 spaces:

– Negative space: -N/2 - 0
– The number 0
– Positive space: 0 to N/2 -1

-N/2
N/2 -1

0
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Lollipop operation

• Router comes up and starts with -
N/2, then -N/2 + 1, -N/2 + 2, etc.

• When seq number becomes positive, 
wrap around as before

• a is older than b if:
– a < 0 and a < b, or
– a > 0, a < b and b - a < N/4,
– a > 0, b > 0, a > b, and a - b > N/4

..lollipop

• Newly booted router always starts 
with oldest seq num (-N/2)

• New rule:
– if router R1 gets older LSP from router 

R2, R1 informs R2 of the sequence 
number in R1’s LSP

• Newly booted router discovers its seq
num before it crashed and resumes

Is aging still needed?

• Yes! Stale LSPs are still possible
– suppose a router is down but not detected
– net partitions and then heals

• Aging ensures that old state is 
eventually flushed out of the network
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SPT algorithm (Dijkstra)

SPT = {a}
for all nodes v

if v adjacent to a then D(v) = cost (a, v)
else D(v) = infinity

Loop
find w not in SPT, where D(w) is min
add w in SPT
for all v adjacent to w and not in SPT

D(v) = min (D(v), D(w) + C(w, v))

until all nodes are in SPT
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Link State Algorithm
Flooding:

1) Periodically distribute link-state 
advertisement (LSA) to neighbors

- LSA contains delays to each
neighbor

2) Install received LSA in LS database
3) Re-distribute LSA to all neighbors

Path Computation
1) Use Dijkstra’s shortest path algorithm
to compute distances to all destinations
2) Install <destination, nexthop> pair in
forwarding table

Link State Characteristics

• With consistent LSDBs, all nodes 
compute consistent loop-free paths

• Limited by Dijkstra computation 
overhead, space requirements

• Can still have transient loops

A

B

C

D

1
3

5 2

1

Packet from C->A
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LS v.s. DV

In DV send everything you know to your 
neighbors.

In LS send info about your neighbors to 
everyone.

• Msg size: small with LS, potentially 
large with DV

• Msg exchange: LS: O(nE), DV: only to 
neighbors

LS v.s. DV

• Convergence speed:
– LS: fast
– DV: fast with triggered updates

• Space requirements:
– LS maintains entire topology
– DV maintains only neighbor state

LS v.s. DV

Robustness:
• LS can broadcast 

incorrect/corrupted LSP
– localized problem

• DV can advertise incorrect paths to 
all destinations
– incorrect calculation can spread to 

entire network
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LS v.s. DV

• In LS nodes must compute consistent 
routes independently - must protect 
against LSDB corruption

• In DV routes are computed relative 
to other nodes

Bottom line: no clear winner, but we see 
more frequent use of LS in the 
Internet


