
1

7e_Katabi02a: CSci551 SP2006 © John Heidemann 1

Congestion Control In High
Bandwidth-Delay Nets

[Katabi02a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann
7e_Katabi02a: CSci551 SP2006 © John Heidemann 5

Context
• limitations of TCP over large bw-delay links

– need large window, and slow may take a while, recovery from pkt
loss takes a while

• ~1990: routers could barly keep up
– things like FQ cannot be used (even today) because of costs of per

flow state
– things like R&J used very simple feedback to keep routers simple
– what about today?

• current status:
– SIGCOMM paper was just simulations
– ISI and others are now implementing

• some slides and much discussion from Aaron Falk and Ted Faber at
ISI

– eventually may be IETF standard

7e_Katabi02a: CSci551 SP2006 © John Heidemann 10

Key ideas
• explict feedback from routers to senders

– talk about rates, not just congested/not
– takes advantage of greater router compute

power (than in 1990)
• but still avoid per-flow state

• separate fairness and utilization
– also separate congestion signals (congestion

loss) from packet loss (corruption loss)
• protocol for high bw-delay links

7e_Katabi02a: CSci551 SP2006 © John Heidemann 11

What is XCP?
• congestion control protocol

– intended to layer over some transport protocol
like TCP

• components in end-points and routers
– use explicit signaling
– and avoid per-flow state in the routers

• goals:
– high utilization
– good fairness
– low queueing delay

7e_Katabi02a: CSci551 SP2006 © John Heidemann 12

XCP Operation

sender receiverrouter router

H_cwnd (bytes)
H_rtt
H_feedback
(data)

rate (bits/s)
rtt
delta_rate
returned_delta_rate
(data)

in
 p

ap
er

in
 w

or
ki

ng
 d

ra
ft

2. each router:
if delta > spare capacity

then pass it along
else provide pos or neg feedback

3. receiver:
reflects feedback back

(copies it into returned_delta_rate)

1. sender:
sends out data, with requested change

4. sender:
adjusts based on feedback given

7e_Katabi02a: CSci551 SP2006 © John Heidemann 16

Router Feedback: Utilization
goals:
• keep utilization high (nearly 1)
• keep queues small
=> efficiency controller
(why? keep utilization to send as
much as possible, but avoid
queues to handle bursts)

d: mean RTT
S: spare bandwidth
Q: mean queue size
α, β: constants

ϕ: desired router
feedback over all flows

2

7e_Katabi02a: CSci551 SP2006 © John Heidemann 20

Router Feedback: Fairness
goals:
• provide min-max fairness to
each flow
=> fairness controller

mechanisms:
• AIMD
• if ϕ>0, increase all evenly;

if ϕ<0, decrease relative to usage
• and always shuffle some bw

and do all this without any per-flow
state (!)

•why AIMD? promote stability

•why increase evenly? bring small
flows up to the mean

•why decrease in proportion? bring
large flows down quickly

•why shuffle? to handle steady state
unfair allocations

• you can get unfair allocations
because flows come and go

7e_Katabi02a: CSci551 SP2006 © John Heidemann 21

Begin Digression
• digression on how this actually works

7e_Katabi02a: CSci551 SP2006 © John Heidemann 22

Feedback, Graphically
[graphics from
Aaron Falk,
USC/ISI]

postive feedback: per flow

negative feedback: per send rate

7e_Katabi02a: CSci551 SP2006 © John Heidemann 23

Goal: Feedback Without Per-Flow
State

• feedback is easy with per-flow state, but
that’s costly

• how without per-flow state?
– router has “pool” of feedback

(residue_pos_fbk, residue_neg_fbk)
– estimate these each control period (= mean

RTT)
– allocation:

• each packet is labeled w/RTT and cwnd (or rate)
=> can compute expected number of pkts per RTT

and then give feedback to each packet as it arrives

7e_Katabi02a: CSci551 SP2006 © John Heidemann 24

Understanding XCP Feedback
• if you have per-flow state, it’s easy:

– Tp := h + max(ϕ, 0): positive feedback
– Tn := h + max(-ϕ, 0): negative feedback

• over each control interval d you want to
give out Tp and Tn

• assume per-flow state, so you know N flows
and M packets

• then Tp,flow = Tp / N; Tn,pkt = Tn / M
• but how to do this without explicit N and

M?

7e_Katabi02a: CSci551 SP2006 © John Heidemann 25

Idea
• each packet carries cwndi, rtti, so we

know that flow’s rate
1. sum these from the prior ctl interval
2. use values in pkt to estimate pkt’s

contribution to total traffic
3. assume last ctl interval is like this ctl

interval and pkts don’t lie
• ξp , ξn become normalization

constants to dole out Tp , Tn per pkt

3

7e_Katabi02a: CSci551 SP2006 © John Heidemann 26

Challenges
• different packet sizes
• different flow RTTs
• control interval != RTT

• also
– traffic may (or will) change
– potentially, users could lie

7e_Katabi02a: CSci551 SP2006 © John Heidemann 28

Negative Feedback
• idea: penalize relative to rate

– ∆ throughputi ~ throughtputi

– ∆ cwndi / rtti ~ cwndi / rtti

– ∆ cwndi ~ cwndi (if const. rtti)
• if Tn is total penalty, then per pkt

penalty ni is just Tn / E[total pkts in d]

7e_Katabi02a: CSci551 SP2006 © John Heidemann 29

Negative Feedback: Complications

• different size pkts? ni ~ si / Σ∀pkts in d si
– large pkt => more thrpt => more fdbk

• different RTTs? ni ~ rtti / d (scale by
rtt)
– short rtt => more pkts => more feedback

• from paper:
– ni = si * rtti * ξn
– ξn = Tn / (d * Σ∀pkts in d si)

7e_Katabi02a: CSci551 SP2006 © John Heidemann 30

Putting it Together

ni = Tn * rtti * si
(d * Σ∀pkts in d si)

scale for rtt scale for pkt size

packet weight

traffic weight

– ni = si * rtti * ξn
– ξn = Tn / (d * Σ∀pkts in d si)

7e_Katabi02a: CSci551 SP2006 © John Heidemann 32

Example of Negative Feedback

cwnd=2. rtt=2, s=1
(rate = 2*1/2 = 1B/s)
cwnd=1, rtt=2, s=2
(rate = 1pk*2B/2s = 1B/s)

cwnd=2pkts, rtt=1s, s=1B
(rate = 2pkts*1B/1s = 2B/s)

d=2
time

3
flo

w
s

if Tn = 4B, what should happen to tfc?
cut in half
what is
4B/(2s * 8B) = 1/2s

ξn = Tn / (d * Σ∀pkts in d si)

penalty to flow 1?
4* ½ = 2pkts

7e_Katabi02a: CSci551 SP2006 © John Heidemann 33

Positive Feedback
• idea: allocate per flow

– ∆ throughputi ~ constant
– ∆ cwndi / rtti ~ constant
– ∆ cwndi ~ constant * rtti

• compare

basic change: add a factor for rate

ni = ξn * si * rtti
ξn = Tn / (d * Σ∀pkts in d si)

pi = ξn * si * rtti2 / cwndi

ξp = Tp / (d * Σ∀pkts in d (si rtti / cwndi))

4

7e_Katabi02a: CSci551 SP2006 © John Heidemann 34

(end of digression)

7e_Katabi02a: CSci551 SP2006 © John Heidemann 38

So Why is XCP Cool?
• complete feedback from routers (target rate)

– much more than just “slow down”
• allows flows to reach high utilization

quickly
– no slow-start to find target; no aggressive

window halving like TCP
– both are really important for high bw-delay

flows
• and does so without per-flow state

– so is probably achievable in routers

7e_Katabi02a: CSci551 SP2006 © John Heidemann 39

Does it Work?
• control theoretic analysis

– see paper
– but doesn’t consider feedback delay (the hard

part!)
• extensive simulations

– compare XCP, TCP w/RED, REM, AVQ,
CSFQ

– consider capacity, feedback delay, number of
flows, size of flows, fairness, topology,
dynamics

7e_Katabi02a: CSci551 SP2006 © John Heidemann 43

Evaluation vs. Bandwidth
• vary bandwidth,

holding RTT=80ms
• XCP has excellent

utilization, very low
queueing and drops

• why?
– explicit feedback

• can quickly react to
changes, positive or
negative

[Katabi02a, figure 4]

7e_Katabi02a: CSci551 SP2006 © John Heidemann 44

Dynamics
• as flows are added

– quickly reach fair
share (top)

– utilization stays
high (middle)

– queues are fairly
short (bottom)

[Katabi02a, figure 10]

7e_Katabi02a: CSci551 SP2006 © John Heidemann 46

Experimental Data
Data from Falk et al at ISI; implementation over FreeBSD; www.isi.edu/isi-xcp

xxx xxx

5

7e_Katabi02a: CSci551 SP2006 © John Heidemann 48

Other questions/observations?
• compatibility?

– completely incompatible…needs new end hosts
and new routers

– maybe deploy in new networks (like satellites)
– or maybe do it an an overlay network (if you

have dedictated bw in the overlay, and can get
feedback from routers in the overlay)

• compare it to TCP
– TCP friendlies

