RED: Floyd and Jacobson [Floyd93a]

CSci551: Computer Networks SP2006 Thursday Section John Heidemann

7d_Floyd93a: CSci551 SP2006 © John Heidemann

Key ideas

- goal to reduce congestion - also wants to keep queue short
- probabilistic detection
 - RED: Random Early Detection
 - random: to encourage fairness
 - early: signal the senders to slow down before there's congestion
 - · detection: hope to detect and prevent congestion
- remember, in TCP congestion avoidance, it's always sending a little bit more

7d_Floyd93a: CSci551 SP2006 © John Heidemann

E-mail Question: Global Synchronization

- define "global synchronization"
 - when independent processes become synchronized
 - problem if you want to assume random behavior
- · example: airport gate arrival
 - at LAX, people go through security randomly, arrive at gate randomly
 - if they have to wait at the gate to talk to an agent, they all see average delay · variance is low
 - variance is low
 variance is low

 - (people hate variance!)

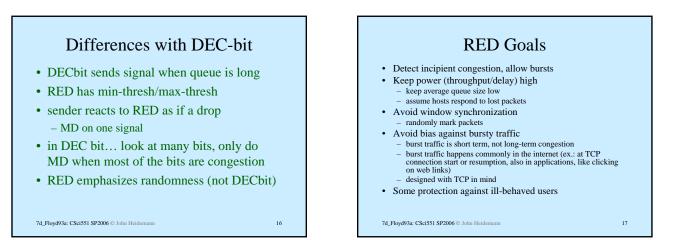
7d_Floyd93a: CSci551 SP2006 © John Heidemann

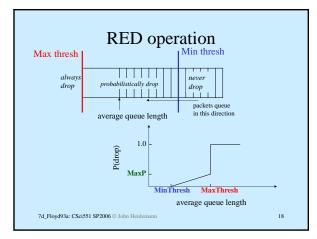
Why we need active queue management (RFC-2309)

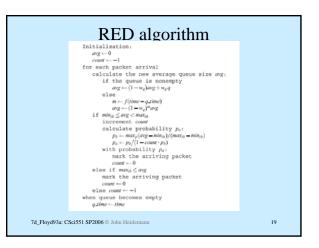
- Lock-out problem
 - drop-tail allows a few flows to monopolize the queue space, locking out other flows
 - want to allow rapid convergence on fairness
- Full queues problem:
 - drop tail maintains full or nearly-full queues during congestion
 - want short queues to allow bursts (not persistent queues)

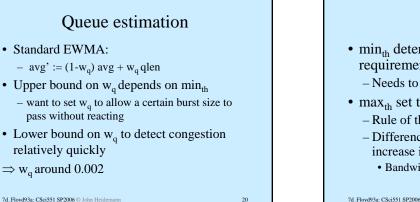
7d_Floyd93a: CSci551 SP2006 © John Heidemann

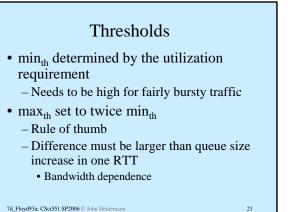
Prior Work

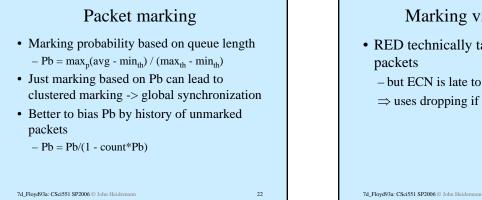

- · Random drop:
 - packet arriving when queue is full causes some random packet to be dropped
- Drop front:
- on full queue, drop packet at head of queue
- · Random drop and drop front solve the lock-out problem but not the full-queues problem
- what is needed to reduce queues? RED: random droppping for fairness, and early dropping to prevent congestion (earlier than drop head)

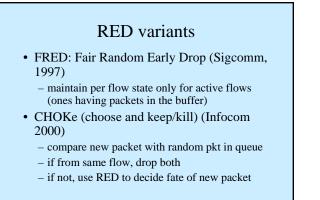

```
7d_Floyd93a: CSci551 SP2006 © John Heidemann
```

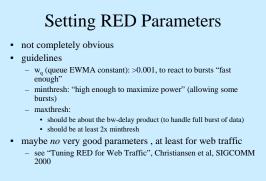

12


1


Solving the full queues problem • Drop packets before queue becomes full (*early* drop) • Intuition: notify senders of incipient (oncoming) congestion - example: early random drop (ERD): • if qlen > drop level, drop each new packet with fixed probability p· does not control misbehaving users 7d_Floyd93a: CSci551 SP2006 © John Heidemann 13

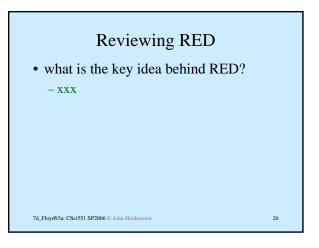


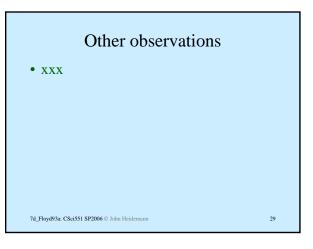



Marking vs. Dropping

- RED technically talks about marking packets
 - but ECN is late to the Internet
 - \Rightarrow uses dropping if marking not available

23


7d_Floyd93a: CSci551 SP2006 © John Heidemann



7d_Floyd93a: CSci551 SP2006 © John Heidemann

27

24

