
1

7d_Floyd93a: CSci551 SP2006 © John Heidemann 1

RED:
Floyd and Jacobson [Floyd93a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

7d_Floyd93a: CSci551 SP2006 © John Heidemann 7

Key ideas
• goal to reduce congestion

– also wants to keep queue short
• probabilistic detection

– RED: Random Early Detection
• random: to encourage fairness
• early: signal the senders to slow down before there’s 

congestion
• detection: hope to detect and prevent congestion

• remember, in TCP congestion avoidance, 
it’s always sending a little bit more

7d_Floyd93a: CSci551 SP2006 © John Heidemann 8

E-mail Question: Global 
Synchronization

• define “global synchronization”
– when independent processes become synchronized
– problem if you want to assume random behavior

• example: airport gate arrival
– at LAX, people go through security randomly, arrive at gate 

randomly
• if they have to wait at the gate to talk to an agent, they all see average 

delay
• variance is low

– at IAD, people go through security randomly, but they have to take 
a shuttle bus to the gate; this synchronizes them

• so if they have to talk to an agent at the gate, one always sees zero 
delay, and one always sees maximum delay

• over all people, delay is the same, but variance is high
– (people hate variance!)

7d_Floyd93a: CSci551 SP2006 © John Heidemann 9

Why we need active queue 
management (RFC-2309)

• Lock-out problem
– drop-tail allows a few flows to monopolize the 

queue space, locking out other flows
– want to allow rapid convergence on fairness

• Full queues problem:
– drop tail maintains full or nearly-full queues 

during congestion
– want short queues to allow bursts (not 

persistent queues)

7d_Floyd93a: CSci551 SP2006 © John Heidemann 12

Prior Work
• Random drop:

– packet arriving when queue is full causes some random 
packet to be dropped

• Drop front:
– on full queue, drop packet at head of queue

• Random drop and drop front solve the lock-out 
problem but not the full-queues problem

• what is needed to reduce queues? RED: random 
droppping for fairness, and early dropping to 
prevent congestion (earlier than drop head)

7d_Floyd93a: CSci551 SP2006 © John Heidemann 13

Solving the full queues problem
• Drop packets before queue becomes 

full (early drop)
• Intuition: notify senders of incipient 

(oncoming) congestion
– example: early random drop (ERD):

• if qlen > drop level, drop each new packet 
with fixed probability p

• does not control misbehaving users



2

7d_Floyd93a: CSci551 SP2006 © John Heidemann 16

Differences with DEC-bit
• DECbit sends signal when queue is long
• RED has min-thresh/max-thresh
• sender reacts to RED as if a drop

– MD on one signal
• in DEC bit… look at many bits, only do 

MD when most of the bits are congestion
• RED emphasizes randomness (not DECbit)

7d_Floyd93a: CSci551 SP2006 © John Heidemann 17

RED Goals
• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) high

– keep average queue size low
– assume hosts respond to lost packets

• Avoid window synchronization
– randomly mark packets

• Avoid bias against bursty traffic
– burst traffic is short term, not long-term congestion
– burst traffic happens commonly in the internet (ex.: at TCP 

connection start or resumption, also in applications, like clicking 
on web links)

– designed with TCP in mind
• Some protection against ill-behaved users

7d_Floyd93a: CSci551 SP2006 © John Heidemann 18

RED operation
Min threshMax thresh

average queue length

MinThresh MaxThresh

MaxP

1.0

average queue length

P(
dr

op
)

always
drop

never
dropprobabilistically drop

packets queue
in this direction

7d_Floyd93a: CSci551 SP2006 © John Heidemann 19

RED algorithm

7d_Floyd93a: CSci551 SP2006 © John Heidemann 20

Queue estimation
• Standard EWMA:

– avg’ := (1-wq) avg + wq qlen
• Upper bound on wq depends on minth

– want to set wq to allow a certain burst size to 
pass without reacting

• Lower bound on wq to detect congestion 
relatively quickly

⇒ wq around 0.002

7d_Floyd93a: CSci551 SP2006 © John Heidemann 21

Thresholds
• minth determined by the utilization 

requirement
– Needs to be high for fairly bursty traffic

• maxth set to twice minth
– Rule of thumb
– Difference must be larger than queue size 

increase in one RTT
• Bandwidth dependence



3

7d_Floyd93a: CSci551 SP2006 © John Heidemann 22

Packet marking
• Marking probability based on queue length

– Pb = maxp(avg - minth) / (maxth - minth)
• Just marking based on Pb can lead to 

clustered marking -> global synchronization
• Better to bias Pb by history of unmarked 

packets
– Pb = Pb/(1 - count*Pb)

7d_Floyd93a: CSci551 SP2006 © John Heidemann 23

Marking vs. Dropping
• RED technically talks about marking

packets
– but ECN is late to the Internet
⇒ uses dropping if marking not available

7d_Floyd93a: CSci551 SP2006 © John Heidemann 24

RED variants
• FRED: Fair Random Early Drop (Sigcomm, 

1997)
– maintain per flow state only for active flows 

(ones having packets in the buffer)
• CHOKe (choose and keep/kill) (Infocom 

2000)
– compare new packet with random pkt in queue
– if from same flow, drop both
– if not, use RED to decide fate of new packet

7d_Floyd93a: CSci551 SP2006 © John Heidemann 26

Reviewing RED
• what is the key idea behind RED?

– xxx

7d_Floyd93a: CSci551 SP2006 © John Heidemann 27

Setting RED Parameters
• not completely obvious
• guidelines

– wq (queue EWMA constant): >0.001, to react to bursts “fast 
enough”

– minthresh: “high enough to maximize power” (allowing some 
bursts)

– maxthresh:
• should be about the bw-delay product (to handle full burst of data)
• should be at least 2x minthresh

• maybe no very good parameters , at least for web traffic
– see “Tuning RED for Web Traffic”, Christiansen et al, SIGCOMM 

2000

7d_Floyd93a: CSci551 SP2006 © John Heidemann 29

Other observations
• xxx


