
1

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 1

TCP Revisited

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 2

Agenda
• connection setup and teardown
• flow control
• congestion control theory
• congestion control practice (in TCP)
• loss recovery
• security
• performance

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 3

Agenda
• security

– TCP hijacking
– DDoS mitigation

• performance
– delayed ACKs
– TCP at high bitrates and over long fat

pipes

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 4

Connection Hijacking
• Problem: connection hijacking

– some systems authenticate based on TCP
connections and source IP addresses

=> if you can steal a running TCP
connection, you’re in

– it is possible, but not easy

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 5

TCP Distributed Denial of Service
• Problem: lots of people have too much time

on their hands
– and lots of people don’t have secure computers
⇒ bad people take over computers (zombies) and

have them all ask you at once
• mitigation: SYN cookies

• rather than make a new TCB for a new
(probably bogus) connection, encode the info in
the ISN on the SYN-ACK

• when you get the ACK, recreate the missing
state

• but, sadly, there are other forms of DDoS…
6c_tcp_revisited: CSci551 SP2006 © John Heidemann 6

Agenda
• security

– TCP hijacking
– DDoS mitigation

• performance
– delayed ACKs
– TCP at high bitrates and over long fat

pipes

2

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 8

Bad Optimization: Just Send One
Ack Per Flight of Packets

• idea: don’t send ACKs frequently, just send
one after you get a whole bunch of packet
– save bandwidth in reverse path (fewer acks)

• Problems
– if you lose the ACK, out of luck and have to

wait RTO and retx a packet to get a new ACK
saying it all really got there

– can’t do RTT estimation if you don’t get many
acks

– destroy the steady pace of ACKs (the ACK
clock) and makes TCP very bursty

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 10

Delayed ACKS
• Problem: it’s a lot of work to ACK every TCP segment

– especially if it’s just a few bytes
– and the ACKs are tiny

• Approach: delay sending ACKs
– send if you get two full segments
– or after at most 500ms
– idea: preserve most of the ACK clocking, but reduce the number of

return ACKs
• Side-effect:

– slow-start grows per ACK, not per ACKed segment, so it’s 1, 2, 3,
3, 5…, not 1, 2, 4, 8…

– can make fast retransmit less likely (so if the receiver notices loss
it turns off delayed acks temporarily to make fast retx more likely)

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 11

What about NACKs?
• just NACKs, or NACKs and ACKs

– actually NACKs + ACKs is like SACK
(select ACK)

• pro:
– much lower reverse path traffic

• con:
– no self-clocking
– can’t easily estimate RTT changes

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 13

Problem: High BW Connections
• How many packets to keep in flight?

– must be > bw*delay product
– 10Mb/s * 100ms rtt = 1Mb ~ 100kB
– 1Gb/s * 100ms rtt = 100Mb ~ 10MB!

• Sequence number wraparound time vs. Link
speed:

• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds
• 1.2Gbps: 28 seconds

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 14

TCP Extensions for
“Long, Fat Pipes”

• timestamp option + PAWS (Protection
Against Wrapped Sequences)
– endpoints swap timestamps on each pkt
– allows better RTT estimation
– provides effectively larger sequence space

(reject packets with old timestamps)
• window scaling

– multiplicative factor on wnd
– to keep the pipe full

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 19

High-bandwidth TCP
• How fast can TCP go? Need new protocol?

– demonstrated at 4Gb/s (FAST TCP at Caltech)
– the spec doesn’t specify a speed

• but requires some care
– sequence number issues on prior slide
– slow start would be a problem if you do it a lot (ex. if

you have short connection)
– TCP segment size (depends on IP packet size) (want

more than 1500B packets at Gb/s rates)
– loss is really bad if you go to slow start

• and it’s difficult to recover from multiple losses per RTT, even
with New Reno and SACK

3

6c_tcp_revisited: CSci551 SP2006 © John Heidemann 21

Other comments?
• alternative to TCP? XCP
• xxx

