
1

5d_TCP: CSci551 SP2006 © John Heidemann 1

TCP Overview

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

5d_TCP: CSci551 SP2006 © John Heidemann 5

What does TCP Provide?
• connection establishment:

y
• connectionless

communication: n
• congestion avoidance: y
• differentiated services: n

(type-of-service bits in IP)
• duplicate packet detection:

y
• flow control: y

• loss recovery: y
• message or record

boundaries: n (wanted by
some protocols like RPC)

• ordered data delivery to
the application: y

• out-of-order data delivery
to the application: n
(wanted by streaming
media)

• quality-of-service: n
• urgent data indication: y

5d_TCP: CSci551 SP2006 © John Heidemann 11

Where and Why is TCP Used?
• where: anywhere reliable communication is needed

– ftp, http, BPG, …
• why?

– lots of folks want TCP’s mix of features (reliability, in-order
delivery, connections…)

– it’s already there
– algorithms

• window-based flow control
• congestion control, AIMD
• reliablity (checksums, retransmissions, etc.)

– NACK vs. ACK
– exponential backoff
– RTT estimation algorithm
– RTO (Retx timeout) estimation

– => lot of very careful design and engineering
• important reason to use TCP is to leveage this prior work

5d_TCP: CSci551 SP2006 © John Heidemann 16

TCP in a Nutshell
• abstraction:

– reliable
– ordered
– point-to-point
– byte-stream

• mechanisms
– (prior page)

5d_TCP: CSci551 SP2006 © John Heidemann 17

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdr len Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

5d_TCP: CSci551 SP2006 © John Heidemann 18

Agenda
• connection setup and teardown

– initial sequence number selection
– passive/active open
– time-wait

• flow control
• congestion control practice and theory
• loss recovery
• security
• performance

2

5d_TCP: CSci551 SP2006 © John Heidemann 24

Three-Way Handshake
• why?

– set the initial sequence
number

• need number order
packets

• try to start with
different ISNs each
time to make accidental
replay of packets less
likely

– make sure someone’s
there

– and to make sure the
originator’s there

A B

SYN
SYN+ACK-A

ACK-B

5d_TCP: CSci551 SP2006 © John Heidemann 25

Connection Setup States

passive vs. active
(and both active!)

(error recovery is
not on this figure)

[from RFC-793]

5d_TCP: CSci551 SP2006 © John Heidemann 30

Initial Sequence Number
Selection

• Why not just start at 0?
– xxx

• Approach:
– xxx

5d_TCP: CSci551 SP2006 © John Heidemann 31

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

5d_TCP: CSci551 SP2006 © John Heidemann 32

Connection Tear-down

5d_TCP: CSci551 SP2006 © John Heidemann 36

Connection Tear-down
• either side can close

– or one side can close and the other stay
open

• one side (active side) must maintain
state (TIME_WAIT) for 2 minutes,
why?
– need to make sure any segments floating

around the net can be disposed of

3

5d_TCP: CSci551 SP2006 © John Heidemann 37

Agenda
• connection setup and teardown
• flow control

– setting window sizes
– Nagle’s algorithm
– silly window syndrome
– protection against wrap-around

• congestion control practice and theory
• loss recovery
• security
• performance 5d_TCP: CSci551 SP2006 © John Heidemann 38

Flow Control
• Window sizes are passed in every

packet
– beware: implementations often have

separate TCP and socket buffers
– effective window is the minimum of the

two

5d_TCP: CSci551 SP2006 © John Heidemann 42

Flow Control
• Why?

– make sure the receiver can handle whatever
data they get

• Solutions
– sliding window
– (vs. stop-and-wait)
– need to keep multiple packets in flight

• routers are store and forward
• need to allow for retx
• need to keep the “pipe full”---a bandwidth-delay-

product’s worth of packets in flight

5d_TCP: CSci551 SP2006 © John Heidemann 43

Window Flow Control: Sender

Sent but not acked Not yet sent

advertised window (from receiver)

Sequence numbers

last byte sentlast byte ACKed

effective window

send buffer

5d_TCP: CSci551 SP2006 © John Heidemann 44

Window Flow Control: Receiver

ACKed but not
delivered to user

recv’d
but not
ACKed

Receive buffer (possible window)

Sequence numbers

advertised
window

m
is

si
ng

 d
at

a

5d_TCP: CSci551 SP2006 © John Heidemann 48

Sending Small Things
• Silly window syndrome (RFC-813)

– receiver dribbles out small window advances
⇒ Silly Window Avoidance: delay ACKing

(receiver) or sending small segments (sender)
• Sender who dribbles out data (like telnet)

⇒ Nagle’s algorithm (RFC-896): send 1st partial
packet, but not more until it’s ACKed or you
have a full packet

4

5d_TCP: CSci551 SP2006 © John Heidemann 49

Problem: Rapid Wrap-Around
• Wraparound time vs. Link speed:

• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds
• 1.2Gbps: 28 seconds

⇒ Protection Against Wrapped Sequences
(PAWS extension): Use timestamp to
distinguish sequence number wraparound

5d_TCP: CSci551 SP2006 © John Heidemann 50

Agenda
• connection setup and teardown
• flow control
• congestion control theory

– what and why
– how

• congestion control practice
• loss recovery
• security
• performance

5d_TCP: CSci551 SP2006 © John Heidemann 51

Congestion Collapse

• If both sources send full speed, the
router is completely overwhelmed
⇒ congestion collapse: senders lose data

from congestion and they resend, causing
more congestion (can be self-reinforcing)

– has been observed many times

10 Mbps

10 Mbps

1.5 Mbps

5d_TCP: CSci551 SP2006 © John Heidemann 57

Congestion Control vs. Flow
Control

• What does flow control do?
– dest buffer capacity

• What does congestion control do?
– router buffer (network) capacity

• What mechanism do they use?
– sliding window (wnd in TCP header)
– AIMD (wnd in TCP header; cwnd variable at

src/dest)
• also explicit congestion notification (ECN) in the IP

header

5d_TCP: CSci551 SP2006 © John Heidemann 60

Congestion Control Signals in the
Internet

• ECN: bit set by routers if they have
congetion
– fairly new
– (how widely used?)

• drop packets
– due to buffer overflows
– also early packet discard (see RED)
– (much rarer: link failures or packet corruption)

5d_TCP: CSci551 SP2006 © John Heidemann 65

Congestion Control Goals
• to recover after congestion
• not to make congestion worse

– i.e., if you’re close to full utilization,
don’t increase

• if you have spare capacity, use it
• (also we forgot fairness)

5

5d_TCP: CSci551 SP2006 © John Heidemann 66

Power and Load

• throughput and
delay change due to
load
– want to optimize

power
load

th
ro

ug
hp

ut

load

de
la

y

(From [Ramakrishnan90a])

power :=
(throughput)α

delay

knee

5d_TCP: CSci551 SP2006 © John Heidemann 67

Fairness
• Also want fairness

– should treat all users equally
• but it’s not so easy

– what is a user? host, flow, person?
⇒ if n flows through a link, each should get n-1 of

the bandwidth
– R&J’s fairness index: (Σxi)2/n(Σxi

2)
– but what if flows have different needs?

different RTTs?

5d_TCP: CSci551 SP2006 © John Heidemann 73

Congestion Control Design
• Avoidance or control? (R&J:)

– avoidance keeps system at knee of curve
• requires some congestion signal

– control responds to loss after the fact
• TCP

– Which is TCP?
• both, congestion avoidance and control, but they

mean different things
– be careful that the TCP terms don’t mean the same as the

R&J terms
– How does TCP do it?

• slow start, AIMD… will talk more…

5d_TCP: CSci551 SP2006 © John Heidemann 74

How to Adjust Window?
• When to

increase/decrease?
• A control theory

problem
– observe network
– reduce window if

congested
– increase window if

not congested

• Constraints:
– efficency
– fairness
– stability (too much

oscillation is bad)
– out-of-date info

• RTT is fundamental
limit to how quickly
you can react

5d_TCP: CSci551 SP2006 © John Heidemann 79

Linear Control
Xi(t + 1) = ai(t,f) + bi(t,f) Xi(t)

• Formulation allows for the feedback signal:
– to change additively: ai(t)
– to change multiplicatively: bi(t)
– can consider feedback: f
– all to compute beavhior at time t+1 based on info at time t

• What does TCP do and why?
– start up: slow start: start by sending a small amount, then increase

multipliciatively to get to “steady state”
– at steady state: increase linearly; TCP calls this “congestion

avoidance”
– after congestion: multiplicative decrease

• Types of feedback in Internet?
– drop packets: lack of ACKs or ACKs that don’t advance
– or ECN

5d_TCP: CSci551 SP2006 © John Heidemann 80

Agenda
• connection setup and teardown
• flow control
• congestion control theory
• congestion control practice (in TCP)
• loss recovery
• security
• performance
=> next sets of slides

