Queue Management and Congestion Control

CSci551: Computer Networks SP2006 Thursday Section John Heidemann

8d_queueing: CSci551 SP2006 © John Heidemann

Where are we?

- Problem: traffic grows until it will fill the network
- Solutions:
 - end-hosts: backoff TCP and DECbit
 - routers: drop packets, RED
 - XCP uses both hosts and routers
 - do we need something beyond best effort?

7

15

8d_queueing: CSci551 SP2006 © John Heidemann

What About Application Needs?

- Congestion is a problem for best-effort, congestion reactive traffic
- Real-time or multimedia traffic has other needs:
 bound delay, required bandwidth, control loss rate (or maybe not)
 - might want some kind of Quality of Service (QoS)
- Solutions for RT tfc:
 - end-hosts: adaptivity (ex. playout point)
 - routers: queueing, resource reservation
 - same kind of interactions

8d_queueing: CSci551 SP2006 © John Heidemann

Best Effort and Better-Effort Traffic

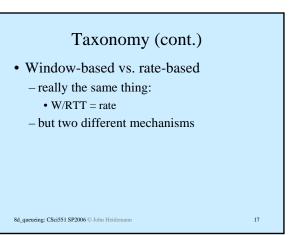
• Up to now (congestion control/TCP) and next (int-serve/diff-serve) use the *same* basic mechanisms

- adaptive applications & router queueing

- goal before: e2e adaptivity & fairness
- goal now: providing guarantees (QoS)

8d_queueing: CSci551 SP2006 © John Heidemann

Taxonomy


- router-centric vs. host-centric
 - routers: queueing, reservations, adaptive routing
 - hosts: congestion control
 - variant: only at the *edge-routers*
- · reservations vs. feedback
 - reservations: hosts or apps ask for resources (admission control: yes/no)
 - feedback: hosts send, routers tell to slow down

8d_queueing: CSci551 SP2006 © John Heidemann

16

1

11

1

Service Models

- In practice, fewer than eight choices
 - router/host x reservation/feedback x window/rate
- Best-effort vs. guaranteed service
 - best-effort: can drop anytime
 - guaranteed: will never ever
 - drop ("integrated services")
 also better-than-best-effort
 - ("differentiated services")

8d_queueing: CSci551 SP2006 © John Heidemann

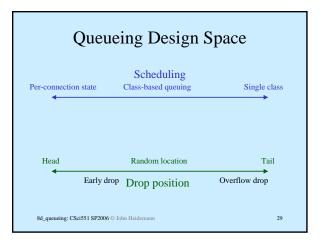
- Best-effort networks: hosts, feedback, window
- Others: router, reservations, rate

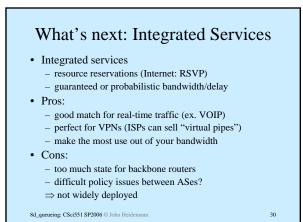
21

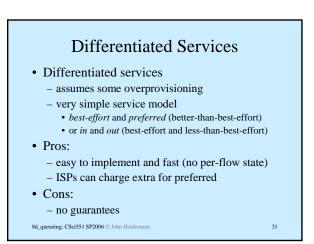
23

Queuing disciplines

- All router have *some* queueing discipline
- Queuing allocates bandwidth, buffer space, and promptness:
 - bandwidth: which packets get transmitted
 - buffer space: which packets get dropped
 - promptness: when packets get transmitted


22


8d_queueing: CSci551 SP2006 © John Heidemann


Examples

- FIFO/drop tail: don't split bandwidth, keep whatever arrives (FCFS), send in order of arrival
- FQ: split bandwidth fairly, potentially separate queues per flow (maybe), round-robin like order
- RED: like FIFO expect, drop randomly (vs. keep whatever arrives)
- drop head:

8d_queueing: CSci551 SP2006 © John Heidemann

