
1

8f_Stoica03a: CSci551 SP2006 © John Heidemann 1

Core-Stateless Fair Queueing 
Stoica, Shenker, Zhang 

[Stoica03a]
CSci551: Computer Networks

SP2006 Thursday Section
John Heidemann

8f_Stoica03a: CSci551 SP2006 © John Heidemann 5

Context
• e2e congestion control

– good: simple way to get approx fairneess
– but: assume people cooperate

• fair queueing
– good: enforces fairness
– but: more complex

• also only gurantees fairness to flows, but 
F&F talk about using extra flows

8f_Stoica03a: CSci551 SP2006 © John Heidemann 9

Key Ideas
• CSFQ: Core-Stateless Fair Queueing
• not all the routers store per-flow state

– core routers can be simple, therefore fast
• only edge routers have per-flow state

– like FQ

8f_Stoica03a: CSci551 SP2006 © John Heidemann 10

What is Expensive in FQ?
• classifying packets into flows
• updating per-flow state
• implementing drop policy

(CSFQ avoids these issues by moving 
them to edge routers and keeping the 
core simple)

8f_Stoica03a: CSci551 SP2006 © John Heidemann 12

CSFQ Model

[Stoica03a, figure 1]

8f_Stoica03a: CSci551 SP2006 © John Heidemann 13

α1(t)

Fluid Model Version of CSFQ

r1(t)
r2(t)r3(t)

arrival rate: A(t) = Σ ri(t)
ri(t) is per-flow offered rate

α2(t)
α3(t)

output rate: C = Σ αi(t)
αi(t) is per-flow accepted rate

(the fair share)

how to relate r(t) and α(t)?
di(t) = max(0, 1-(α(t) / ri(t))

i.e., drop at 1 - (fair share rate / offered rate)

di(t)



2

8f_Stoica03a: CSci551 SP2006 © John Heidemann 14

Packet-level Algorithm
• edge routers estimate rate

– simple EWMA of observed rate (eqn 3)
– label packets with this rate

• all routers drop based on fair rate
– compute fair share α(t) using

• A(t): offered rate
• F(t): acceptance rate
• by adjusting α(t+1) = α(t) (C / F)

– some details:
• observe congested vs. not
• when congested, re-label flows with lower rate

8f_Stoica03a: CSci551 SP2006 © John Heidemann 15

Evaluation
• relatively easy to implement

– core routers don’t do much
– edge routers must classify flows, though

• use simulations to compare performance
– CSFQ
– DRR (Deficit Round Robin), FQ-like 
– FRED
– RED, FIFO

8f_Stoica03a: CSci551 SP2006 © John Heidemann 16

Fairness Evaluation

[Stoica03a, figure 5b]

DRR, CSFQ, FRED-2 all fair

RED, FIFO, FRED-1 not fair

low flow offered load high flow offered load
flows at left send at lower rates; at right at higher rates

8f_Stoica03a: CSci551 SP2006 © John Heidemann 20

Need for Fairness

• concern: unresponsive flows
– where have we seen this before?

• proposal: tweak the drop function
• why does this help?

– penalize flows that are non-responsive 
(that don’t converge to their fair share)

8f_Stoica03a: CSci551 SP2006 © John Heidemann 23

Other questions/observations? 
• xxx


