## BGP Routing Convergence Times [Labovitz00a]

CSci551: Computer Networks SP2006 Thursday Section John Heidemann

4d\_Labovitz00a: CSci551 SP2006 © John Heidemann

## Context • BGP widely deployed in the Internet • but poorly understood



1



















- BGP has a *minimum advertisement interval timer* – designed to limit updates
  - and to encourage aggregation
- How does it affect convergence?
  - by delaying announcements, routers figure out the pain sooner
  - see section 5.2
- result: waiting speeds convergence by allowing routers to make decisions on more complete information

4d\_Labovitz00a: CSci551 SP2006 © John Heidemann

## Does this explain measurements?

- Tup/Tshort converge quickly because they shorten path length and therefore are quickly accepted
- Tdown/Tlong converge slowly because BGP tries hard to find all alternatives
  - Tlong actually *sometimes* goes quicker if it's "not long enough" and can preempt some of the thrashing

38

4d\_Labovitz00a: CSci551 SP2006 © John Heidemann

## Other Observations

- Could do loop detection at *sender* side and not just receiver side
- how hard were the experiments?
  - need distributed hosts
  - need a fair amount of time to observe net
  - but doable (and more doable today)

4d\_Labovitz00a: CSci551 SP2006 © John Heidemann

40

37