CSCI-551 Project A
A P2P File Sharing Network

January 26, 2006

This project has two due dates:
e February 14th, 2006 AT 12:00pm (NOON): just phase 1
e March 21st, 2006 AT 12:00pm (NOON): everything else

Late submissions cause a 25% per day penalty for that part of
the project. See the class web page for details.

Please read everything through before starting. Note phase sub-
mission deadlines in section 5.

This write up is for Phase 1. Details will be added
to other phases in the second release of this document.
Expect changes and updates to sections not pertaining
to Phase 1.

1 Introduction

The purpose of this project is to apply what we learn
about peer to peer networking in class. The secondary
purpose of implementing this program is using network-
ing programming (sockets), processes (fork), event loops,
and UNIX development tools (make). Your program must
compile and run on nunki.usc.edu (please do not use alu-
dra.usc.edu) without any additional libraries. If you are
going to use libraries or source code other than libc, STL
or the event loop library provided by the instructor, you
must confirm it ahead of time with the professor and TA
and identify the library(s) in your turned-in "README”
file.

1.1 Overview

For this project you will be implementing a version of
BitDrip—a file sharing network loosely resembling Bit-
Torrent (http://bittorrent.com).

You may want to review how BitTorrent works. A pa-
per about it will be put on the class wiki. However, be-
ware that BitDrip is not BitTorrent—if there is a conflict
between how BitTorrent does something and how we de-
scribe BitDrip working, you should follow BitDrip. (In
general, you should find that BitDrip is much simplier
than BitTorrent.)

The BitDrip network consists of two essential compo-
nents:

1. Tracker
2. Peer

The tracker simply keeps track of all the peers currently
interested in a particular file - this includes all the peers
downloading, all the peers sharing and all the peers both
sharing and downloading. Any peer interested in the par-
ticular file will request the tracker to provide it with a list
of currently interested peers, which we will now refer to
as a group. We will call this exchange a group update.
The tracker is only used as a rendezvous point for the re-
source (file), and should not possess any further informa-
tion. For example, it should not know about what parts of
a file any peer has or doesn’t have.

A peer, after joining a group by doing a group update,
will then ask each peer in the returned group about what
segments it possesses. We will refer to this as a segment
update. After each segment update, the peer will try to
get fresh segments (segment not already present at the re-
questing peer) of the requested file from within that group.
Each peer will repeat this process until it has obtained the
entire file.

When a peer has an entire copy of a file, it is called
a seeder. Seeders only upload data, and hence act as a

CSCI 551 Project A — PHASE 1 WRITEUP

server of sorts. Peers that are not seeders can still upload
data, but are still interested in downloading as well.

Please note that you will need to do multiple group up-
dates and segment updates while retrieving the whole file,
since peers may come and go (or may not be there!), and
who has what segments will change over time.

2 Network

You will design a tracker and a peer such that you can
create a network by spawning a single tracker and multi-
ple peers. Additionally, your peers and tracker will inter-
face with peers designed by the TA and instructor (called
Class Peers). For this purpose, you need to create one
manager processes which will spawn both the tracker
and your P2P peers. The manager is also responsible for
contacting the Class Peer Spawner to have Class Peers
spawned on your behalf. The manager process will parse
a configuration file, “manager.conf’. There will be only
one configuration file, and all configuration information
is read only by the manager. Peers and the tracker cannot
access the configuration file or command line arguments;
they should get all their information from the manager.
When the manager is run, the following should happen:

1. The manager processes the configuration file ”man-
ager.conf”. This file will tell the manager how many
peers need to be spawned.

2. The manager will create a TCP port (look at get-
socketname()). from which it will listen to all
spawned peers and the tracker.

3. The manager starts the tracker process via fork.

4. The tracker starts listening for UDP connections on
a port for service requests from peers.

5. The tracker reports this UDP port number back to the
manager via TCP.

6. The manager contacts the Class Peer Spawner
on sea.usc.edu, port 5551, and tells the spawner
how many Class Peers are needed (specified in
“manger.conf”) and what machine and port your
tracker is listening on.

7. The manager then spawns a number of your peers
(the number will be specified in the manager.conf
file). This will also be done via fork.

8. The newly spawned peers will communicate with the
manager via TCP to obtain configuration informa-
tion such as the tracker’s port number and tasks to
perform.

9. Once each peer is configured, your peers and the
Class Peers will communicate via a given protocol.
The object is to get all of your peers to download
the required file from any Class Peer (at least one of
which is guaranteed to have the file), and each other.

All ports your code uses in this project should be dy-
namically assigned, such that multiple students can test
their projects on a single machine. Look at getsocket-
name() for dynamic port assignment.

Each peer will be told what file it is interested in down-
loading in the “manger.conf” file. Note that once a peer
has completed downloading a file, it can then share the
file with other peers.

None of your peers will start with any file — initially
they will obtain the file from a Class Peer. At least one
Class Peer spawned on your behalf is guaranteed to have
any files your peers will be asked to show interest in.
Class Peers will interface with your manager and your
peers in the exact same way your peers interface with your
manager and other peers.

All your peers in this project will share the same work-
ing directory. Since downloading tasks will create multi-
ple copies of the same file, each peer will write to a differ-
ent file name that is prefixed with its peer ID and a dash.
Peer 4 would create a file called ’4-foo.dat” while down-
loading the file from the network, and peer 3 would create
a file called “3-foo.dat”. Likewise, any logging or output
from a peer should be put into a file prefixed by the its
peer ID and a dash.

Peers will let the tracker know of their interest in a par-
ticular file. The tracker maintains a table between file-
names and all peers interested in the file.

Interest, and when that interest is expressed are speci-
fied in the “manager.conf™ file for each peer as show be-
low. For termination of this list, the peer ID and start time
will be -1. The file name will be ”—". Start times will be

CSCI 551 Project A — PHASE 1 WRITEUP

specified in seconds (counted from the start of when the
simulation starts, this is discussed in section 3.5).

Example:
Peer ID File Name Start Time
1 foo.dat 15
2 foo.dat 15
3 foo.dat 15
-1 - -1

Safe assumptions:

1. No more than 25 of your peers will be spawned at
one time.

2. Your peers will have peer IDs with the range of 1-25.
3. Class Peers will have peer IDs of 26 or greater.
4. File sizes will not exceed 256KB.

5. The "manager.conf” file will be in the same working
directory as all peers, the manager and the tracker.
Again, only the manager process should read this file
directly.

3 Protocol Details

In the following sections, we describe the protocol in de-
tail.

3.1 Strings, Numbers and Byte Order

Everything is considered in Network Byte Order (big-
endian).

All numbers (port numbers, count of total segments,
counts of peers in a group, segment sizes and segment
numbers) are considered as 16 bit unsigned integers.

All strings (file names and error message strings) are
considered as ASCII text, zero padded at the end.

IPs are in binary form in network byte order (just
like everything else). You will probably find the Inter-
net address manipulation routines useful (Do a man on
“inet_addr”).

3.2 Class Peer Spawner-Manager Protocol

Your manager process is responsible for contacting the
Class Peer Spawner via TCP and requesting the spawner

to start up whatever number of Class Peers are specified
in the “manager.conf” file.

The Class Peer Spawner is on sea.usc.edu, port 5551.

To do this, the manager will need to tell the Class Peer
Spawner the IP and UDP port number that your tracker is
listening on, the number of Class Peers you need spawned
on your behalf and your username (for logging/debugging
purposes). For your username, use the first 8 characters of
your 551 class wiki username.

The Class Peer Spawner will also need to know what
phase of the project you are currently in (see section 5).
This helps the spawner determine what level of testing
your code is ready for. For example, if you are testing
Phase 6, the spawner may spawn a freeloader for you.

The following is the message format the Class Peer
Spawner understands:

0 1 2 3

01234567890123456789012345678901
- - o o +
| Tracker IP |
- - o o +

| Tkr Port Num |
+————— o o o +
|Your Username |

- o o o +

|Phase Num

- - +

Tracker IP (Your IP), 16 bits

Tracker Port Number (UDP Port), 16 bits
Num Class Peers (from config), 16 bits
Your Username, 8 bytes (8 ascii characters)
Phase Number (1-6), 16 bits

Your manager process will get a response from the
Class Peer Spawner on the same TCP connection. This re-
sponse is a string of 80 characters (null terminated) which
will have a useful message informing you of the status
of your request. The Class Peers spawned on your behalf
will contact your tracker directly, the same way your peers
contact your tracker.

For debugging this interaction, look for your username
and time you started your simulation on the logging page
for the Class Peer Spawner: http://sea.usc.edu/
csci551/spawner_log.txt

CSCI 551 Project A — PHASE 1 WRITEUP

3.3 Peer-Manager and Tracker-Manager
Protocol

After forking off the tracker process and peer processes,
the new processes must contact the manager via TCP for
configuration information. How that information is con-
veyed through the TCP connection is entirely up to you.
Remember to think about robustness and error checking.

3.4 File Segmentation

All files need to be considered by your program in seg-
ments of 2k bytes, with the last segment potentially vary-
ing in size. Files may be up to 256KB in size. Segments
are numbered from 0-99 (or 0 to whatever) starting with
the first byte in the file being 0.

3.5 Peer-Tracker Protocol

Your peers are instructed, via your manager process (and
the “manager.conf” file), about which file they should ex-
press interest in. The config file also specifies the time at
which a particular peer will request a specific file. At that
instance of time (specified in seconds after the start of the
simulation), the peer will send out a message to the tracker
showing interest in the file via UDP. The tracker will keep
track of each peer interested in a particular file "foo” as a
set of peers for that file. Specifically, the tracker needs to
keep track of the following for each peer: the peer’s ID,
the TCP port the peer listens to requests on, and the peer’s
IP.

If requested by a peer, the tracker will send back all
of the peers corresponding to the group interested in the
requested file via UDP. If the peer already has the file (be-
cause it has completed a download), it still needs to show
interest in the file, but does not need to regularly request
a group.

The interaction between the peer and tracker must
follow exactly the header encoding format below because
this will also be the same encoding the Class Peers will
use. Notice that the tracker response can be a variable
number of peers and this should be handled by your
program. You need to log all messages your tracker
receives from peers in a file called “tracker-mesgs.log”
for grading purposes.

0 1 2 3
01234567890123456789012345678901
- +

IMT |

- - +

|Peer ID |

+———— o o o +

|File Name

- o o o +
|Peer Port |

- - o o +
|Peer IP |
- - - o +

MT stands for Message Type.

MT, 8 bits
Peer ID, 16 bits
File Name, 32 bytes
Peer Port, 16 bits
Peer IP, 32 bits
MT = 1 - Show an interest in the file
(no need for a group update)
MT = 2 - Request a group update for the file
MT = 3 - Withdraw interest from a file

When a peer sends a message with type 2, it both ex-
presses its interest in a file and requests a group update. If
a peer has obtained the whole file (it is a seeder) it should
send a message of type 1, indicating that it is still part of
the peer group, but is no longer in need of a group up-
date. Your tracker can ignore messages of type 3, how-
ever the Class Peers will send these messages, indicating
when they are exiting and will no longer be available to
the group.

The tracker will reply to messages of type 2 with a
group update. The group update will have the following
format:

CSCI 551 Project A — PHASE 1 WRITEUP

01234567890123456789012345678901

fo— +
IMT |

o o +

| Tracker ID = 0]

fo— fom fom fom +

- - o o +
|Num of Peers

- - o o +
|1st Peer ID |1st Peer Port |
- o o o +
|1st Peer IP |
- - - o +
| 2nd Peer ID | 2nd Peer Port |
- - o o +
| 2nd Peer IP |
+———— o o o +
|3rd Peer ID |3rd Peer Port |
+————— o o o +
|3rd Peer IP |
- - - o +
|

+

MT stands for Message Type. Setting the Tracker ID is optional.
The Class Peers will not use this info. It is there to keep message
headers similar.

MT, 8 bits
File Name,
Number of Peers,
Peer IDs, 16 bits
Peer Ports, 16 bits
Peer IP, 32 bits

32 bytes
16 bits

MT = 4 - Group Update reply message

3.6 Peer-Peer Protocol

Once a peer knows the group associated with the file it is
interested in, it will exchange messages with each group
member in the segment update process (as discussed in

1), and swap information about what segments of the file
it currently possesses. This way it will have complete in-
formation to decide which peer to request particular seg-
ments or segment from.

A peer will download at most 10 segments from a sin-
gle group (again, this group is obtained via a group up-
date). The selection of peers in a group to get each seg-
ment from should be spread across as many different peers
as possible to maximize download time. After download-
ing 10 segments, the peer will poll the tracker and update
group membership, and then repeat the process of getting
more segments (now from a potentially different group).

It is possible that, sometimes, a peer will be the only
member of the group, or no group member will have any
new segments to offer (if all seeders are temporarily un-
available). Therefore each peer should timeout and retry
group updates even if it has not gotten 10 segments. Im-
mediately after getting the group update, set a timer for
the request timeout period. We are fixing this value at 5
seconds. After that length of time has passed, give up and
do a new group update, even if you don’t have 10 new seg-
ments. After sleeping for the timeout, the peer will again
issue another group update, and may then get a different
group which will allow it to proceed.

When determining where to download a segment the
peer should:

1. Examine information sent by the group peers and
build a list that contains segments available from
group peers, but not available locally.

2. Select one entry from the list and download the seg-
ment from the corresponding peer at which it is avail-
able.

A peer makes a local decision about choosing a down-
load peer (from the given file group) for each file seg-
ment. Until you determine a better way, simply pick the
first peer in the list returned to you that has the desired
segment.

Below is pseudo code to illustrate this core proce-
dure:

while file F' not complete do
G < GroupUpdate() {Request update}
swap segment information with all peers in G
start request timeout clock
RecvdSegments =0

CSCI 551 Project A — PHASE 1 WRITEUP

while request timeout clock not expired do
while RecvdSegments < 10 do
if fresh segments of file F' exist in group G
then
select peer p from G which has segment s
request s from p {Ideally request is done
asynchronously}
else
break
end if
end while
end while
end while

Remember to think about robustness and error han-
dling.

There are two types of interactions between peers:

1. Segment information request and reply. (Segment
Update)

2. Segment request and reply.

All interactions between peers should be done via TCP.
Each peer should have a known port it listens to incoming
requests on (this port is reported to the tracker and sent
out to other peers during a group update). When a peer
requests information or segments from its neighbor, it first
opens up a TCP connection to its neighbor and then sends
the request. The neighbor will respond on the same TCP
connection with the requested information, segment or an
error message. (Error messages are described later.)

To request segment information from another peer, a
peer will send a segment update request via TCP with the
following format:

0 1 2 3
01234567890123456789012345678901
+————— +

IMT |

+————— - +

|Peer ID |

+————— o o o +

|File Name
|
|
|

MT stands for Message Type.

MT, 8 bits

Peer ID, 16 bits (requesting Peer 1ID)
File Name, 32 bytes

Segment Number, 16 bits

MT = 5 - Segment Update Request

The response to a segment update request will either

be an error message (described later) or a message of the
following format:

0 1 2 3
01234567890123456789012345678901
- +

IMT |

- - +

|Peer ID |

+————— o o o +

f————— o o o +
|Total File Seg]| Num Seg |
f————— o o o +
|[Num lst Seg | Num 2nd Seg |
f————— o o ——— +
|Num 3rd Seg | Num 4th Seg |
f————— o o +
|[Num 5th Seg | Num 6th Seg |
t————— o o —— +
t————— o +

|[Num nth Seg |

CSCI 551 Project A — PHASE 1 WRITEUP

MT stands for Message Type. Total File Seg is left as O un-
less the peer knows the total number of file segments in the file.
(Only seeders will have this information in the beginning.) Num
Seg is the number of segments the sending peer has — in other
words, the number of segments listed in the rest of the message.

8 bits

Peer ID, 16 bits

File Name, 32 bytes
Total File Seg in File,
Num Seg, 16 bits

Num xth Seg, 16 bits

MT,

16 bits

MT = 6 - Segment Update

When sending a segment update, a peer will send a
message of type 6. The peer will send its peer ID, the file
name it is updating other peers about, and a list of seg-
ment numbers that the peer has locally. If the peer knows
the complete number of segments in a file (only the Class
Peers will know this in the beginning), the peer will send
this number. If the peer does not know the number of total
segments, it will send 0 in this field.

The list of segment numbers at the end of the message
could be up to 128 entries long (2K segment size * 128 =
256KB). There are better ways to convey this information,
but for the sake of simplicity this should suffice.

When a peer wants a particular piece from another
peer in the group, it will send a segment request via TCP
to the appropriate peer, with the following format:

0 1 2 3
01234567890123456789012345678901
- +

IMT |

- o +

|Peer ID |

- - o o +

+————— - o o +
| Segment Num |
+————— - +

MT stands for Message Type.

MT, 8 bits
File Name, 32 bytes
Segment Number, 16 bits

MT = 7 - Segment Request

A peer will reply to a segment request with either a
segment reply or an error message (described later). The
segment reply has the following format:

0 1 2 3
01234567890123456789012345678901

IMT |

- o +

|Peer ID |

+————— - o o +

- - - o +
| Segment Num |
- - +
| Segment Size |
- o o o +

|[File Segment Data |

MT stands for Message Type.

8 bits

Peer ID, 16 bits (sending Peer 1ID)
File Name, 32 bytes

Segment Number, 16 bits

Segment Size in bits, 16 bits
File Segment Data, up to 2KB

MT,

MT = 8 - Segment Reply

CSCI 551 Project A — PHASE 1 WRITEUP

3.7 Error Messages

You may or may not find error messages useful. The
Class Peers will send and understand error messages of
the following format:

0 1 2 3
01234567890123456789012345678901
+————— +

IMT |

+————— - +

|Peer ID |

- - - o +

- F———— o - +
|Error Number | Segment Num
- o o o +
|Error Msg

| 256 bytes

|

|

[/NININININININININININ/NIN/N/N
INININININININININININININNTN

fo—— fomm o fomm +

MT stands for Message Type. The Error Msg is a string, zero
padded.

MT, 8 bits

Peer ID, 16 bits

File Name, 32 bytes
Error Number, 16 bits
Segment Number, 16 bits
Error Msg 256 bytes

(0 1f not relevant)

MT = 9 - Error Message

Error Number:

1 - Unknown file name

2 - Do not have requested segment

given info.

3.8 Termination

Each spawned process needs to terminate within a reason-
able time automatically. It is considered a programming
error if your program never terminates, or runs for much
longer than is necessary before termination.

At the end of the simulation, all peers should write out
to a field called ”xx.out” where ”xx” is the peer’s ID. Un-
der normal circumstances, the output to the file should be:
File foo.dat downloaded.

If, for some reason, a peer terminates before it has been
able to download the output to the file ”xx.out” should be:

File foo.dat not completely downloaded.
4 segments remaining.

The manager process should terminate after all pro-
cesses it spawned terminate. The manager should keep
a timer on how long the entire simulation takes.

For a peer, if downloading tasks are complete, and there
are no requests from other peers for 2 rounds of a group
update, it should terminate. It should also terminate if it
is unable to make progress on downloading after 4 rounds
of group updates.

For the tracker, it should terminate if there are no new
messages from peers for 3 times the request timeout inter-
val, or if all peers have indicated they have left the group.

4 Going Beyond Basic Transfer

Once you have a working network of peers, where your
peers are able to download and share files obtained from
a Class Peer (or Peers), it’s time to think about ways to be
more efficient about sharing files and deal with uncooper-
ative peers.

4.1 Smarter Segment Selection

Here’s where you get to be creative. How can you ensure
all of your peers get the files they want faster? Without
changing request timeouts, what can you do to improve
the download rate? Think about the order in which each

3 - Num File segments for file does not matclpepreeqiests pieces.

CSCI 551 Project A — PHASE 1 WRITEUP

Improve your implementation so all of your peers get
the file they want faster. Remember that your simulation
is suppose to exit once all peers have the file they set out
to download - so do what you can to get your simulation
to complete faster.

4.2 Freeloaders

Peer-to-Peer systems work because everyone shares data
with each other, thus the system benefits from everyone’s
bandwidth rather than just the server’s bandwidth - or a
seeder’s bandwidth. (Recall, a seeder is a peer that has a
complete copy of the desired file.)

A freeloader is a peer that only takes data from the
system but does not upload any data to others.

For this part, when you request 3 Class Peers to be
started on your behalf, one may be a freeloader. It is your
job to minimize the impact of the freeloader on the peer
group. To do this, you must do two things:

1. Identify if there is a freeloader, and which peer is
freeloading.

2. Reduce the amount of sharing done with a freeloader.

It is OK if your simulation quits and the Class
Freeloader does not have the full file - in fact, this is de-
sirable.

Be careful though in determining which peer is a
freeloader - remember that peers just starting out in down-
loading a file may not have any data to upload and share
- and so these new peers may appear to be freeloaders at
first. It is important to give new peers a chance to down-
load some of the file before you determine if they are a
feeloader.

For grading purposes, when you detect that one of the
Class Peers is acting as a freeloader, output the follow-
ing text to a file called "freeloader.txt”: A freeloader
was detected. If you don’t detect a freeloader, don’t
write out to the file “freeloader.txt”.

S Building Your Project in Phases

An efficient and robust way to develop a project is to di-
vide the coding and testing into phases. This allows you
to get something working and test just that before going

on and doing more. We will also test your programs in
phases, by using different configuration files, from easy
cases to more difficult ones.

Some of the following phases are only guidelines, but
other phases are check points that we will ask you to turn
in for grading.

The project is worth a total of 100 points, plus a poten-
tial 15 extra credit points. You will earn those points as
we grade each phase.

The final project deadline for project A is March 21st,
2006 at 12:00pm (noon). Please read the late policy on
the class web page.

5.1 Phase 1: Design, Compilation, Organi-
zation

Due: February 14th 12:00pm
Total possible points: 20.

To understand and build this phase, you will need to
have read sections 1, 2 and section 3 up through 3.2. Ad-
ditionally, please read section 6 so you understand what
will be required at the final turnin. The turnin guidelines
in section 6 apply here, except the "ZREADME” file for
phase 1 will be slightly different, and the 'README” file
will be called "ZREADME-phasel”.

For Phase 1, you must write code that compiles into
an executable called ’proja” which, when run, does the
following:

1. Starts as a manager process.
2. Reads the "manager.conf™ file.
3. Forks a tracker process.

4. Forks as many peer processes as specified in the
“manager.conf” file.

5. The manager connects to the Class Peer Spawner and
tells it to spawn O peers on your behalf. The manager
should print out the message it receives back from
the Spawner to the terminal.

The manager, when started, should report:
"Manager: Process ID Number NN”

The tracker, when started, should report:
"Tracker: Process ID Number NN”

CSCI 551 Project A — PHASE 1 WRITEUP

Your peers should report the following:
“Peer: Process ID Number NN”

In each case, NN should be replaced by that process’
ID number.

The manager should also report the message from
the Class Peer Spawner which will look something
like this: Class Peer Spawner: Phase 1 - 0
peers started for user Y

Where Y is the username you supplied the Class Peer
Spawner.

Once a process has printed out the appropriate line(s),
the process should terminate.

We recommend that you divide your code among at
least three code files and three corresponding header files:
code related to the manager functions, code related to the
tracker functions and code related to the peer functions.
You may find it useful to divide the project up even fur-
ther. Use #ifndef to avoid any multiple inclusion prob-
lems.

The following must be turned in:

1. A working Makefile, following the guidelines in sec-
tion 6.

2. The multiple C/C++ files needed to compile the
project.

3. The multiple header files needed for any definitions
and data structures you used.

4. A ’README-phasel” file with the following sec-
tions:

Re-used Code : See section 6.
Idiosyncrasies : See section 6.

Organization : How did you divide up your code?
What design will you stick with for the rest of
the project?

5.1.1 Phase 1: Sample Input and Output

Here is a sample “manager.conf™ file for Phase 1:

Your peers to spawn.

Peer ID File Name Start Time
1 filel.dat 10
2 filel.dat 15
3 filel.dat 32

10

- -1
Class Peers
Number to Spawn Phase Number
0 1

Your code should output to the terminal something similar to
the following:

ID Number 14513

ID Number 14514
Number 14515

Number 14516

Number 14517

Phase 1 - 0 peers

Manager: Process
Tracker: Process
Peer: Process ID
Peer: Process ID
Peer: Process ID
Class Peer Spawner:

started for user Y

Only the actual Process ID Number and Class Peer Spawner
message should vary.

5.2 Phase 2: Communication of Configura-
tion
Due March 21st. Total possible points: 10

To understand and build this phase, you will need to have
read sections 1, 2 and 3 up through 3.3. Additionally, please
read section 6 so you understand what will be required at the
final turnin.

Starting with your Phase 1 code, you must write code that
compiles into an executable called “proja” which, when run,
does the following:

1. Starts as a manager process.
2. Reads the “manager.conf™ file.

3. Opens a TCP connection to listen to connecting Peers and
the tracker.

4. Forks a tracker process.

5. The tracker must open a UDP port to listen to connections
on.

6. The tracker reports this UDP port number back to the man-
ager.

7. The manager connects to the Class Peer Spawner and tells
it how many Class Peers to spawn on your behalf, and the
machine and UDP port number your tracker is listening on.

8. Forks as many peer processes as specified in the “man-
ager.conf” file.

9. The newly spawned peers communicate with the manager
via TCP to obtain configuration information. They should
write out the configuration information they are told to a
file called ”xx.config”, where ”xx” is their peer ID number.

CSCI 551 Project A — PHASE 1 WRITEUP

The “xx.config” file should look like this:
File: foo.dat
Start Time: 51
Tracker UDP port number: 6431

These files will be checked for grading purposes in the final
project.

Be sure you check the Class Spawner Log (see section 3.2)
and make sure it started the appropriate number of Class Peers
(as specified in “manager.conf’).

5.3 Phase 3: One Seeder to One Peer

Due March 21st. Total possible points: 20

To understand and build this phase, you will need to have read
sections 1, 2 and 3. Additionally, please read section 6 so you
understand what will be required at the final turnin.

Starting with your Phase 2 code, you must write code that
compiles into an executable called “proja” which, when run,
does everything done in Phase 2, plus each of your peers should
try to download the file they are interested in. As they down-
load their file, they should write the file to ”xx-foo.dat” where
”foo.dat” is the name of the file they are downloading, and ”xx”
is the peer ID number for that peer.

Be sure your simulation terminates. If a peer terminates be-
fore it has been able to download the complete file, it should out-
put that in a file called ”xx.out” as discussed in 3.8. At the end
of the simulation, output a line to a file called “totaltime.out”.
The manager should write one line to this file — the total time in
seconds the entire simulation took to run.

5.4 Phase 4: One Seeder to Many Peers

Due March 21st. Total possible points: 25 Details for this phase
are yet to come.

5.5 Phase 5: Improve Download Time

Due March 21st. Total possible points: 10 + 10 possible extra
credit Details for this phase are yet to come.

5.6 Phase 6: Identifying Freeloaders

Due March 21st. Total possible points: 15 + 5 possible extra
credit Details for this phase are yet to come.

11

6 File Layout, Turn In and Writeup

Your program must run on nunki.usc.edu, and be written in C or
C++. It must compile using /usr/usc/bin/gcc on nunki (if using
C), or /usr/usc/bin/g++ (if using C++).
Please do not use aludra.usc.edu for development or testing.
Your project must have the following for turnin:

1. A Makefile for compiling all source files.
The Makefile should have the following targets:

all : builds all executables, including an executable file
called ”proja”

clean : removes all old .o files (*.0) and all executables.

The make file must also use /usr/ccs/bin/make on nunki -
so be careful not to use extensions that will not work with
SunOS’s make.

2. All C/C++ files needed to run your simulation. The whole
project should be broken up into at least three C/C++ files
(modularize!!). If you have a good file hierarchy in mind,
break it up into more files, but the divisions should be log-
ical and not just spreading functions into many files. Indi-
cate in a comment at the head of each file what functions
that file contains.

3. Header files (.h files) used to define all data structures you
use, any #defines you use and #includes.

4. A Phase 1 README file called "README-phasel”. See
5.1. Add a section to this README called Phase 1 Up-
dates which explains any changes in your code since you
turned it in on February 14th that would affect your grade
for Phase 1. Did you fix anything to make Phase 1 work or
work better?

5. A final "lREADME?” file. This file describes your project
and must include the following sections:

Re-used Code : Did you use code from another source in
your project? If not, say so. If you did, say what
functions you borrowed, and where they came from.
(Also comment this in the source code.) If you use
the class timer code, you must say this here and de-
scribe any changes you made to it.

Idiosyncrasies : Are there any idiosyncrasies of your
project? It should list any conditions under which
your simulation fails (if any). What limitations does
it have? Are there any unfinished parts in your
project?

Message format : Describe your peer-peer message for-
mats. Did you make any changes to the peer-tracker
message format? Did you add any fields? If so, what
did you add and why?

CSCI 551 Project A — PHASE 1 WRITEUP

Corner Cases : What cases do you think will cause prob-
lems in the protocol when there is:

(a) a one-to-one transfer
(b) a many-to-many transfer
(c) a transfer with loss

Talk about how you handle these corner cases, and
what effect each scenario has on performance.

Download Improvements : What did you do to improve
the download time for all your peers? Why did it
work or not work?

Freeloaders : How did you detect Freeloaders?
Surprises : Did you find any surprising things while im-
plementing this project?

Take time to write a good "README?” file. It should not be
just a few sentences. You need to take some time to describe
what you did and especially anything you didn’t do. Expect the
grader to take off more points for things they have to figure out

are broken (rather than learning about the problems through your
"README” file).

7 Submission

Do a "make clean” in your project directory. Do not turn in
any binaries. Remove all output text files your project produces
(xx-file.dat,xx.config,xx.out etc.).

7.1 Phase 1 Turnin

On nunki, create a directory of all the files you want to turn
in and call this directory “projal-xxx”, where “xxx” is your
username on nunki. Then create a tar file of this directory by
running the following command from the directory containing
your “projal-xxx” directory:

)

% tar cvf projal.tar projal-xxx

To turn in your tar file, run the following on nunki:
% submit -user cscibbl projal.tar

Again, ”xxx” should be replaced by your username.

7.2 Final Turnin

Follow the above, but call the directory proja-xxx, and the tar
file proja.tar.

% tar cvf proja.tar proja—-xxx

To turn in your tar file, run the following on nunki:

)

% submit -user cscib51 proja.tar

12

8 Cautionary Words

In view of what is a recurring complaint near the end of the
project, we want to make it clear that the target platform on
which the project is suppose to run is SunOS. Although students
are encouraged to develop their programs on their personal ma-
chines, the final project must run on nunki.usc.edu under SunOS.
If you choose to do initial development on other machines, make
sure you include only the libraries in your code that are available
on nunki.

Please see the class late policy:
http://vir.isi.edu/csci551/images/3/3b/
Info_brochure.pdf - page 2.

A 25% penalty will be assessed each day an assignment is late.

All students are expected to write ALL their code on their
own. Copying any code from friends is plagiarism and any copy-
ing of code will result in an F for the entire course. Any li-
braries or other code that you did not write must be listed in
your "README” file. All programs will be compared using
automated tools and by the grader to detect any similarities be-
tween turned in code from students this year as well as code
turned-in in previous years. Any demonstration of code copying
will result in an F for the entire course.

IF YOU HAVE ANY QUESTIONS ABOUT WHAT IS OR IS
NOT ALLOWED, TALK TO THE TA OR PROFESSOR. "1 didn’t
know” is not an excuse.

You should expect to spend at least 20-40 hours or more on
this assignment. Please plan accordingly. If you leave all the
work until the week before it is due, you are unlikely to have a
successful outcome.

A Helpful Resources

Be sure to check the class web page for this project often for
help, updates and announcements. http://vir.isi.edu/
cscib551/index.php/ProjectA

These resources are just a starting point. We encourage you
to do your own research.

Help on Fork, Process IDs etc.

e http://www.devhood.com/tutorials/
tutorial_details.aspx?tutorial_id=421

Help on Makefiles

e http://mrbook.org/tutorials/make/

e http://www.eng.hawaii.edu/Tutor/Make/
BitTorrent

e http://www.bittorrent.com/
documentation.html

CSCI 551 Project A — PHASE 1 WRITEUP

Network Programming

e Network Byte Order:
http://www.unixpapa.com/incnote/
byteorder.html

Timers: Handling timers and I/O at the same time may be
difficult. You can do this via threads, but most operating sys-
tems and many network applications don’t actually use threads
because the associated memory cost can be high. Instead of
threads, we suggest you use timers and event driven program-
ming with a single thread control. We will provide you with a
timer library that makes it easy to schedule timers in a single-
threaded process. If you choose to use this code, be sure to
document this in your "ZREADME?” file. You will find the timers
library (both for C and C++) at: http://sea.usc.edu/
cscib551/cs551-timers.tar.gz

B Summary of Constants, Ranges
and Max Values

Class Peer Spawner Host sea.usc.edu

Class Peer Spawner Port 5551

Request Timeout Interval 5 seconds

File Segment Size 2KB

Max File Size 256KB

Max Num of Segs You Can Downld From a Group 10
Max Number of Peers We Will Ask You to Spawn 25
Max Number of Freeloaders Ever Spawned 1

Range of peer IDs for your Peers 1-25

Range of peer IDs for Class Peers 26 and up

Range of Phase Numbers 1-6

C Message Formats

This section contains a summary of the details of message for-
mats used for communication between pieces of your P2P sim-
ulation.

C.1 Manager - Class Peer Spawner Mes-
sage Format (TCP)
0 1 2 3

01234567890123456789012345678901
fo—— Fom— Fomm o +

13
| Tracker IP |
- - - o +
|Tkr Port Num | Num Clss Peer |
+————— o o o +
|Your Username |
| |
+————— o o o +
|Phase Num
- - +
Tracker IP (Your IP), 16 bits
Tracker Port Number (UDP Port), 16 bits
Num Class Peers (from config), 16 bits
Your Username, 8 bytes (8 ascii characters)
Phase Number (1-6), 16 bits

C.2 Peer - Tracker Message Formats
C.2.1 Peer to Tracker (Update Request)

0 1 2 3
01234567890123456789012345678901
o +

|MT |

R o ——_——— +

|Peer ID \

o o o o +

f————— o Fo—————— Fo—————— +
|Peer Port |

f————— o t—————— Fo————— +
|Peer IP |
fom fom fom fom +

MT stands for Message Type.

MT, 8 bits

Peer ID, 16 bits
File Name, 32 bytes
Peer Port, 16 bits
Peer IP, 32 bits

CSCI 551 Project A — PHASE 1 WRITEUP

MT = 1 - Show an interest in the file
(no need for a group update)

MT = 2 - Request a group update for the file

MT = 3 - Withdraw interest from a file

C.2.2 Tracker to Peer (Update Reply)

0 1 2 3
01234567890123456789012345678901

|MT |

Fo———— o +

| Tracker ID = 0]

f————— o o Fo————— +

- o o o +
|Num of Peers

+————— o o o +
|1st Peer ID |1st Peer Port |
o Fom fom e it +
|1st Peer IP |
+———— o o o +
| 2nd Peer ID | 2nd Peer Port |
+———— o o o +
| 2nd Peer IP |
o f—m Fo— e it +
|3rd Peer ID |3rd Peer Port |
+———— o o o +
|3rd Peer IP |
+————— o o o +
|

+

MT stands for Message Type. Setting the Tracker ID is optional.
The Class Peers will not use this info. It is there to keep message
headers similar.

MT, 8 bits

File Name, 32 bytes
Number of Peers, 16 bits
Peer IDs, 16 bits

Peer Ports, 16 bits

Peer IP, 32 bits

MT = 4 - Group Update reply message

C.3 Peer - Peer Message Formats (TCP)
C.3.1 Segment Update Request

0 1 2 3
01234567890123456789012345678901

IMT |

+————— o +

|Peer ID |

- - - o +

MT stands for Message Type.

MT, 8 bits

Peer ID, 16 bits (requesting Peer 1ID)
File Name, 32 bytes

Segment Number, 16 bits

MT = 5 - Segment Update Request

C.3.2 Segment Update Reply

0 1 2 3
01234567890123456789012345678901

|MT |

R fm——_——— +

|Peer ID \

R o ——_——— fmm——— o ——— +

CSCI 551 Project A — PHASE 1 WRITEUP

|[Total File Seg| Num Seg |
o o o o +
|[Num 1lst Seg | Num 2nd Seg
f————— o o +
|[Num 3rd Seg | Num 4th Seg
F————— o Fom +
|[Num 5th Seg | Num 6th Seg
fo———— o o —— +
f————— o +

|[Num nth Seg |

fo———— o +

MT stands for Message Type. Total File Seg is left as O un-
less the peer knows the total number of file segments in the file.
(Only seeders will have this information in the beginning.) Num
Seg is the number of segments the sending peer has — in other
words, the number of segments listed in the rest of the message.

MT, 8 bits

Peer ID, 16 bits

File Name, 32 bytes
Total File Seg in File,
Num Seg, 16 bits

Num xth Seg, 16 bits

16 bits

MT = 6 - Segment Update

C.3.3 Segment Request

0 1 2 3
01234567890123456789012345678901

| Segment Num |
- o +

15

MT stands for Message Type.

MT, 8 bits
File Name,
Segment Number,

32 bytes
16 bits

MT = 7 - Segment Request

C.3.4 Segment Reply

0 1 2 3
01234567890123456789012345678901

|MT |

—————— ot

|Peer ID \

—————— ¢

- o o o +
| Segment Num |
- o +
| Segment Size |
- - o o +

|[File Segment Data |

MT stands for Message Type.

MT, 8 bits

Peer ID, 16 bits (sending Peer 1ID)
File Name, 32 bytes

Segment Number, 16 bits

Segment Size in bits, 16 bits
File Segment Data, up to 2KB

MT = 8 - Segment Reply

C.4 Error Messages

0 1 2 3

CSCI 551 Project A — PHASE 1 WRITEUP 16

01234567890123456789012345678901

+————— +

IMT |

+———— o +

|Peer ID |

+————— - - o +

- o F———— - +
|Error Number | Segment Num
- F———— F———— - +
|Error Msg

|

|

F/NININININININININININ/N/N/N/N
ININININININININININININ/N/NN

|
|256 bytes |
|
|

o e o o +

MT stands for Message Type. The Error Msg is a string, zero
padded.

MT, 8 bits

Peer ID, 16 bits

File Name, 32 bytes

Error Number, 16 bits

Segment Number, 16 bits (0 if not relevant)
Error Msg 256 bytes

MT = 9 - Error Message

Error Number:

1 - Unknown file name

2 — Do not have requested segment

3 - Num File segments for file does not match previous
given info.

