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Self-Similarity in Ethernet 
[Leland94a] and the Web 

[Crovella97a]
CSci551: Computer Networks

SP2006 Thursday Section
John Heidemann
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Key Ideas
• [Leland94a]

– self-similar network traffic
• similar at different timescales
• definition: has infinite variance
• consequenes: variance decays less than exponentially; …

– looks at Ethernet
– described math needed to check for self-sim
– guesses at maybe why tfc is self-sim

• [Crovella97a]
– web traffic and TCP is self-similar and has heavy tailed on-times

• heavy tailed: distribution has infinite variance
– shows why internet tfc is self-sim
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Traffic Modeling
• Paxson showed microscopic traffic effects

– ex: reordering, “little stuff”, …
• What about macroscopic traffic behavior?

– what do traffic aggregates look like?
– conventional wisdom:

• traffic is generated by Poisson sources
– or at least, that’s a good approximation

• traffic will “smooth out” at large timescales
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Traffic Analysis: A Bit of History
• Phone network is homogeneous and static

– Call arrivals at trunk groups independent
– Interarrival times exponentially distributed
– Call durations are exponentially distributed

• why?  people are on both ends
• so voice traffic is

– relatively predictable
– very amenable to mathematical analysis

• queueing theory (EE549)
• with care, some of these techniques can be applied to 

networking as well
• examples from class: Markov modeling in Shakih paper

– Q: will this change with more fax & data?
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Basic Random Processes
• How to model the process arrival

– ex. users to a computer room, or packets to a 
router, or

• Define an arrival probability
– a(t) := P[object arrives at time t] := pdf

(probabilty density function)
– A(t) := P[object arrives at t0<t] := cdf

(cumulative distribution function)
– arrival rate := λ

• λ-1 = E[a(t)] ∫=
t

dttatA
0

)()(
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Consider A Clock
clock ticking
once/second

1s           2           3            4           5           6

a(t)
P[ticks at time t]

A(t)
P[ticks at

or before time t]

now consider just one tick of the clock:
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Consider A Probabilistic Clock

• assume the clock ticks uniformly randomly with 
ticks in the range of 0 to 2s
• note that the rate the clock ticks (λ) is the same as a 
regular clock, but exactly when the clock ticks is 
random

a(t)
P[ticks at time t]

A(t)
P[ticks at

or before time t]

1
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Consider A Clock and Time

a(t)
P[ticks at time t

| clock just ticked]
a(t)
P[ticks at time t

| clock ticked ½s ago]

but for a clock that ticks regularly, a(t) changes with time
(I.e., depending on how long ago the clock ticked)

1

1 1
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A Probabilistic Clock and Time

a(t)
P[ticks at time t

| clock just ticked]
a(t)
P[ticks at time t

| clock ticked 1s ago]

2

0.5

1

1
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Memoryless Distributions
• in both of these 

examples, the 
distribution changes
based on prior state
– it has memory

• Is there an a(t) that 
doesn’t change as a 
function of when the 
clock last ticked?
– i.e., is memoryless

1

10.5

21

assuming it ticked 0.5s or 1s 
ago?

assuming it’s just
ticked?
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Poisson Processes
• Poisson traffic

– a(t) = λe-λt

probability next 
arrival is at t

– λ is arrival rate 
(steady over time)

– is memoryless
• a(t) is the same, 

even after t0

([Kleinrock75a],
figure 2.13)
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Advantages of Poission Modeling
• analytically tractable

– can solve hard but relevant problems
• applicable to telephone traffic

– (may require somewhat more complexity, but 
basic details are here)

• smoothes out when you combine many 
independent users
– allows easier planning

• applicable to many computer problems
– where did we see this before? xxx
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Traffic at Different Time-scales
(Figure 1
from [Willinger98a])
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Measured Data
• shows burstiness at many different scales

– No natural burst length
– … unlike Poisson

• but what does this mean?
– hard to model with Poisson

• but will need many parameters
• not just arrival rate λ
• models with just simple λ may not match real net 

traffic
– would prefer better model
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Defining Time-scale
• Given a random variable X

– say, pkts/s or bytes/s (or pkts/1ms)
– let Xt be measurement at time t, spaced δ apart

• Define time-scale m recursively:
– Xt

(m+1) := Xt
(m) Xt+δ

(m)

– basically, add things up into larger intervals
• Poisson gets smoother at larger m, but 

Internet traffic stays bursty
• Question: how can we model bursty traffic?

10d_self_sim: CSci551 SP2006 © John Heidemann 33

Time Scale Examples

X(0) 0            1            2          0               1      1            0              0

X(1)                        .5                          1                            1      0

X(2)                                                             .75                                                      .5
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A Hint: Fractals
• Def: A class of 

objects with 
surprising scaling 
properties

• Example: Length of 
coastline depends 
on level of detail

• No “natural” length 
for these objects
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Fractals/Self-similarity and Traffic
MeasuredFractal

self-similarity
i.e., looks
like itself
(bursty)
at different
time-scales

fractal tfc
looks like
measured tfc

but…
how can we
characterize
burstiness

(and why does
it happen?)
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Characteristics of Self-similarity
• variance decays slowly as m increases

– self-sim: Var(X(m)) ~ a m-β, 0< β<1
– Poisson: Var(X(m)) ~ a m-1

– i.e., self-sim remains bursty (high variance)
• autocorrelation [r(k)] decays hyperbolically 

rather than exponentially
– self-sim: r(m)(k) ~ k -β, where r(k) is 

autocorrelation spaced by k
– Poisson: r(m)(k) ~ 0 as m →∞
– i.e., self-sim has long-range dependence

• spectral density is power-law near origin
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time-variance plot

Observing Self-Similarity

R/S plot

periodogram

(Figure 5, [Leland94a])

general approach:
• evaluate data over multiple 
timescales
• measure trend, infer H, the 
Hurst Parameter
• somewhat subjective, so 
validate in multiple ways
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time-variance plot

Time-Variance Plot
• variance decays 

slowly as m increases
– self-sim: Var(X(m)) ~ 

a m-β, 0< β<1
– i.e., self-sim remains 

bursty (high variance)
• time-variance plot 

captures decay of 
variance
– time (in m, scale) vs. 

variance

(Figure 5b, [Leland94a])
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R/S Plot
• autocorrelation [r(k)] decays 

hyperbolically rather than 
exponentially
– self-sim: r(m)(k) ~ k -β, where 

r(k) is autocorrelation spaced 
by k

– i.e., self-sim has long-range 
dependence

• R/S Plot captures 
autocorrelation via H (the 
Hurst parameter)
– H is the slope on the R/S plot
– H=1- β/2

R/S plot

(Figure 5a, [Leland94a])
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Spectral Density
• periodogram / Whittle 

estimator measures 
spectral density

• can get statistical 
bounds (confidence 
intervals) on H

• largely superceeded by 
wavelet analysis today
– will see examples next 

time

periodogram

(Figure 5, [Leland94a])
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