
1

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 1

TCP Congestion Control
[Jacobson88a]

(started Feb. 9; finished Feb. 16)

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 7

Key ideas
• [Jacboson88a]:

– new algo to calculate RTO, RTT variance
– congestion control for TCP
– fast retransmission

• problem: network was not stable
– why?

• congestion
• oscillations in congetion

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 8

Agenda
• connection setup and teardown
• flow control
• congestion control theory
• congestion control practice (in TCP)

– slow start
– congestion avoidance

• loss recovery
• putting it together
• security
• performance 6b_Jacobson88a: CSci551 SP2006 © John Heidemann 13

TCP Congestion Control
• three mechanisms:

– slow start: goal: come up to speed quickly and determine what
bitrate the network can support

– congestion avoidance: goal: TCP at “equilibria”, goal stability
(don’t be aggressive), but keep adding a little bit of tfc to see if
there’s more room in the network, also to eventually converge on a
“fair” allocation

– congestion recovery: goal: backoff after congestion (indicated by
loss or ECN bit) and let network recover; go to slow start
(cwnd=1) and halve ssthresh

• interacts very closely with loss repair:
– good retransmit timeout (RTO) estimation
– fast retransmit and recovery
– why?

• main signal from the net about congestion or overutilization is loss
• we must exepct loss as part of regular TCP operation

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 17

TCP Congestion Principals
• underlying principle: packet conservation

– at equilibrium, inject packet into network only
when one is removed

– basis for stability of physical systems
• components:

– how to get there: slow start
– how to stay there: congestion avoidance
– if we overshoot: congestion recovery

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 18

TCP Congestion Control
Mechanisms

• new congestion window cwnd
– what the network can handle
– vs. flow control window (wnd): what the

other end can handle
• sender limits tx

– min (wnd, cwnd)
– (and also considers outstanding data)

2

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 20

TCP Self-clocking

PrPb

Ar

Ab

receiversender

As

depends on ACK stream to keep packets flowing

(Redrawn from
[Jacobson88a])

xxx

xxx

xxx

xxxxxx

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 21

Three Phases
• slow start

– enter: when start OR after loss (usually)
– exit: when cwnd > ssthresh

• congestion avoidance
– enter: after slow start (see above)
– exit: after loss (go to congestion control)

• congestion control
– what:

• ssthresh := cwnd/2; cwnd=1 pkt
• could do fast retx, or maybe just slow start

– enter: after loss in either cong avoid or slow start
– exit: immediately go to slow start

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 25

Slow Start
• How do we get the ACK clock started?

– Initialize cwnd = 1
– Upon receipt of every ACK, cwnd = cwnd + 1

• Implications
– how much in each RTT? exponential increase
– Will overshoot window and cause packet loss
(but remember, packet loss is part of the plan)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 26

Slow Start Example

1

one RTT

one pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

(redrawn from
[Jacobson88a] Fig 2)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 27

Slow Start Time-Sequence Plot

time

Data (KB)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 28

When to End Slow-Start?
• Want to end when the pipe is full

– do end when cwnd > ssthresh
– start with large ssthresh, but then refine it

• On packet loss
– cwnd=1 and go back to slow start
– ssthresh = cwnd / 2

• assume that pipe size was somewhere between last
good window (cwnd/2) and current window (cwnd)

• Eventually, ssthresh is right and transition
to congestion avoidance without packet loss

3

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 33

Congestion Avoidance
• upon receiving ACK

– Increase cwnd by 1/cwnd
– This is additive increase (over 1 RTT it

adds up to increasing by 1 segment)
• why not multiplicative increase?

– don’t want to overly congest the network
– assume ssthresh is good estimate of target

rate, so increase slowly after that
6b_Jacobson88a: CSci551 SP2006 © John Heidemann 34

Congestion Window

time

Congestion
window

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 35

Problems So Far
• have way to fill pipe (slow start)
• have way to run at equilibrium (congestion

avoidance)
• but tough transition

– no good initial ssthresh
– large ssthresh causes packet loss, every time
⇒ need approaches to quickly recover from

packet loss (or explicit signal of congestion)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 36

Agenda
• connection setup and teardown
• flow control
• congestion control
• loss recovery
• security
• performance

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 37

TCP Loss Recovery
• timeout and retransmit
• fast retransmit
• fast recovery
• New-Reno partial ACKs
• SACK

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 38

Fallback Mechanism: Timeout
• retransmission timer (RTO)

– if no ACK after RTO fires,
reset cwnd and resend lowest unACK’ed
segment

• but they’re very crude
– completely stop the ACK clock
– force slow-start again
– are often slow—a long time with no traffic

• …but is there more information?

4

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 42

Digression: RTO Calculation
• Must estimate RTO

– don’t know it at start
– may change due to congestion or path change

• But need a good estimate
– too low => timeout too quickly, introduce

duplicate pkts into the net
– too high => when loss happens, you figure it

out only later than you should => low
performance

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 43

Initial Round-trip Estimator
Round trip times exponentially averaged:
• New RTT = α (old RTT) + (1 - α) (new

sample)
• Recommended value for α: 0.8 - 0.9
• Retransmit timer set to β RTT, where β = 2
• Every RTO expiration, increase it

multiplicatively

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 44

Retransmission Ambiguity

A B

ACK

Sample
RTT

A B
Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACKRTO RTO

what does the ACK indicate?

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 45

Karn’s Retransmission Timeout
Estimator

• Accounts for retransmission ambiguity
• If a segment has been retransmitted:

– Don’t count RTT sample on ACKs for
this segment

– Keep backed off time-out for next packet
– Reuse RTT estimate only after one

successful transmission

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 46

Jacobson’s Retransmission
Timeout Estimator

• Key observation:
– Using β RTT for timeout doesn’t work
(not adaptive enough with fixed β: at high loads,

variance is high)
• Solution:

– If D denotes mean variation (measured)
– Timeout = RTT + 4D
– β is now adaptive

(and can do it with integer math in few l.o.c.)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 48

TCP Loss Recovery
• timeout and retransmit
• fast retransmit
• fast recovery
• New-Reno partial ACKs
• SACK

5

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 51

Why is recovery important?
• goal is high utilization
• want recover quickly because slow start is a

big penalty
– to recover quickly, need to try and keep the

ACK clock going
– so need to keep some packets in flight

• and have to recover the packet
– want to quickly determine what was lost and

resend it
6b_Jacobson88a: CSci551 SP2006 © John Heidemann 54

Fallback Recovery: Timeout and
Retransmit

• how
– timeout after RTO

• pros
– simple (no help from routers)
– doesn’t require extra net traffic (like NACKs)
– can depend on this

• cons
– need good RTO estimation
– need timers (can be expensive)
– can be slow (at most one pkt retx per RTT)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 55

Fast Retransmit
• Interpret n duplicate ACKs as loss

indication
– in fact, send a dup ACK for every packet

you get after a missing one
– but beware: now packet re-ordering

causes problems
• Goal: avoid RTO by fixing the one

missing segment
6b_Jacobson88a: CSci551 SP2006 © John Heidemann 56

Fast Retransmit Example

fast retransmit
after 3 dup ACKs

from [Fall96a] figure 2

fast retx helps a lot,
but not always (if no dup ACKs)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 57

Fast Recovery [see Fall96a]
• Problem: fast retx still forces slow-start,

breaking the ACK clock
• Fast Recovery Solution: artificially inflate

the cwnd as more dup ACKs come in
– cut cwnd, but instead of slow start, do additive

increase for each ACK
– justification: each dup ACK represents a packet

leaving the network, so we can increase cwnd
– exit when out of dup ACKs

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 58

Fast Retransmit and Recovery
• If we get 3 duplicate ACKs for segment N

– Retransmit segment N
– Set ssthresh to 0.5*cwnd
– Set cwnd to ssthresh + 3 [why?]

• For every subsequent duplicate ACK
– Increase cwnd by 1 segment

• When new ACK received
– Reset cwnd to ssthresh (resume congestion

avoidance)

6

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 59

Fast Recovery Example

fast retransmit
after 3 dup ACKs

fast recovery
due to add’tl
dup ACKs

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 60

New-Reno Partial ACKs
• But fast retx and recovery only repair

one lost segment per RTT
• New-Reno idea: use partial ACKs to

stay in fast recovery and fix more lost
segments

• (But there are diminishing returns
here…)

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 61

New-Reno Example

fast retransmit
after 3 dup ACKs

fast recovery
due to add’tl
dup ACKs

additional fast retx
and recovery from
New Reno

from [Fall96a] figure 3

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 62

SACK
• Forget these hacks, have receiver just

tell sender what’s missing
⇒ SACK: selective acknowledgement

– use TCP options to encode some info
about multiple losses and avoid all of this
guess work

– but why is SACK deployment so much
slower than Reno, New-Reno?

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 63

Agenda
• connection setup and teardown
• flow control
• congestion control theory
• congestion control practice (in TCP)
• loss recovery
• putting it together
• security
• performance

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 64

Jacobson Observations
• Compare Figure 3 vs. Figure 4
• Compare Figure 8 vs. Figure 9

7

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 65

Jacobson88a Figure 3: No CC

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 66

Jacobson88a Figure 4: with CC

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 67

Jacobson88a Figure 8: 4x no CC

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 68

Jacobson88a Figure 9: 4x w/CC

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 69

Animations
• see classroom animations of

– stop and wait
– slow-start
– fast retransmit

6b_Jacobson88a: CSci551 SP2006 © John Heidemann 70

Other questions/observations?
• xxx

