The Internet Architecture
[Clark88a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

2¢_Clark88a: CSci551 SP2006 © John Heidemann 1

Key ideas

» motivation behind Internet architecture
— why things are they way they are
— hints and some alternative designs (and why they
weren’t taken)
* not complete
— main goal of internet
* building on existing networks
— secondary goals
« reliability / availability

— approaches
« starting with simple building blocks
* datagram
2¢_Clark88a: CSci551 SP2006 © John Heidemann s

What is the Internet?

* *inter*net: composition of many small neteworks
* a common network protocol IP
» multiple protocols: TCP, UDP, etc.
» multiple services: HTTP (web), SMTP (mail)
 dynamic routing protocols

— routes can change automatic (different links)

— routes change do to network conditions
« change due to SOME network conditions
— link failures
— evalute and change to congestion infrequently: traffic
engineering
« not so much due to congestion

2¢_Clark88a: CSci551 SP2006 © John Heidemann 11

The Internet Architecture

* primary goals:
— connecting heterogeneous networks
— packet switching

* secondary goals:
—robusteness

— (rest are in list in paper)

2¢_Clark88a: CSci551 SP2006 © John Heidemann 17

Main Goals

* heterogeneous link-layers
—why? already out there (built on
telephone network), and wanted to let
things evolve
— some examples: wireless 802.11,
Ethernet, X.25, optical, satellites, token
rings, ...
» multiplexing
— packet switching fundamentally different
from circuit switching

2¢_Clark88a: CSci551 SP2006 © John Heidemann 22

Back in the Old Days...

the “router”
(Aunt Mable)

the wire

1920s telephony: circuits---a physical wire
from one end to the other

2¢_Clark88a: CSci551 SP2006 © John Heidemann 23

Then Came TDM...

Y, Time Division Multiplexing ~ -
p

e ... but keeps the idea of a
Y 2" fixed pipe (circuit) the right
size for a telephone conversation 7 ¥~

2¢_Clark88a: CSci551 SP2006 © John Heidemann 24

And FDM and CDM...

A, [Frequency Division Multiplexing ‘é
-

N

o o o oo o oo o oo

a aaaaaaaaaa A
A

. « -
7Y~ Code Division Multiplexing ‘§~

2¢_Clark88a: CSci551 SP2006 © John Heidemann

25

Logical Network View

fixed size pipe from her to him
= perfect for voice Y
= reliable conversations (Qo0S) Quality of Service
= provisioning, good engineering

= dumb & cheap end points, smart network

= evolved for 100 years (analog to digital)

2¢_Clark88a: CSci551 SP2006 © John Heidemann 26

Packet Switching (Internet)

differences:
= packets as low-level component
= multiple kinds of traffic

= smart edges, dumb network

=> variable delay in the network
= packet loss

= synchronization or reordering: other
people’s traffic effects me

= much smarter end-host => more expensive
end host

2¢_Clark88a: CSci551 SP2006 © John Heidemann

29

Statistical Multiplexing Gain

Assumptions:
1 Mb/s link
user: 0.1Mb/s when transmitting, but 10% duty

cycle

* Circuit switching: can support 10 users,
100% reliable

» Packet switching: with 35 users, probability
that >10 are Sgr%rlsglining at the same time

p=.1N
=0.0004
=T
o —1_ 4 i1 _ oy (IV—i)
Prln>T] =1 ;(Jm)
2¢_Clark88a: CSci551 SP2006 © John Heidemann 30

a. Robust to Failures

* app should not see transient failures
» what kinds of failures?
— (talked about earlier today)
* how does anything still work?
— fate-sharing
« soft-state

« if we put state just at the ends, and we lose and end, we don’t
care

— end-to-end argument
« saving state at the end hosts
— (replication)

2¢_Clark88a: CSci551 SP2006 © John Heidemann

b. Multiple Types of Service

« originally just NCP, but
split to {TCP,UDP}/IP
¢ why?
— to get different types of
service
— because different apps need
different things from the
network
+ ex: with voice, you don’t
want relibability because
you can just ask the other
person to repeat
« downside of reliability:
delay

2¢_Clark88a: CSci551 SP2006 © John Heidemann

what?
made different protocols
TCP
— reliable, end-to-end,
connection oriented, byte
stream
UDP
— unreliable, end-to-end,
connectionless, packet

Other protocols (than TCP/UDP/IP)?

e RTP: Real Time Protocol

— checksum, connectionless (?), standard frame of timing

information

* RTSP: Real Time Streaming Protocol

e SCTP: Stream Control Transmission Protocol
— streaming like TCP, but without reliability
« application protocols (above transport)

— SIP: not really transport

— HTTP, ...

2¢_Clark88a: CSci551 SP2006 © John Heidemann

45

Non-TCP/UDP protocols

RDP: Reliable Delivery Protocol

— message-based

— allows out-of-order delivery

— RFC-908
SCTP: Stream Control Transmission
Protocol

— intended for telephony signaling
over IP
multiplexes multiple “streams™
per connection
— in-sequence per stream, out-of-
sequence between streams
reliable
— RFC-3286

2¢_Clark88a: CSci551 SP2006 © John Heidemann

DCCP: Datagram Congestion
Control Protocol
— add congestion control to UDP
— in progress
TFRC: TCP-Friendly Rate
Control
— defines how to do rate-control as
a function of loss rate
— RFC-3448
— we study TCP-friendliness later
XCP: Explicit Control
Protocol
— high-speed streaming with
explicit router rate feedback
— presented at SIGCOMM
— we’ll study it later 46

b.2. multiple applications

* classes:

— interactive multimedia
* voice consersations
« [real time]
* gaming

— one-way multimedia
* video streaming

— bulk data transfer
« file transfer
« peer-to-peer
+ e-mail

— interactive non-multimedia
« remote login
* chat

— [e-commerce]

2¢_Clark88a: CSci551 SP2006 © John Heidemann

* requirements:
— low latency
— high bandwidth
— reliablity
— security
— jitter
— interactive vs. background

« this is not a perfect, orthogonal
list

c. multiple kinds of networks

IP over X
compare to integrated
stacks:
- ISO
- ATM
— cell phones (CPDP & WAP,
maybe??)
— fibre channel, Apple Desktop
Bus, USB, Firewire
but a counter example: SCSI
and now SCSI over IP

2¢_Clark88a: CSci551 SP2006 © John Heidemann

* requirements of X:

— reasonable size packets

« but fragmentation and
reassembly

— reasonable reliablity
* but workarounds
— addressing

* non-requirements of X:

— reliable, in-order, broadcast,
QoS, etc.

d. other goals

* distributed management
— some work, and today policy routing

exists

— but limitations (ex. address space

portability)
« cost effective

—today quite cheap

—but for small devices? for keyboard?

2¢_Clark88a: CSci551 SP2006 © John Heidemann

d. other other goals

« effort to deploy end host
— for him in *88: cost of implementing stack
— today: cost of administering machine
+ much lower today (DHCP, etc.)
« but still lots of manual configuration “futzing”
* accountability
— tracking resource usage, money, identity of user and reprucussions
of bad usage (spam, p2p file sharing, zombies and denial-of-
service)
— basically nothing then
 today: not much, but today there is authentication (and identity) at
many network connections, but not everywhere
+ possibly a major focus of internet research will be look security

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 57

Architecture and Implementation

* realization: an instance of the Internet class
— him: 1200b/s modem vs. IMb/s LAN
— today: from sensor net nodes with 8-bit CPUs
and 20kb/s radios...to supercomputers
— today: the Internet can’t do X because it is Y

* ex. can’t do System Area Networks over IP because
it’s too slow, so we need Fibre Channel

* alternative: build a fast Internet realization
— corollary: not every realization is appropriate
for every app
— also: custom stack will get last 5% of
performance, but is it worth it?

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 60

TCP Alternative Choices

* byte stream vs. message stream
* flow control
* congestion control came later

» PSH flag
—a weak record boundry

— but the reason the Plan-9 people didn’t
use TCP

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 62

Other Components of [P Success

* a good, free implementation

— BSD Unix in the mid-80’s

— compare to OSI where impls were late
» a good API

— BSD socket API

— not perfect, but good

— compare to OSes where Unix and Windows
have very different APIs to open/rename/etc.
files

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 63

Where are we now?

« this paper: The Internet in 1988 (!)

» much has changed since then (as
discussed next in [Deering98a]

» what are the big challenges today?

— think about this question... we’ll come
back to it

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 65

Other questions/observations?

* XXX

2¢_Clark88a: CSciS51 SP2006 © John Heidemann 66

