
The Effects of Asymmetry on TCP Performance 
Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz 

{ hari,padmanab,randy } @cs.berkeley.edu 
Computer Science Division, Department of EECS 

University of California at Berkeley, Berkeley, CA 94720-l 776. 

Abstract 

In this paper, we study the effects of network asymmetry on end- 
to-end TCP performance and suggest techniques to improve it. The 
networks investigated in this study include a wireless cable modem 
network and a packet radio network. In recent literature (e.g., 
[16]), asymmetry has been considered in terms of a mismatch in 
bandwidths in the two directions of a data transfer. We generalize 
this notion of bandwidth asymmetry to other aspects of asymmetry, 
such as latency and media-access, and packet error rate, which are 
common in wide-area wireless networks. 

Using a combination of experiments on real networks and simula- 
tion, we analyze TCP performance in such networks where the 
throughput achieved is not solely a function of the link and traftic 
characteristics in the direction of data transfer (theforward direc- 
tion), but depends significantly on the reverse direction as well. We 
focus on bandwidth and latency asymmetries, and propose and 
evaluate several schemes to improve end-to-end performance in 
these cases. These include techniques to decrease the rate of 
acknowledgments on the constrained reverse channel (ack conges- 
tion control and ackjiltering), techniques to reduce source bursti- 
ness when acknowledgments are infrequent (TCP sender 
adaptation), and algorithms at the reverse bottleneck router to 
schedule data and acks differently from FIFO. 

1. Introduction 

The Transmission Control Protocol (TCP) is widely used in the 
Internet for reliable, unicast communications. The robustness of 
TCP in a wide variety of networking environments is the primary 
reason for its large-scale deployment. However, emerging net- 
working technologies pose new challenges to TCP in terms of per- 
formance, requiring analysis and solutions. In this paper, we focus 
on the challenges to end-to-end TCP performance that arise due to 
network asymmetry, especially in the context of wide-area wire- 
less networks. The increased interest in asymmetric networks is 
motivated by technological and economic considerations as well as 
by popular applications such as Web access, which involve a sub- 
stantially larger flow of data towards the client (theforward direc- 
tion) than from it (the reverse direction). 

Examples of networks that exhibit asymmetry include wireless 
cable modem networks, direct broadcast satellite networks, and 
Asymmetric Digital Subscriber Loop (ADSL) networks, where 
bandwidth in the forward direction is often orders of magnitude 
larger than that in the reverse. Such asymmetry is accentuated 
when the channel is unidirectional, necessitating the use of a dif- 
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ferent, often low-bandwidth channel (e.g., a dialup line or a band- 
width-constrained and lossy wireless channel) for communication 
in the reverse direction. 

Our study is not limited to networks where the asymmetry is 
explicit and obvious because of mismatched bandwidths -we 
also study TCP dynamics in packet radio networks, where traftic 
flowing simultaneously in different directions can adversely affect 
performance. This is because most packet radio networks use half- 
duplex radio units, which cannot transmit and receive data frames 
at the same time. In addition, we combine two wireless technolo- 
gies - wireless cable and packet radio - in our study to under- 
stand the problems that arise in these situations when different 
types of asymmetry are tied together. 

Asymmetry is inherent in several wide-area wireless networks, 
where it is often the case that a central transmitter (or base station) 
can transmit at high power to receiving portable/mobile units. 
However, to reduce power consumption, these units transmit to the 
base station at relatively low power. In addition, they often have to 
contend with other mobile units to gain access to the channel. 

We generalize the various phenomena and examples described 
above to the following definition of asymmetry: a network is said 
to exhibit network asymmetry with respect to TCP performance, if 
the throughput achieved is not solely afunction of the link and 
traffic characteristics of the forward direction, but depends signiji- 
cantly on those of the reverse direction as well. In addition to the 
bandwidth asymmetry described above, this definition extends to 
other types of asymmetry, such as latency and media-access, and 
packet error rate. In this paper, we study bandwidth, and latency 
and media-access asymmetries, both individually and in combina- 
tion. We use measurements on a real testbed as well as simulations 
experiments with different choices of topology and workload, to 
identify the performance problems. Based on these results, we pro- 
pose and evaluate several techniques to improve performance. The 
wireless networks that serve as the basis for our work include a 
wireless cable modem network and a packet radio network. 

Fundamentally, network asymmetry affects the performance of 
reliable transport protocols such as TCP because these protocols 
rely on feedback in the form of cumulative acknowledgments from 
the receiver to ensure reliability. In addition, TCP is ack-clocked, 
relying on the timely arrival of acknowledgments, to make steady 
progress and fully utilize the available bandwidth of the path [lo]. 
Thus, any disruption in the feedback process could potentially 
impair the performance of the forward data transfer. For example, 
a low bandwidth acknowledgment path could significantly slow 
down the growth of the TCP sender window during slow start, 
independent of the link bandwidth in the direction of data transfer. 
A second example is from packet radio networks, where variable 
latencies in the presence of bidirectional traffic (caused, for 
instance, by acknowledgements flowing in a direction opposite to 
data packets) causes the sender’s round-trip time estimate to be 
highly variable. This inflates TCP’s retransmission timeout value, 
thereby impairing loss recovery. 
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The following are our major results and conclusions: 

SLIP header compression [I l] alleviates some of the perfor- 
mance problems due to bandwidth asymmetry, but does not 
completely eliminate all problems, especially those that arise 
in the presence of bidirectional traffic. 

Connections traversing packet radio networks suffer from large 
variations in round-trip time caused by the half-duplex nature 
of the radios and asymmetries in the media-access protocol. 
This adversely affects TCP’s loss recovery mechanism and 
results in degraded performance. 

The various end-to-end and router-based techniques that we 
propose help improve performance significantly in many 
asymmetric situations. These include decreasing the frequency 
of acknowledgments (a&s) on the constrained reverse channel 
(ack congestion control and ackfiltering), reducing source 
burstiness when acknowledgments are infrequent (TCP sender 
adaptation), and scheduling data and acks intelligently at the 
reverse bottleneck router. 

In addition to improving throughput for individual connec- 
tions, our proposed modifications also help improve the fair- 
ness and scaling properties when several connections contend 
for scarce resources in the network. We demonstrate this via 
simulations of bulk and Web-like transfers. 

The rest of the paper is organized as follows. Section 2 describes 
some related work and Section 3 discusses the details of our exper- 
imental and simulation methodology. In Section 4, after analyzing 
the problems that arise due to bandwidth asymmetry, we propose 
and evaluate several solution techniques. In Section 5, we discuss 
the problems that arise due to asymmetry in latency and media- 
access in packet radio networks and how this leads to a large varia- 
tion in round-trip time, and evaluate some solutions. In Section 6, 
we combine wireless cable and packet radio technologies and 
investigate the issues of scale and performance when bandwidth 
and latency asymmetries are present together. We present our con- 
clusions in Section 7 and plans for future work in Section 8. 

2. Related Work 

Several researchers have identified and proposed solutions to trans- 
port protocol problems that arise in single-hop wireless networks 
[l, 2,3,4]. The main issue considered in these papers is the impact 
of packet losses due to reasons other than congestion (wireless 
error, handoff, etc.) on TCP performance. We view our work as 
being in the natural progression of such research, with the overall 
goal of understanding and improving the performance of reliable 
transport protocols like TCP in the face of ever-increasing hetero- 
geneity in network technologies and characteristics. The specific 
measurements reported in this paper were taken over a wireless 
cable modem network and a packet radio network. 

There has been some previous work on understanding the effects 
of two-way trafIic on TCP performance. In 1201, the authors dem- 
onstrate how two-way traffic can lead to ack compression, where 
closely-bunched acknowledgments disrupt the smooth ack-clocked 
transmission at the sender. More recently, there has been interest in 
how asymmetric-bandwidth networks exacerbate this problem. In 
[16], the authors model a network with bandwidth asymmetry and 
derive analytical expressions for throughput in terms of packet loss 
probability and the normalized asymmetry ratio under certain ideal 
assumptions. They also propose the use of a drop-from-font strat- 
egy for dropping acknowledgments at the bandwidth-constrained 
reverse link. In [ 131, the authors demonstrate how bidirectional 
traffic over asymmetric links leads to ack compression, and conse- 
quently, degraded performance. They investigate a backpressure 

mechanism to limit data flow in the reverse direction, but conclude 
that this alone is not enough for good performance. 

There have also been studies of bandwidth asymmetry in the con- 
text of satellite networks [7, 181. The main distinction between 
such a network and the wireless cable modem network we consider 
in this study is that the former has a much larger bandwidth-delay 
product, which could be the dominating factor in performance 
Finally, some basic performance measurements of Metricom’s 
Ricochet packet radio network are presented in [5], such as one- 
way transmission delays of unidirectional traffic. 

While the results and analysis in [I33 and [16] are very useful, the 
set of problems is far from being understood or solved. In addition 
to proposing and evaluating other schemes to alleviate the adverse 
effects of bandwidth asymmetry, we also characterize other types 
of asymmetry that occur in wide-area wireless networks. We cval- 

uate our solutions for these networks in terms of connection 
throughput, fairness, and scaling behavior. 

3. Experimental and Simulation Methodology 

In this section, we describe our experimental testbed, simulation 
setup, and traffic workloads used in the study. 

3.1 Experimental Testbed 

We use a combination of simulation and actual experimentation on 
a real heterogeneous, wireless testbed to evaluate the performance 
of TCP, understand the reasons for observed performance, and 
design end-host and router-based techniques to improve pcrfor- 
mance. Our simulation topologies and parameters arc derived from 
the following networks in our testbed: 

Wireless cable modem network: This is a wireless cable 
modem network using technology developed by Hybrid Nct- 
works, Inc. (www.hybrid.com). The aggregate bandwidth of the 
(unidirectional) forward channel is 10 Mbps’ and the one-way 
link latency is about 5ms. The topology for this testbed is 
shown in Figure 1. The downstream channel for data operates 
in the 2.4 GHz range and is down-converted at the receiving 
end to standard television channel frequencies. The reverse 
channel could be a dialup line, an ISDN line, a wireless chan- 
nel using a wide-area packet radio network, etc. 

Packet radio network: Our packet radio network is based on 
Metricom Inc.‘s Ricochet network (www.metricom.com). The 
topology for this network is shown in Figure 8. The packet 
radios operate in the 915 MHz ISM band and have a raw link 
speed of 100 Kbps. The poletop units typically have a range of 
several hundred meters. 

The wireless cable modem testbed is an example of a network with 
bandwidth asymmetry depending on the return path used, which 
could be a dialup phone line (e.g., 14.4 Kbps or 28.8 Kbps), or a 
wireless channel. In a good installation of the wireless cable 
modem network, the bit-error rate of the forward channel is ncgll- 
gible. We therefore do not focus on the effects of bit-errors on the 
forward channel in this paper. 

The packet radio network we study is an example of a network that 
does not have explicit (bandwidth) asymmetry, but has the charac- 
teristic that the flow of traffic (e.g., TCP data) in one direction 1s 
affected by the flow of traffic (e.g., TCP acks) in the opposite 

1. A 30 Mbps 2-way wireless cable system is currently under 
development; this system also exhibits bandwidth asymmetry, 
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Figure 1. The network topology of the wireless cable modem network which illustrates bandwidth asymmetry. Hosts on the client 
subnet receive data from tbe Internet via the 10 Mbps wireless cable link (thefonumd channel) and send out data via a low band- 

width (e.g., dialup) link (the reverse channel). 

direction, This arises because of the half-duplex nature of the radio 
units that cannot simultaneously send and receive packets, having 
to incur a significant overhead in turning around from one mode to 
the other. 

connections in the network and the throughput achieved by con- 
nection i is equal to xi, I <= i <= n, then 

After studying the impact of each type of asymmetry indepen- 
dently, we combine networks with these different asymmetric 
characteristics and study the performance characteristics of TCP 
connections through them. We now describe the details of our sim- 
ulation setup, workloads, and performance metrics. 

3.2 Simulation Setup and Performance Metrics 

We used ns [ 171, an event-driven packet-level network simulator 
from Berkeley and LBNL for our work. We developed several 
extensions to this simulator to model the networks of interest to us. 
We added the notion of a shared link (LAN) to the simulator with 
the ability to incorporate arbitrary link-layer and media-access 
protocols. Our simulations of the packet radio network use a MAC 
protocol loosely based on Ricochet’s protocol. The details of these 
additions are described in Section 5.1. 

Our simulation parameters and topologies are closely tied to mea- 
surements of the real networks, such as link bandwidths, latencies, 
packet radio turn-around times, etc. We validated the simulated 
performance obtained by unmodified TCP and constant-rate UDP 
traffic with actual measurements in all the real networks. We 
experiment with two kinds of workloads - large bulk transfers 
and short Web-like transfers. We also consider simultaneous trans- 
fers in opposite directions. 

Our main performance metrics are throughput measured at the 
receiver and a metric for fairness, called thefairness index [6]. The 
fairness index,f, is defined as follows: if there are n concurrent 

( 1 
& * 

f=+- 
II c xi2 

i= 1 

The fairness index always lies between 0 and 1 for non-negative 
throughputs, and as explained in [12], is equal to (k/n) if k of the II 
connections receive equal throughput and the remaining none. 
Thus,fcannot be less than I/n in a network with n connections. We 
use the fairness index to understand and analyze the scaling prop- 
erties of the network when multiple connections are simulta- 
neously active. 

4. Bandwidth Asymmetry 

In this section, we discuss the performance problems that arise due 
to bandwidth asymmetry. These include the slowdown and 
increased burstiness of a TCP sender due to the disruption of ack 
clocking, and highly variable performance when there are simulta- 
neous TCP transfers in both the forward and reverse directions. We 
then propose some solutions to these problems and evaluate the 
improvement in performance. 

4.1 Network Topology 

The network topology of the wireless cable system is shown in 
Figure 1. The bandwidth of the forward channel is 10 Mbps. The 
reverse channel is much slower, usually a dialup phone line of 
speed up to 28.8 Kbps. In addition, in our measurements, we con- 
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Figure 3. Measured performance of the Hybrid wireless cable 
network using different return channels, across a range of 

socket buffer sizes. Each run of the experiment involved the 
transfer of 1 MB of data in the forward direction between 

two BSD/OS hosts. 
sidered an Ethernet reverse channel. While such a conllguration is 
possibly unrealistic, it serves as a useful data point for comparison. 
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Figure 2. The simulation topology used to model a network 
with bandwidth asymmetry. The bandwidth and delay 

parameters have been chosen to closely model the Hybrid 
wireless cable modem network. 

The simulation topology we used to investigate the effects of band- 
width asymmetry is shown in Figure 2. We considered reverse 
channels of different bandwidths. In practice, reverse channels 
ranging from slow to high speed dialup lines to ISDN have differ- 
ent delays. But keeping the delay constant (at 50 ms) in the simula- 
tion experiments helps us focus on bandwidth asymmetry. 

In the following sub-sections, we discuss several performance 
problems that we observed based on experiments conducted in the 
real testbed as well as in the simulator. We then discuss a variety of 
solution techniques and evaluate their efficacy via simulations. 

4.2 Analysis of performance problems 

We now discuss the problems that arise due the limited bandwidth 
of the reverse channel in an asymmetric-bandwidth network. 

4.2.1 One-way Transfers 

We first discuss the case where TCP transfers happen only in the 
forward direction. A common example of this is a user download- 
ing data from a server. For simplicity, we initially restrict ourselves 
to the case of a single TCP transfer in the forward direction. 

We define the normalized bandwidth ratio, k, (as defined in [12]) 
between the forward and reverse paths as the ratio of the raw band- 
widths divided by the ratio of the packet sizes used in the two 
directions. For example, for a 10 Mbps forward channel and a 100 
Kbps reverse channel, the raw bandwidth ratio is 100. With lOOO- 
byte data packets and 40-byte acks, the ratio of the packet sizes is 
25. So, k is 100/25 = 4. This implies that if there is more than one 
ack for every k = 4 data packets, the reverse bottleneck link will get 
saturated before the forward bottleneck link does, possibly limiting 
the throughput that can be achieved in the forward direction. 

The main effect of bandwidth asymmetry in this case is that TCP 
ack clocking can break down. Consider two data packets transmit- 
ted by the sender in quick succession. While in transit to the 
receiver, these packets get spaced apart according to the bottleneck 
link bandwidth in the forward direction. The principle of ack 
clocking is that the acks generated in response to these packets 
preserve this spacing (in time) all the way back to the scndcr, 
enabling it to clock out new data packets with the same spnclng, 

However, the limited reverse bandwidth and consequent queuing 
effects could alter the inter-ack spacing. When acks arrive at the 
bottleneck link in the reverse direction at a faster rate than the link 
can support (which happens when k > 1 assuming every data 
packet is acknowledged), they get queued behind one another. The 
spacing between them when they emerge from the link is dilated 
with respect to their original spacing. (This is in contrast to ack 
compression which happens when acks get queued at a fast link, 
i.e. k c I). Thus the sender clocks out new data nt a slo~cr rate 
than if there had been no queuing of acks. One consequence of this 
is that the sender’s window growth is slowed down. 

This is part of the reason why the measured throughputs shown in 
Figure 3 for dialup reverse channels without SLIP header compres- 
sion are so low. SLIP header compression (CSLIP) reduces the 
sizes of acks and decreases k, improving performance. For cxam- 
ple, consider the case of a IO Mbps forward and 28.8 Kbps reverse 
channel, with a data packet size of 1 KB. With the TCP timcstamp 
option enabled, the ack size is 52 bytes with SLIP and 18 bytes 
with CSLIP. So k is 18.05 with SLIP and is 6.25 with CSLIP. With 
TCP delayed acks (one ack for every two data packets), throughput 
is limited to 10*2/18.05 = 1.1 Mbps and 10*2/6.25 = 3.2 Mbps, 
with SLIP and CSLIP respectively. These numbers closely match 
the measured throughputs shown in Figure 3. 

In comparison, the performance with an Ethernet return channel is 
much better because of the absence of bandwidth asymmetry (k is 

0.052) and a much smaller link delay than the dialup lines. As an 
aside, the throughput shows a dip beyond a socket buffer size of 16 
KB because larger socket buffer sizes lead to overflow of some 
router queue along the forward path. 

In practice, the reverse bottleneck link will also have a finite 
amount of buffer space. If the TCP transfer lasts for long enough, 
this buffer can fill up and cause acks to get dropped. If the receiver 
acknowledges every packet, on average (k-l) out of every I< acks 
get dropped at the reverse channel buffer. Since in effect only one 
ack traverses the reverse bottleneck link for every k datn packets, 
acks may not directly limit forward throughput. However, this situ- 
ation leads to several other problems because the sender now 
receives fewer acks than it would have otherwise. 

First, the sender could become bursty. If the sender receives only 
one ack in k, it ends up sending out data in bursts of k packets. This 
increases the chance of data packet loss, especially when k is large. 
Second, since conventional TCP senders base their window 
increase on counting the number of acks and not on how much 
actual data is acknowledged, fewer acks imply a slower rate of 
growth of the congestion window. Third, the receipt of fewer acks 
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Figure 4. Measurements of the reverse connection operating 
over a 9.6 Kbps dialup line. The circles indicate times when 

the reverse connection retransmits packets. 

could disrupt the sender’s fast retransmission algorithm when there 
is a data packet loss. The sender may not receive the threshold 
number of duplicate acks although the receiver may have sent out 
more than the required number. And finally, the loss of the (now 
infrequent) acks further down the path to the sender could cause 
long idle periods while the sender waits for subsequent acks to 
arrive. 

4.2.2 Two-way Transfers 

We now consider the case when TCP transfers simultaneously 
occur in the forward and reverse directions. An example of this is a 
user sending out data (for example, an e-mail message) while 
simultaneously receiving other data (for example, Web pages). We 
restrict our discussion to the case of one connection in each direc- 
tion. 

In this scenario, the effects discussed in Section 4.2.1 are more 
pronounced, because some of the reverse direction bandwidth is 
used by the reverse transfer. This increases the degree of band- 
width asymmetry for the forward transfer. 

In addition, there are other effects that arise due to the interaction 
between data packets of the reverse transfer and acks of the for- 
ward transfer. Suppose the reverse connection is initiated first and 
that it has saturated the reverse channel and buffer with its data 
packets at the time the forward connection is initiated. There is 
then a high probability that many acks of the newly initiated for- 
ward connection will encounter a full reverse channel buffer and 
hence get dropped. Even after these initial problems, acks of the 
forward connection could often get queued up behind large data 
packets of the reverse connection, which could have long transmis- 
sion times (e.g., it takes about 280 ms to transmit a 1 KB data 
packet over a 28.8 Kbps line). This causes the forward transfer to 
stall for long periods of time. 

Figure 4 and Figure 5 show concurrent reverse and forward con- 
nections, measured in the wireless cable modem network. The 
reverse connection is initiated first. As discussed above, the for- 
ward connection starts off very slowly. Figure 5 clearly shows 
large idle times until about 160 seconds into the transfer. It is only 
at times when the reverse connection loses packets (due to a buffer 
overflow at an intermediate router) and slow5 down that the for- 
ward connection gets the opportunity to make rapid progress and 
quickly build up its window. This is evident from the sharp 
upswings in the forward connection’s data rate just before the 
times at which the reverse connection retransmits packets, marked 
by circles in Figure 4. 
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Figure 5. Measurements of the forward connection operating 
over the 10 Mbps Hybrid wireless cable network. The sharp 
upswings in its data rate occur whenever the reverse connec- 

tion suffers a loss and slows down. 

4.3 s01uti0us 

Most of the problems discussed in the preceding sections arise 
because of contention for the bottleneck resources in the reverse 
direction - link bandwidth and buffer space. This observation 
serves as the starting point for the solutions discussed below. 

We first present two techniques - ack congestion control and ack 
filtering - for alleviating the effects of congestion of ack packets 
on the reverse channel. We then discus5 changes at the TCP sender 
to enable it to adapt well to the situation where acks are received 
infrequently. Finally, we present a simple scheduling algorithm for 
data and ack packets at the reverse channel router to improve per- 
formance when there are two-way transfers. 

4.3.1 Ack Congestion Control (ACC) 

The idea here is to extend congestion control to TCP acks, since 
they do make non-negligible demands on resources at the low- 
bandwidth bottleneck link in the reverse direction. Acks occupy 
slots in the reverse channel buffer, whose capacity is often limited 
to a certain number of packets (rather than bytes), as is the case in 
our BSD/OS systems. 

Our approach is to use the BED (Random Early Detection) algo- 
rithm [9] at the gateway of the reverse link to aid congestion con- 
trol. The gateway detects incipient congestion by tracking the 
average queue size over a time window in the recent past, If the 
average exceeds a threshold, the gateway selects a packet at ran- 
dom and marks it, i.e. sets an Explicit Congestion Notification 
(ECN) bit using the BED algorithm2. This notification is reflected 
to the sender of the packet by the receiver, Upon receiving a packet 
with ECN set, the sender reduces its sending rate. 

The important point to note is that with ACC, both data packets 
and TCP acks are candidates for being marked. The TCP receiver 
maintains a dynamically varying delayed-ack factor, d, and sends 
one ack for every d data packets. When it receives a packet with 
the ECN bit set, it increases d multiplicatively, thereby decreasing 
the frequency of acks also multiplicatively. Then for each subse- 
quent round-trip time (determined using the TCP timestamp 
option) during which it does not receive an ECN, it linearly 
decreases the factor d, thereby increasing the frequency of acks. 

2. The gateway can also be configured to drop the selected packet 
(Random Early Drop), but we chose to mark it instead. 
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Thus, the receiver mimics the standard congestion control behavior 
of TCP senders in the manner in which it sends acks. 

There are bounds on the delayed-ack factor d. Obviously, the mini- 
mum value of d is I, since at most one ack is sent per data packet. 
The maximum value of d is determined by the sender’s window 
size, which is conveyed to the receiver in a new TCP option. The 
receiver should send at least one ack (preferably more) for each 
window of data from the sender. Otherwise, it could cause the 
sender to stall until the receiver’s delayed-ack timer (usually set at 
200 ms) kicks in and forces an ack to be sent. 

4.3.2 Ack Filtering (AF) 

The ACC mechanism described above modifies the TCP stack at 
the receiver in order to decrease the frequency of acks on the con- 
strained reverse link. Ack filtering, based on an idea suggested by 
Kam [15], is a gateway-based technique that decreases the number 
of TCP acks sent over the constrained channel by taking advantage 
of the fact that TCP acks are cumulative. 

When an ack from the receiver is about to be enqueued, the router 
(or the end-host’s routing layer, if the host is directly connected to 
the constrained link) traverses its queue to check if any previous 
a&s belonging to the same connection are already in the queue. It 
then removes some fraction (possibly all) of them, depending on 
how full the queue is. The removal of these “redundant” acks frees 
up space for other data and ack packets. The policy that the filter 
uses to drop packets is configurable and can either be deterministic 
or random (similar to a random-drop gateway, but taking the 
semantics of the items in the queue into consideration). There is no 
need for any per-connection state to be maintained at the router - 
all the information necessary to implement the drop policy is 
already implicitly present in the packets in the queue. 

In the experiments reported in this paper, AF deterministically 
clears out all preceding acks belonging to a connection whenever a 
new ack for the same connection with a larger cumulative ack 
value enters the queue. 

4.3.3 TCP Sender Adaptation 

ACC and AF alleviate the problem of congestion on the reverse 
bottleneck link by decreasing the frequency of acks, with each ack 
potentially acknowledging several data packets. As discussed in 
Section 4.2.1, this can cause probIems such as sender burstiness, a 
slowdown in window growth, and a decrease in the effectiveness of 
the fast retransmission algorithm. 

We combat sender burstiness by placing an upper bound on the 
number of packets the sender can transmit back-to-back, even if 
the window allows the transmission of more data. If necessary, 
more bursts of data are scheduled for later points in time computed 
based on the connection’s data rate. The data rate is estimated as 
the ratio cwndhrtt, where cwnd is the TCP congestion window size 
and srtt is the smoothed RTT estimate. Thus, large bursts of data 
get broken up into smaller bursts spread out over time. 

The sender can avoid a slowdown in window growth by simply 
taking into account the amount of data acknowledged by each ack, 
rather than the number of acks. So, if an ack acknowledges s seg- 
ments, the window is grown as ifs separate acks had been 
received. This policy works because the window growth is only 
tied to the available bandwidth in the forward direction, so the 
number of acks is irrelevant. 

Finally, we solve the fast retransmission problem by not requiring 
the sender to count the number of duplicate acks. Instead, with 
ACC when the receiver observers a threshold number of out-of- 
order packets, it marks all of the subsequent duplicate acks with a 
bit to indicate that a fast retransmission is requested, With AF, tho 
reverse channel router takes similar action when it has filtered out 
a threshold number of duplicate acks. The receipt of even one such 
marked packet causes the sender to do a fast retransmission. 

4.3.4 Scheduling Data and Acks 

In the case of two-way transfers, data as well as ack packets com- 
pete for resources in the reverse direction (Section 4.2.2). In this 
case, a single FIFO queue for both data and acks could cause prob- 
lems. For example, if the reverse channel is a 28.8 Kbps dialup 
line, the transmission of a 1 KB sized data packet would take about 
280 ms. So if two such data packets get queued ahead of ack pack- 
ets (not an uncommon occurrence since data packets are sent out in 
pairs during slow start), they would shut out acks for well over half 
a second. And if more than two data packets are queued up ahead 
of an ack, the acks would be delayed by even more. 

To alleviate this problem, we configure the router to schedule datn 
and ack packets differently from FIFO. A particular scheduling 
algorithm we consider is one that always gives higher priority to 
acks over data packets (uckslfrst scheduling). The motivation for 
this is that with techniques such as header compression [8], the 
transmission time of acks becomes small enough that it affects 
subsequent data packets very little (unless the per-packet overhead 
of the reverse channel is large, as is the case in packet radio net- 
works). At the same time, it minimizes the idle time for the for- 
ward connection by minimizing the amount of time acks remain 
queued behind data packets. 

Note that as with ACC, this scheduling scheme does not rcquiro 
the gateway to explicitly identify or maintain state for indivldual 
TCP connections. 

4.4 Simulation Results 

In this section, we present the results of several simulations of onc- 
way and two-way TCP transfers on a network that exhibits band- 
width asymmetry. The simulation topology, depicted in Figure 2,ls 
modeled after the Hybrid wireless cable modem network. 

4.4.1 Single One-way eansfer 

We conducted a set of experiments, each involving a 50.second 
transfer in the forward direction. There was no traftlc in the reverse 
direction other than the acks for the forward transfer. Table 1 sum- 
marizes the throughputs obtained for three protocol conftgurntions 
-regular TCP Reno, Reno with ACC and Reno with AP - with 
different types of return channels. With both ACC and AF, WC 
included the sender adaptation technique described In 
Section 4.3.3. 

The socket buffer size at the sender and receiver was set to 100 KB 
and each data packet was 1 KB in size, The buffer size at each 
router was set to 10 packets. The ack size was set to 6 bytes and 40 
bytes, respectively, with and without header compression. 

The main observation here is that since the transfers are long, the 
reverse buffer fills up early on. Beyond that point, only one ack in k 
gets through on average, causing the sender to send out bursts of k 
packets. As long as k does not exceed the bottleneck buffer size in 
the forward direction (which is 10 packets in our topology), the 
increased burstiness of the sender does not lead to losses. 
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Reverse Chan- 
nel Bandwidth 

9.6 Kbps 

9.6 Kbps C 

28.8 Kbps 

28.8 Kbps C 

Reno Reno+ACC Reno+AF 

1.78 3.64 6.28 

6.67 7.69 7.93 

4.35 7.58 9.49 

9.78 9.77 9.88 

Table 1. Throughputs (in Mbps) from the simulation of a 
single one-way transfer in the forward direction. “C?’ 

indicates the use of SLIP header compression. 

The factor k (the normalized asymmetry ratio) exceeds 10 for the 
cases of SLIP without header compression, which explains the 
poor throughput of TCP Reno in those cases (1.78 and 4.35 Mbps). 
The sender adaptation employed in conjunction with ACC and AF 
breaks up potential bursts, avoiding performance degradation in 
those cases. 

For the 9.6 Kbps reverse channel with header compression, k is 
6.25, which is less than 10. Still, the throughput obtained with TCP 
Reno (6.67 Mbps) is worse than that for the other schemes. This 
happens because the reverse channel buffer gets filled with acks 
(totalling 10*6 = 60 bytes), which adds a significant delay (60*8/ 
9.6 = 50 ms) to the connections round-trip time (RTI’). The same 
effect also explains why the performance with ACC is somewhat 
worse than that with AF for both the 9.6 Kbps and 28.8 Kbps 
cases. The former only tries to ensure that the reverse channel 
queue does not get completely filled up. The latter ensures that 
there is not more than one ack per connection in the queue, which 
minimizes the effect of queuing on the round-trip time. 

To summarize, TCP Reno suffers performance degradation when k 
is large and there is significant queuing delay. ACC and AF allevi- 
ate these problems by decreasing the frequency of a&s. 

4.4.2 Two Simultaneous One-way Transfers 

We now consider two simultaneous one-way transfers with the 
same topology as in Section 4.4.1 and the reverse channel fixed to 
be a 28.8 Kbps dialup line with header compression. The first 
transfer is initiated at time 0 and continues for 50 seconds. The 
second transfer starts at a randomly picked time between 5 and 10 
seconds and ends at time equal to 50 seconds. Ten runs were con- 
ducted for each configuration. The goal here is to see how the two 
connections share the reverse channel bandwidth and buffer, which 
impacts the throughput of each. 

Table 2 summarizes the results obtained in terms of the aggregate 

Metric Reno 

Total throughput 9.80 

Reno+ACC 

8.59 

Reno+AF 

8.98 

I Fairness index I 0.5 I 0.95 1 0.99 -1 

Table 2. The aggregate throughput (in Mbps) and the 
fairness index based on the simulation of two one-way 

transfers in the forward direction. The reverse channel is 
a 28.8 Kbps diahrp line with header compression. 

throughput for the two connections and the fairness index (as 
defined in Section 3.2) computed over the period during which 
both connections are active. We see that unmodified TCP Reno 
yields the best aggregate throughput but has a much worse fairness 
index value than the others. 

The high degree of unfairness with TCP Reno arises because the 
acks of the first connection quickly fill up the reverse channel 
buffer. So, when the second connection starts up, it suffers ack 
losses early on, leading to timeouts and hence a lack of progress. 
Even if all acks of the second connection were not lost, the growth 
of its window during the slow start phase would be slowed down 
because of the large queuing delay that its acks would encounter. 

By decreasing the frequency of acks, ACC and AF keep the reverse 
channel queue small, so that the new connection does not face 
problems such as the ones that happen with unmodified TCP Reno. 
Consequently, the fairness indices in these cases are close to the 
maximum value of 1. 

4.4.3 Two-way Transfers 

Next we consider two simultaneous transfers, one each in the for- 
ward and the reverse directions. Again we fix the reverse channel 
to be a 28.8 Kbps dialup line with header compression. The for- 
ward transfer is initiated at time 0. The reverse transfer is initiated 
at a randomly picked time between 5 and 10 seconds. Both trans- 
fers continue until time equal to 50 seconds. Table 3 summarizes 

Protocol 

TCP Reno 

Forward Reverse 
Throughput Throughput 

9800.00 0.00 

I ACC I 1740.00 1 24.22 1 

1 ACC + acks-first t 2670.00 1 27.17 1 

Table 3. The throughput (in Kbps) from the simulation of 
simultaneous forward and reverse transfers. The reverse 

channel is a header-compressed 28.8 Kbps dialup line. 

the results. 

We make several interesting observations. With unmodified TCP 
Reno, acks of the forward connection fill up the reverse channel 
buffer, thereby completely shutting out reverse transfer that starts 
later. However, if the reverse connection were to start before the 
forward connection, the situation is very different, with the reverse 
connection achieving close to optimal throughput at the cost of the 
forward connection (this data not shown in Table 3). The reason 
for this entirely different behavior will become clear in our discus- 
sion below of performance with ack filtering. 

AF achieves very poor throughput for the forward transfer but 
close to optimal throughput for the reverse transfer. The reason this 
happens is that when the reverse transfer starts up, 1 KB sized data 
packets start entering the reverse channel queue. The transmission 
delay of each data packet over the 28.8 Kbps line is 280 ms. 
Because of FIFO scheduling, acks of the forward transfer get 
queued behind these data packets for this entire duration, causing 
the sender of the forward transfer to stall. Many acks are also lost 
during this period. These may cause the sender to time out while 
waiting for acks. But the reverse connection continues building up 
its window, so as time progresses, ack packets get queued behind 
not one but several data packets. The end result is that the forward 
connection makes progress in short bursts interspersed by multi- 
second idle times. Figure 6 illustrates this for a simulation experi- 
ment with AF. 
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Figure 6. Simulation results showing a portion of the 

sequence number trace for the forward transfer after the 
reverse transfer has started up. The reverse channel router 
uses ack filtering, The multi-second idle times are caused by 

acks getting queued behind multiple 1 KB data packets 
betonging to tire reverse transfer. 

With ACC (and the reverse channel router employing the RED 
algorithm), the throughput of the reverse transfer is quite high 
(24.22 Kbps as against the maximum possible of 28.8 Kbps). At 
the same time. the throughput of the forward transfer (1.74 Mbps) 
is much better than before. The reason for the better performance 
is that feedback from the RED gateway prevents the reverse trans- 
fer from filling up the reverse gateway with its data packets. The 
reverse connection can sustain optimal throughput without having 
to grow its window to more than l-2 packets. (Even assuming a 
rather large R’IT of 500 ms for the reverse connection, the band- 
width-delay product is 28.8 Kbps * 500 ms = 1.8 KB which is less 
than two 1 KB packets.) Thus, the reverse connection can decrease 
the impact that its data packets have on ack packets of the forward 
transfer, while sustaining optimal throughput. 

Even with the RED algorithm in operation, ack packets could get 
queued behind more than one data packet, which decreases for- 
ward throughput. The a&s-first scheduling scheme (Section 4.3.4) 
avoids this by prioritizing acks over data. The assumption is that 
such scheduling will not add significantly to the queuing delay of 
data packets. With ACC (which decreases the frequency of acks) 
and header compression (which makes them small in size), data 
packets are indeed not affected significantly. As shown in Table 3, 
ACC with acks-first scheduling achieves a forward throughput of 
2.67 Mbps while maintaining a close-to-optimal reverse through- 
put (27.17 Kbps). 

A simple calculation shows that with the parameters we have cho- 
sen, we cannot do much better than 2.85 Mbps while maintaining 
optimal reverse throughput. While a data packet of the reverse con- 
nection is undergoing transmission on the 28.8 Kbps link (lasting 
280 ms), the forward connection sender does not receive any new 
acks. Figure 7 illustrates this effect through simulation. So it can 
send at most one window’s worth of data in 280 ms. With the 
socket buffer size of 100 KB that we have chosen, the maximum 
sender throughput works out to 100*8/280 = 2.85 Mbps. 

In contrast to ACC, combining acks-first scheduling with AF leads 
to starvation of data packets of the reverse transfer. This is because 
ack packets arrive at the queue at a faster rate than they can be 
drained out, so there is always an ack waiting to be sent in the 
queue. Note that an ack undergoing transmission is no longer in 
the queue, and so is not considered by the ack filtering algorithm. 

Finally, to point out the benefits of using RED feedback to do 
ACC, we consider the case where feedback from the RED gateway 
is onIy applied to data (of the reverse connection) and not to a&s. 
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Figure 7. Simulation resu1t.s showing a portion of the ack 

trace for the forward transfer after the reverse transfer has 
started up. ACC is used in conjunction with a&s-first sched- 
uling. There is an idle time of about 280 ms between bursts of 

acks because of the 1 KB data packets belonging to the 
reverse transfer. 

The forward throughput (more than 3 Mbps) is higher than before, 
but the reverse throughput is only 17.8 Kbps. Since scks arc not 
subject to congestion control like data, they cause the reverse con- 
nection to lose packets and time out periodically. During these idle 
periods of the reverse connection, the forward transfer makes rapid 
progress, resulting in a higher forward throughput than before, 

Figure 8. Topology of the Ricochet packet radio network. The 
Mobile Host (MH) has a modem attached to it, which commu- 

nicates with a Fixed Host (FH) on the Internet through the 
Poletop Radios (PT) and Ethernet Radios (ER). The Gateway 
(GW) routes packets between the packet radio network and 

the Internet. 

5 Latency and Media-Access Asymmetry 

In this section, we discuss the effects of latency and media-access 
asymmetry on TCP performance. As before, we use a combination 
of measurements and simulations to obtain our results, We focus 
on TCP connections through a packet radio network as an example 
of a situation with this type of asymmetry. We start by describing 
the topology of the network and the media-access and link-layer 
protocoIs. We then discuss the results of our experiments and solu- 
tions to observed problems. Finally, we discuss some scaling and 
fairness issues in this network. 

5.1 Network Topology and Underlying Protocols 

Topology: The topology of the packet radio network is shown in 
Figure 8. The maximum link speed between two nodes in the ~irc- 
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Figure 9. (a) Packet and ack sequence trace of a 200 KB TCP bulk transfer measured over one wireless hop in the Ricochet net- 
work. The three pauses are sender timeouts, lasting between 9 and 12 seconds each because large round-trip time variations cause 

the retransmission timeout estimate to be very long. (b) Twenty round-trip time samples collected during this connection are 
shown. The samples have a mean of about 2.5 s and a standard deviation of about 1.5 s. 

less cloud is 100 Kbps. Packets from a fixed host (FH) on the Inter- 
net are routed via the Metricom Gateway (GW) and through the 
poletop radios (XT), to the end mobile host (MH). The number of 
wireless hops is typically between 1 and 3. 

Radio Turnarounds: The radio units in the network are half- 
duplex, which means that they cannot simultaneously transmit and 
receive data. Moving from transmitting to receiving mode takes a 
non-trivial amount of time, called the transmit-to-receive tum- 
around time, Z’TR Similarly, going from receiving to transmitting 
mode takes a time equal to the receive-to-transmit turnaround time, 

TRT- 

MAC Protocol: The radios are frequency-hopping, spread-spec- 
trum units operating in the 915 MHz ISM band. The details of the 
frequency-hopping protocol are not relevant to this paper, since the 
predominant reason for variability is the MAC protocol. The MAC 
protocol is based on a polling scheme, similar to (but not identical 
to) the RTSlCTS (“Request-To-Send/Clear-To-Send”) protocol 
used in the IEEE 802.11 standard. A station wishing to communi- 
cate with another (called the peer) first sends it an RTS message. If 
the peer is not currently communicating with any other station, it 
sends a CTS message acknowledging the RTS. When this is 
received by the initiator, the data communication link is estab- 
lished. A data frame can then be sent to the peer. If the peer cannot 
currently communicate with the sender because it is communicat- 
ing with another peer, it does not send a CTS, which causes the 
sender to backoff for a random amount of time and schedule the 
transmission for later. It could also send a NACK-CTS to the 
sender, which achieves the same effect. In all this, care is taken by 
both stations to ensure that messages and data frames are not lost 
because the peer was in the wrong mode, by waiting enough time 
for the peer to change modes. To do this, each station maintains the 
value of the turnaround times of its neighbors in the network. 

Link-Layer Protocol: The reliable link-layer protocol used in this 
network is a simple frame-by-frame protocol with a window size 
of 1. When a frame is successfully received, the receiver sends a 
link-level ACK to the sender. If the frame is not received success- 
fully, the sender retransmits after a timeout. Such simple link-layer 
protocols are the norm in several packet radio networks (see, e.g., 
I141). 

Variable Delays: The need for the communicating peers to first 
synchronize via the RTS/CTS protocol and the significant tum- 

around time for the radios result in a high per-packet overhead. 
Further, since the RTS/CTS exchange needs to back off when the 
polled radio is otherwise busy (for example, engaged in a conver- 
sation with a different peer), the overhead is variable. This is the 
main reason for large and variable latency in packet-radio net- 
works. It is also clear why an increase in “interfering” traffic (like 
TCP a&s) can significantly impact the flow of TCP data packets. 

5.2 Measurements 

We now discuss the results of several measurements and simula- 
tions under various network topologies and traffic workloads. We 
start with the simplest case of a bulk TCP transfer across one wire- 
less hop running the MAC and link-layer protocols described 
above. Although these particular measurements were made using 
the Phase 1 Ricochet modems, we have observed similar effects in 
measurements made with the newer Phase 2 modems as well. 

Figure 9 shows the packet sequence trace of a measured 200 KB 
TCP transfer across one wired and one wireless hop in the Rico- 
chet network. This clearly shows the effect of the radio tum- 
arounds and increased variability affecting performance. The 
connection is idle for 35% its duration, as a result of only three 
coarse timeouts (six other losses are recovered by TCP’s fast 
retransmission mechanism). Ideally, the round-trip time of a data 
transfer will be relatively constant (i.e., have a low deviation). 
Unfortunately, this is not true for connections in this network, as 
shown in Figure 11. This figure plots the individual round-trip time 
estimate samples during a TCP connection over the actual Rico- 
chet network. The mean value of these samples is about 2.5 sec- 
onds and the standard deviation is about 1.5 seconds. Because of 
the high variation in the individual samples, the retransmission 
timer, set to srtt + I*mdev, is on the order of 10 seconds, causing 
long idle periods. In general, it is correct for the retransmission 
timer to trigger a segment retransmission only after an amount of 
time dependent on both the round-trip time and the linear (or stan- 
dard) deviation, since this avoids spurious retransmissions. Thus, 
techniques are needed to alleviate the problems caused by large 
deviations in TCP round-trip times to the loss recovery process. 
These problems are exacerbated in the presence of two-way traffic 
as well as other competing traffic. 

Based on several experimental measurements of the Ricochet net- 
work, we modeled the system in the ns simulator. We extended the 
point-to-point link abstraction of ns to a more general shared LAN 
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and added support for arbitrary MAC and link-layer protocols. The 
simulation parameters used to obtain the results described in 
Section 5.3 are shown in Table 4. We do not consider the impact of 
wireless bit errors in these simulations, to isolate the impact of 
variability due to the MAC protocol on performance. In practice, 
link-layer retransmissions of corrupted packets will only add to the 
variability of the network. 

11 
Table 4. Simulation parameters of the multi-hop packet 

radio network. The number of wireless hops varies 
between 1 and 3. 

5.3 ’ Analysis and Solutions 

In this section, we perform a detailed analysis of the problems 
caused by this type of asymmetry and present some solutions that 
alleviate the adverse effects of increased variability. 

5.3.1 Piggybacking Link-Layer Acks with Data 

This scheme is motivated by the observation that the radios tum- 
around both for data frames as well as for link-layer acks. The 
presence of traffic in both directions, even when caused by TCP 
acknowledgments, already causes turnarounds to happen. Thus, 
link-layer acks can be piggybacked with data frames, thereby 
avoiding some extra radio turnarounds. 

The basic reliable link-layer protocols in severa systems do not 
piggyback acks with data. However, recent releases of the radio 
software in the Ricochet network attempt to do this whenever pos- 
sible. Our simulations of the multi-hop wireless network assume 
that the radio units piggyback link-layer acks with data. 

Despite this optimization, the fundamental problem of additional 
traffic and underlying protocols affecting round-trip time estimates 
and causing variabilities in performance still persists. Connections 
traversing multiple hops of the wireless network are more vulnera- 
ble to this effect, because it is now more likely that the radio units 
may already be engaged in conversation with other peers. 

5.3.2 Ack Filtering and Ack Congestion Control 

We now analyze this system in more detail and present the results 
of two improved protocols -one that performs AF (Section 4.3.2) 
at the entry (from the receiver’s side) to the packet radio network, 
coupled with TCP sender adaptation (Section 4.3.3), and the other 
that performs ACC using RED (Section 4.3.1) - to reduce the 
effects of variability and improve performance. Figure 10 shows 
these results. The performance of AF and ACC are better than 
Reno, and AF is better than ACC. The reason for this are the 
reduced number of packets and reduced round-trip variability of 
the two improvements compared to Reno. 
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Figure 10. TCP throughputs from simulations of Reno, ACC 
and AF, as a function of the number of wireless hops. 
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Figure 11. Round-trip times obtained from simulations of TCP 
Reno and TCP with AF and traffic shaping for a connection 

over two packet radio hops. The round-trip times for the Reno 
connection are much more variable, with a mean of 2.67 sees 

md a standard deviation of 1 set, whereas AF reduces the mean 
to 1.85 sets and the standard deviation to 0.6 sets. 

Figure 11 shows the round-trip times of simulations of a TCP 
Reno connection and a TCP connection with AF, over two wireless 
hops (in a chain-like topology between sender and receiver). For 
Reno, the mean round-trip time is about 2.67 seconds and the stan- 
dard deviation is about 1 second. AF reduces the mean round-trip 
time to 1.85 seconds and the corresponding standard deviation to 
only 0.6 seconds. The number of packets traversing each node also 
drops, reducing the amount of contention. These factors result in a 
25% improvement in end-to-end throughput, from 19 Kbps (Rcno) 
to 24 Kbps over 2 wireless hops. Similar improvement in perfor- 
mance is seen for connections traversing three wireless hops - 
end-to-end throughput improves on average from 12.1 Kbps 
(Rena) to 17.0 Kbps (AF), an improvement of 40%. Finally, WC 
note that AF outperforms ACC because the former completely 
eliminates all redundant acks and reduces the amount of “intcrfcr- 
ing” traffic to a greater extent. 

5.3.3 Scaling and Fairness Issues 

We now investigate the scaling properties of two protocols in the 
packet radio network - TCP Reno and Reno enhanced with AF, 
We are interested in this to understand performance as a function 
of the number of connections traversing the network and compct- 
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Figure 12. Simulation results for the fairness index of TCP 
Reno and TCP with AF’, as a function of the number of con- 

nections traversing one hop of the packet radio network. 

ing for resources. For simplicity, we consider connections over one 
wireless hop in this section. 

We consider two important metrics while studying the impact of 
increasing the number of connections in the network: utilization 
andfairness. Network utilization is defined as the ratio of the 
aggregate throughput of all connections to the maximum achiev- 
able throughput of the network. Fairness is quantified using the 
fairness index defined in Section 3.2. We are interested in having 
large values of both the network utilization as well as the fairness 
index for any configuration. 

Table 5 shows the simulated aggregate throughput achieved by all 
the connections in the network, as a function of the number of 
competing connections for Reno and AF. The table also shows the 
standard deviation of the resulting performance, which shows the 
degree of variation in the throughputs seen by the different concur- 
rent connections. The aggregate performance varies between 44 

Connections Reno throughput Reno+AF (Kbps) 
(Kbps) [std-dev] [std-dev] 

1 44.69 f-1 52.17 I-1 . 

12 1 42.8 U3.11 I 51.8 [lO.Ol I 

4 45.2 [24.9] 49.3 [8.9] 

6 47.1 [32.5] 49.3 [20.2] 

IS 1 45.0 [37.6] 1 49.6 [28.0] 1 

10 45.6 [42.2] 48.4 [32.4] 

12 45.8 r4s.01 48.8 [36.4] 
I 1 I I 

Table 5. Throup;huuts of TCP Reno and Reno with AF as 
a function of the number of connections (1 wireless hop). 

and 47 Kbps for TCP Reno and between 4S and 52 Kbps with AF, 
as the number of connections varies, implying that there is little 
change in utilization as a function of the number of connections. 
However, the standard deviation of the performance, calculated 
over concurrent connections, is much higher for Reno than for ack- 
filtered Reno. This suggests that the distribution of throughputs is 
more spread out and less equal across any set of connections, espe- 
cially as their number increases. 
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Figure 13. Measured performance of a 1 MRyte TCP transfer 
across a Hybrid wireless cable downlink and Ricochet return 

channel. The large errorbars are a consequence of the inherent 
variability of the Ricochet return channel. 

We quantify this effect further in Figure 12, where the fairness 
index of throughput is plotted as a function of the number of con- 
nections. TCP Reno is often grossly unfair in the distribution of 
throughput, reaching a value as low as 0.49 (n=l2) and not exceed- 
ing 0.85 (n=2). In contrast, AF substantially improves the fairness 
index of the throughput distribution, while also improving the 
overall utilization of the network. 

Thus, we see that our enhancements to TCP and the reverse boffle- 
neck router help improve overall utilization and fairness as the 
number of connections increases. 

6. Combing Wireless Technologies: Wireless 
Cable and Packet Radio 

In this section, we investigate the effects of combining different 
types of asymmetry on TCP performance. We focus on a network 
topology with a high-bandwidth forward path modeled after 
Hybrid’s wireless cable channel, and a low-bandwidth, packet 
radio reverse path modeled after the Ricochet network. Such com- 
posite network topologies are relevant in several application sce- 
narios. For example, a disaster relief vehicle or ambulance with a 
unidirectional high-bandwidth link would use a wide-area wireless 
network as its reverse channel. 

Figure 13 shows the measured performance of 1MB TCP transfers 
as a function of the receiver socket buffer size using a Hybrid Net- 
works’ wireless cable forward path and a one-hop wireless Rico- 
chet return path. The error-bars show the standard deviation of 
measured performance (20 runs each). These controlled measure- 
ments were performed in the absence of any cross-traffic and the 
inherent variability of the return path manifests itself in the signifi- 
cant error-bars on the graph. 

We focus on a Web-like benchmark in the following simulations 
and study the performance of this network as the number of hosts 
and connections increases. We investigate the various modifica- 
tions to the transport and router protocols to help reduce the aver- 
age completion time of a Web request in such networks. 

We model the Web microbenchmark as a 500 byte Web request 
followed by set of 4 concurrent TCP transfers of 10 KE? each to the 
client. This is not intended to be an accurate model of reality, but 
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and ACC as a function of the number of connections for a 
Web-like microbenchmark over a packet radio return 

path. The graph shows average completion time vs. II, the 
number of hosts (4 concurrent connections per host). The 

ack filtering protocol performs the best as n increases. 

rather to understand the effects of small and concurrent connec- 
tions, as well as competing and interacting users, on performance. 
Since latency is a critical factor that impacts performance in the 
packet radio network, we implicitly assume that the Web requests 
use pipelining [19] and that one 500 byte request results in 4 down- 
loads. 

We vary the number of hosts from 1 to 50 in the simulations. Hosts 
make requests independent of each other at a time uniformly dis- 
tributed in [0,5] seconds. We measure the mean and standard devi- 
ation of the completion time for the entire Web transaction (i.e., all 
4 connections). 

.Figure 14 shows the mean completion time for a transaction as the 
number of hosts varies, for TCP Reno, Reno with ACC 
(Section 4.3.1) and Reno with AF (Section 4.3.2). Two curves are 
shown for the AF case - with sender adaptation enabled based on 
the round-trip time and the congestion window, and without 
(Section 4.3.3). These results indicate that AF is very beneficial in 
reducing the response time and improving the throughput of the 
network as the system scales. The reason ACC is not as beneficial 
as in the cases investigated in Section 4 is the shorter transfer 
lengths in this benchmark. No connection exceeds 10 packets, so 
the sender’s window is never very large3. This limits the extent to 
which ACC can be performed. The other reason is the larger num- 
ber of acks traversing the network with ACC, compared to AF. 
One critical factor in this network is the latency and variability 
associated with each packet on the wireless network. AF results in 
significant gains because it purges all redundant acks from the 
queue independent of the state of congestion, thereby reducing the 
number of packets in the wireless cloud. Finally, we note that the 
lack of sender adaptation does not significantly hurt performance, 
since each connection is rather small. The maximum possible burst 
in the network is automatically limited by this short length and the 
slow start process starting from 1 segment. 

3. With persistent-connection HTIT [19]. recommended by 
HTTP/l. 1 [S], connections will tend to be longer. This should help 
ACC. 

7. Conclusions 

In this paper, we investigated the effects on network asymmetry on 
TCP performance in the context of wide-area wireless networks. 
We studied the impact of the reverse path, used primarily for 
acknowledgments and data requests, on end-to-end performance in 
the forward direction. We distinguished between bandwidth asym- 
metry, latency and media-access asymmetry, and loss asymmetry, 
and focused on the first two types. 

The following are our main results: 

l SLIP header compression [l 1] alleviates some of the problems 
due to bandwidth asymmetry, but does not completely elimi- 
nate all problems, especially those that arise in the presence of 
bidirectional traffic. 

l Connections traversing packet radio networks suffer from large 
variations in round-trip times caused by the half-duplex nature 
of the radios and asymmetries in the media-access protocol, 
which lead to variable latencies. This adversely affects TCP’s 
loss recovery mechanism and results in degraded performance. 

l The various end-to-end and router-based techniques that WC 

propose help improve performance significantly in many 
asymmetric situations. These include decreasing the frequency 
of acknowledgments (acks) on the constrained reverse channel 
(ack congestion control and ackfiftering), reducing source 
burstiness when acknowledgments are infrequent (TCP sender 
adaptation), and scheduhng data and acks intehigently at the 
reverse bottleneck router. 

l In addition to improving throughput for individual conncc- 
tions, our proposed modifications also help improve the fair- 
ness and scaling properties when several connections contend 
for scarce resources in the network. We demonstrate this via 
simulations of bulk and Web-like transfers. 

8. Future Work 

There are several areas of future work that we plan to investigate. 

We plan to investigate ack reconstruction, as a complement to 
ack filtering and alternative to sender adaptation, to shield the 
end-hosts from disruptions in the ack stream. The main idea is 

for the reconstructor to smooth out the filtered ack stream by 
inserting new acks to fill in the gaps, after it has traversed the 
constrained reverse channel. The ack reconstructor would be 
located at the other end of the constrained reverse channel. 

The asymmetry in loss and error rates, especially in the context 
of wireless return channels, poses new challenges. Current 
packet radio networks use link-layer protocols for local error 
recovery, but this results in increased latency and varlabllity in 
latency. We plan to extend Explicit Loss Notification (ELN) 
schemes proposed in the context of single-hop cellular nct- 
works [2] to multi-hop wireless networks, with the goal of 
reducing variability without sacrificing local error recovery, 

Cellular Digital Packet Data (CDPD) networks exhibit mcdia- 
access asymmetry. Communication from the base station to the 
end stations is unimpeded, but end stations contend with each 
other for channel access in the reverse direction. It will be 
informative and useful to study the impact of this asymmetry 
on reliable transport performance. 

Finally, we intend to implement and measure the promising 
techniques over the asymmetric, wide-area wireless networks 
in our testbed and measure their performance. 
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