
The Effects of Asymmetry on TCP Performance
Hari Balakrishnan, Venkata N. Padmanabhan, and Randy H. Katz

{ hari,padmanab,randy } @cs.berkeley.edu
Computer Science Division, Department of EECS

University of California at Berkeley, Berkeley, CA 94720-l 776.

Abstract

In this paper, we study the effects of network asymmetry on end-
to-end TCP performance and suggest techniques to improve it. The
networks investigated in this study include a wireless cable modem
network and a packet radio network. In recent literature (e.g.,
[16]), asymmetry has been considered in terms of a mismatch in
bandwidths in the two directions of a data transfer. We generalize
this notion of bandwidth asymmetry to other aspects of asymmetry,
such as latency and media-access, and packet error rate, which are
common in wide-area wireless networks.

Using a combination of experiments on real networks and simula-
tion, we analyze TCP performance in such networks where the
throughput achieved is not solely a function of the link and traftic
characteristics in the direction of data transfer (theforward direc-
tion), but depends significantly on the reverse direction as well. We
focus on bandwidth and latency asymmetries, and propose and
evaluate several schemes to improve end-to-end performance in
these cases. These include techniques to decrease the rate of
acknowledgments on the constrained reverse channel (ack conges-
tion control and ackjiltering), techniques to reduce source bursti-
ness when acknowledgments are infrequent (TCP sender
adaptation), and algorithms at the reverse bottleneck router to
schedule data and acks differently from FIFO.

1. Introduction

The Transmission Control Protocol (TCP) is widely used in the
Internet for reliable, unicast communications. The robustness of
TCP in a wide variety of networking environments is the primary
reason for its large-scale deployment. However, emerging net-
working technologies pose new challenges to TCP in terms of per-
formance, requiring analysis and solutions. In this paper, we focus
on the challenges to end-to-end TCP performance that arise due to
network asymmetry, especially in the context of wide-area wire-
less networks. The increased interest in asymmetric networks is
motivated by technological and economic considerations as well as
by popular applications such as Web access, which involve a sub-
stantially larger flow of data towards the client (theforward direc-
tion) than from it (the reverse direction).

Examples of networks that exhibit asymmetry include wireless
cable modem networks, direct broadcast satellite networks, and
Asymmetric Digital Subscriber Loop (ADSL) networks, where
bandwidth in the forward direction is often orders of magnitude
larger than that in the reverse. Such asymmetry is accentuated
when the channel is unidirectional, necessitating the use of a dif-

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, tbe title oftbe publication and its date appear, and notice is
given that copyright is by permission oftbe ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or Fee

MOBICOM 97 Budapest Hungaty
Copyright 1997 AChl O-89791-988~2/97/9..$3.50

ferent, often low-bandwidth channel (e.g., a dialup line or a band-
width-constrained and lossy wireless channel) for communication
in the reverse direction.

Our study is not limited to networks where the asymmetry is
explicit and obvious because of mismatched bandwidths -we
also study TCP dynamics in packet radio networks, where traftic
flowing simultaneously in different directions can adversely affect
performance. This is because most packet radio networks use half-
duplex radio units, which cannot transmit and receive data frames
at the same time. In addition, we combine two wireless technolo-
gies - wireless cable and packet radio - in our study to under-
stand the problems that arise in these situations when different
types of asymmetry are tied together.

Asymmetry is inherent in several wide-area wireless networks,
where it is often the case that a central transmitter (or base station)
can transmit at high power to receiving portable/mobile units.
However, to reduce power consumption, these units transmit to the
base station at relatively low power. In addition, they often have to
contend with other mobile units to gain access to the channel.

We generalize the various phenomena and examples described
above to the following definition of asymmetry: a network is said
to exhibit network asymmetry with respect to TCP performance, if
the throughput achieved is not solely afunction of the link and
traffic characteristics of the forward direction, but depends signiji-
cantly on those of the reverse direction as well. In addition to the
bandwidth asymmetry described above, this definition extends to
other types of asymmetry, such as latency and media-access, and
packet error rate. In this paper, we study bandwidth, and latency
and media-access asymmetries, both individually and in combina-
tion. We use measurements on a real testbed as well as simulations
experiments with different choices of topology and workload, to
identify the performance problems. Based on these results, we pro-
pose and evaluate several techniques to improve performance. The
wireless networks that serve as the basis for our work include a
wireless cable modem network and a packet radio network.

Fundamentally, network asymmetry affects the performance of
reliable transport protocols such as TCP because these protocols
rely on feedback in the form of cumulative acknowledgments from
the receiver to ensure reliability. In addition, TCP is ack-clocked,
relying on the timely arrival of acknowledgments, to make steady
progress and fully utilize the available bandwidth of the path [lo].
Thus, any disruption in the feedback process could potentially
impair the performance of the forward data transfer. For example,
a low bandwidth acknowledgment path could significantly slow
down the growth of the TCP sender window during slow start,
independent of the link bandwidth in the direction of data transfer.
A second example is from packet radio networks, where variable
latencies in the presence of bidirectional traffic (caused, for
instance, by acknowledgements flowing in a direction opposite to
data packets) causes the sender’s round-trip time estimate to be
highly variable. This inflates TCP’s retransmission timeout value,
thereby impairing loss recovery.

77

------- ’ .,

The following are our major results and conclusions:

SLIP header compression [I l] alleviates some of the perfor-
mance problems due to bandwidth asymmetry, but does not
completely eliminate all problems, especially those that arise
in the presence of bidirectional traffic.

Connections traversing packet radio networks suffer from large
variations in round-trip time caused by the half-duplex nature
of the radios and asymmetries in the media-access protocol.
This adversely affects TCP’s loss recovery mechanism and
results in degraded performance.

The various end-to-end and router-based techniques that we
propose help improve performance significantly in many
asymmetric situations. These include decreasing the frequency
of acknowledgments (a&s) on the constrained reverse channel
(ack congestion control and ackfiltering), reducing source
burstiness when acknowledgments are infrequent (TCP sender
adaptation), and scheduling data and acks intelligently at the
reverse bottleneck router.

In addition to improving throughput for individual connec-
tions, our proposed modifications also help improve the fair-
ness and scaling properties when several connections contend
for scarce resources in the network. We demonstrate this via
simulations of bulk and Web-like transfers.

The rest of the paper is organized as follows. Section 2 describes
some related work and Section 3 discusses the details of our exper-
imental and simulation methodology. In Section 4, after analyzing
the problems that arise due to bandwidth asymmetry, we propose
and evaluate several solution techniques. In Section 5, we discuss
the problems that arise due to asymmetry in latency and media-
access in packet radio networks and how this leads to a large varia-
tion in round-trip time, and evaluate some solutions. In Section 6,
we combine wireless cable and packet radio technologies and
investigate the issues of scale and performance when bandwidth
and latency asymmetries are present together. We present our con-
clusions in Section 7 and plans for future work in Section 8.

2. Related Work

Several researchers have identified and proposed solutions to trans-
port protocol problems that arise in single-hop wireless networks
[l, 2,3,4]. The main issue considered in these papers is the impact
of packet losses due to reasons other than congestion (wireless
error, handoff, etc.) on TCP performance. We view our work as
being in the natural progression of such research, with the overall
goal of understanding and improving the performance of reliable
transport protocols like TCP in the face of ever-increasing hetero-
geneity in network technologies and characteristics. The specific
measurements reported in this paper were taken over a wireless
cable modem network and a packet radio network.

There has been some previous work on understanding the effects
of two-way trafIic on TCP performance. In 1201, the authors dem-
onstrate how two-way traffic can lead to ack compression, where
closely-bunched acknowledgments disrupt the smooth ack-clocked
transmission at the sender. More recently, there has been interest in
how asymmetric-bandwidth networks exacerbate this problem. In
[16], the authors model a network with bandwidth asymmetry and
derive analytical expressions for throughput in terms of packet loss
probability and the normalized asymmetry ratio under certain ideal
assumptions. They also propose the use of a drop-from-font strat-
egy for dropping acknowledgments at the bandwidth-constrained
reverse link. In [131, the authors demonstrate how bidirectional
traffic over asymmetric links leads to ack compression, and conse-
quently, degraded performance. They investigate a backpressure

mechanism to limit data flow in the reverse direction, but conclude
that this alone is not enough for good performance.

There have also been studies of bandwidth asymmetry in the con-
text of satellite networks [7, 181. The main distinction between
such a network and the wireless cable modem network we consider
in this study is that the former has a much larger bandwidth-delay
product, which could be the dominating factor in performance
Finally, some basic performance measurements of Metricom’s
Ricochet packet radio network are presented in [5], such as one-
way transmission delays of unidirectional traffic.

While the results and analysis in [I33 and [16] are very useful, the
set of problems is far from being understood or solved. In addition
to proposing and evaluating other schemes to alleviate the adverse
effects of bandwidth asymmetry, we also characterize other types
of asymmetry that occur in wide-area wireless networks. We cval-

uate our solutions for these networks in terms of connection
throughput, fairness, and scaling behavior.

3. Experimental and Simulation Methodology

In this section, we describe our experimental testbed, simulation
setup, and traffic workloads used in the study.

3.1 Experimental Testbed

We use a combination of simulation and actual experimentation on
a real heterogeneous, wireless testbed to evaluate the performance
of TCP, understand the reasons for observed performance, and
design end-host and router-based techniques to improve pcrfor-
mance. Our simulation topologies and parameters arc derived from
the following networks in our testbed:

Wireless cable modem network: This is a wireless cable
modem network using technology developed by Hybrid Nct-
works, Inc. (www.hybrid.com). The aggregate bandwidth of the
(unidirectional) forward channel is 10 Mbps’ and the one-way
link latency is about 5ms. The topology for this testbed is
shown in Figure 1. The downstream channel for data operates
in the 2.4 GHz range and is down-converted at the receiving
end to standard television channel frequencies. The reverse
channel could be a dialup line, an ISDN line, a wireless chan-
nel using a wide-area packet radio network, etc.

Packet radio network: Our packet radio network is based on
Metricom Inc.‘s Ricochet network (www.metricom.com). The
topology for this network is shown in Figure 8. The packet
radios operate in the 915 MHz ISM band and have a raw link
speed of 100 Kbps. The poletop units typically have a range of
several hundred meters.

The wireless cable modem testbed is an example of a network with
bandwidth asymmetry depending on the return path used, which
could be a dialup phone line (e.g., 14.4 Kbps or 28.8 Kbps), or a
wireless channel. In a good installation of the wireless cable
modem network, the bit-error rate of the forward channel is ncgll-
gible. We therefore do not focus on the effects of bit-errors on the
forward channel in this paper.

The packet radio network we study is an example of a network that
does not have explicit (bandwidth) asymmetry, but has the charac-
teristic that the flow of traffic (e.g., TCP data) in one direction 1s
affected by the flow of traffic (e.g., TCP acks) in the opposite

1. A 30 Mbps 2-way wireless cable system is currently under
development; this system also exhibits bandwidth asymmetry,

78

Relay Tower a
Client subnet

I- ,:\ --‘--------1

Wireless Transmi

ine

\ /;
Internet Server “I_ .//

Figure 1. The network topology of the wireless cable modem network which illustrates bandwidth asymmetry. Hosts on the client
subnet receive data from tbe Internet via the 10 Mbps wireless cable link (thefonumd channel) and send out data via a low band-

width (e.g., dialup) link (the reverse channel).

direction, This arises because of the half-duplex nature of the radio
units that cannot simultaneously send and receive packets, having
to incur a significant overhead in turning around from one mode to
the other.

connections in the network and the throughput achieved by con-
nection i is equal to xi, I <= i <= n, then

After studying the impact of each type of asymmetry indepen-
dently, we combine networks with these different asymmetric
characteristics and study the performance characteristics of TCP
connections through them. We now describe the details of our sim-
ulation setup, workloads, and performance metrics.

3.2 Simulation Setup and Performance Metrics

We used ns [171, an event-driven packet-level network simulator
from Berkeley and LBNL for our work. We developed several
extensions to this simulator to model the networks of interest to us.
We added the notion of a shared link (LAN) to the simulator with
the ability to incorporate arbitrary link-layer and media-access
protocols. Our simulations of the packet radio network use a MAC
protocol loosely based on Ricochet’s protocol. The details of these
additions are described in Section 5.1.

Our simulation parameters and topologies are closely tied to mea-
surements of the real networks, such as link bandwidths, latencies,
packet radio turn-around times, etc. We validated the simulated
performance obtained by unmodified TCP and constant-rate UDP
traffic with actual measurements in all the real networks. We
experiment with two kinds of workloads - large bulk transfers
and short Web-like transfers. We also consider simultaneous trans-
fers in opposite directions.

Our main performance metrics are throughput measured at the
receiver and a metric for fairness, called thefairness index [6]. The
fairness index,f, is defined as follows: if there are n concurrent

(1
& *

f=+-
II c xi2

i= 1

The fairness index always lies between 0 and 1 for non-negative
throughputs, and as explained in [12], is equal to (k/n) if k of the II
connections receive equal throughput and the remaining none.
Thus,fcannot be less than I/n in a network with n connections. We
use the fairness index to understand and analyze the scaling prop-
erties of the network when multiple connections are simulta-
neously active.

4. Bandwidth Asymmetry

In this section, we discuss the performance problems that arise due
to bandwidth asymmetry. These include the slowdown and
increased burstiness of a TCP sender due to the disruption of ack
clocking, and highly variable performance when there are simulta-
neous TCP transfers in both the forward and reverse directions. We
then propose some solutions to these problems and evaluate the
improvement in performance.

4.1 Network Topology

The network topology of the wireless cable system is shown in
Figure 1. The bandwidth of the forward channel is 10 Mbps. The
reverse channel is much slower, usually a dialup phone line of
speed up to 28.8 Kbps. In addition, in our measurements, we con-

79

-___-_

10 Mbps Ethernet

CSLIP - - - - .
_..-

_ _ _ _ ~WKbps
._--

I , , ,
. 28.8 Kbps SLIP

9.6 Kbps SLIP

20 40 60 80 100 120 140 160 180 21

Socket buffer size (J.G%ytes)

Figure 3. Measured performance of the Hybrid wireless cable
network using different return channels, across a range of

socket buffer sizes. Each run of the experiment involved the
transfer of 1 MB of data in the forward direction between

two BSD/OS hosts.
sidered an Ethernet reverse channel. While such a conllguration is
possibly unrealistic, it serves as a useful data point for comparison.

10 Mbps, 5 ms
10 Mbps

IIlls ‘c>w

Server Router Client

9.6l28.8 tibps, 50 ms

Figure 2. The simulation topology used to model a network
with bandwidth asymmetry. The bandwidth and delay

parameters have been chosen to closely model the Hybrid
wireless cable modem network.

The simulation topology we used to investigate the effects of band-
width asymmetry is shown in Figure 2. We considered reverse
channels of different bandwidths. In practice, reverse channels
ranging from slow to high speed dialup lines to ISDN have differ-
ent delays. But keeping the delay constant (at 50 ms) in the simula-
tion experiments helps us focus on bandwidth asymmetry.

In the following sub-sections, we discuss several performance
problems that we observed based on experiments conducted in the
real testbed as well as in the simulator. We then discuss a variety of
solution techniques and evaluate their efficacy via simulations.

4.2 Analysis of performance problems

We now discuss the problems that arise due the limited bandwidth
of the reverse channel in an asymmetric-bandwidth network.

4.2.1 One-way Transfers

We first discuss the case where TCP transfers happen only in the
forward direction. A common example of this is a user download-
ing data from a server. For simplicity, we initially restrict ourselves
to the case of a single TCP transfer in the forward direction.

We define the normalized bandwidth ratio, k, (as defined in [12])
between the forward and reverse paths as the ratio of the raw band-
widths divided by the ratio of the packet sizes used in the two
directions. For example, for a 10 Mbps forward channel and a 100
Kbps reverse channel, the raw bandwidth ratio is 100. With lOOO-
byte data packets and 40-byte acks, the ratio of the packet sizes is
25. So, k is 100/25 = 4. This implies that if there is more than one
ack for every k = 4 data packets, the reverse bottleneck link will get
saturated before the forward bottleneck link does, possibly limiting
the throughput that can be achieved in the forward direction.

The main effect of bandwidth asymmetry in this case is that TCP
ack clocking can break down. Consider two data packets transmit-
ted by the sender in quick succession. While in transit to the
receiver, these packets get spaced apart according to the bottleneck
link bandwidth in the forward direction. The principle of ack
clocking is that the acks generated in response to these packets
preserve this spacing (in time) all the way back to the scndcr,
enabling it to clock out new data packets with the same spnclng,

However, the limited reverse bandwidth and consequent queuing
effects could alter the inter-ack spacing. When acks arrive at the
bottleneck link in the reverse direction at a faster rate than the link
can support (which happens when k > 1 assuming every data
packet is acknowledged), they get queued behind one another. The
spacing between them when they emerge from the link is dilated
with respect to their original spacing. (This is in contrast to ack
compression which happens when acks get queued at a fast link,
i.e. k c I). Thus the sender clocks out new data nt a slo~cr rate
than if there had been no queuing of acks. One consequence of this
is that the sender’s window growth is slowed down.

This is part of the reason why the measured throughputs shown in
Figure 3 for dialup reverse channels without SLIP header compres-
sion are so low. SLIP header compression (CSLIP) reduces the
sizes of acks and decreases k, improving performance. For cxam-
ple, consider the case of a IO Mbps forward and 28.8 Kbps reverse
channel, with a data packet size of 1 KB. With the TCP timcstamp
option enabled, the ack size is 52 bytes with SLIP and 18 bytes
with CSLIP. So k is 18.05 with SLIP and is 6.25 with CSLIP. With
TCP delayed acks (one ack for every two data packets), throughput
is limited to 10*2/18.05 = 1.1 Mbps and 10*2/6.25 = 3.2 Mbps,
with SLIP and CSLIP respectively. These numbers closely match
the measured throughputs shown in Figure 3.

In comparison, the performance with an Ethernet return channel is
much better because of the absence of bandwidth asymmetry (k is

0.052) and a much smaller link delay than the dialup lines. As an
aside, the throughput shows a dip beyond a socket buffer size of 16
KB because larger socket buffer sizes lead to overflow of some
router queue along the forward path.

In practice, the reverse bottleneck link will also have a finite
amount of buffer space. If the TCP transfer lasts for long enough,
this buffer can fill up and cause acks to get dropped. If the receiver
acknowledges every packet, on average (k-l) out of every I< acks
get dropped at the reverse channel buffer. Since in effect only one
ack traverses the reverse bottleneck link for every k datn packets,
acks may not directly limit forward throughput. However, this situ-
ation leads to several other problems because the sender now
receives fewer acks than it would have otherwise.

First, the sender could become bursty. If the sender receives only
one ack in k, it ends up sending out data in bursts of k packets. This
increases the chance of data packet loss, especially when k is large.
Second, since conventional TCP senders base their window
increase on counting the number of acks and not on how much
actual data is acknowledged, fewer acks imply a slower rate of
growth of the congestion window. Third, the receipt of fewer acks

__ A 1-- -- _----

Time (seconds)

Figure 4. Measurements of the reverse connection operating
over a 9.6 Kbps dialup line. The circles indicate times when

the reverse connection retransmits packets.

could disrupt the sender’s fast retransmission algorithm when there
is a data packet loss. The sender may not receive the threshold
number of duplicate acks although the receiver may have sent out
more than the required number. And finally, the loss of the (now
infrequent) acks further down the path to the sender could cause
long idle periods while the sender waits for subsequent acks to
arrive.

4.2.2 Two-way Transfers

We now consider the case when TCP transfers simultaneously
occur in the forward and reverse directions. An example of this is a
user sending out data (for example, an e-mail message) while
simultaneously receiving other data (for example, Web pages). We
restrict our discussion to the case of one connection in each direc-
tion.

In this scenario, the effects discussed in Section 4.2.1 are more
pronounced, because some of the reverse direction bandwidth is
used by the reverse transfer. This increases the degree of band-
width asymmetry for the forward transfer.

In addition, there are other effects that arise due to the interaction
between data packets of the reverse transfer and acks of the for-
ward transfer. Suppose the reverse connection is initiated first and
that it has saturated the reverse channel and buffer with its data
packets at the time the forward connection is initiated. There is
then a high probability that many acks of the newly initiated for-
ward connection will encounter a full reverse channel buffer and
hence get dropped. Even after these initial problems, acks of the
forward connection could often get queued up behind large data
packets of the reverse connection, which could have long transmis-
sion times (e.g., it takes about 280 ms to transmit a 1 KB data
packet over a 28.8 Kbps line). This causes the forward transfer to
stall for long periods of time.

Figure 4 and Figure 5 show concurrent reverse and forward con-
nections, measured in the wireless cable modem network. The
reverse connection is initiated first. As discussed above, the for-
ward connection starts off very slowly. Figure 5 clearly shows
large idle times until about 160 seconds into the transfer. It is only
at times when the reverse connection loses packets (due to a buffer
overflow at an intermediate router) and slow5 down that the for-
ward connection gets the opportunity to make rapid progress and
quickly build up its window. This is evident from the sharp
upswings in the forward connection’s data rate just before the
times at which the reverse connection retransmits packets, marked
by circles in Figure 4.

1200

-1000.

B ; 800 -

j 600 -

z
8

400.

c
0) 200.
g 4

qj
-- ... l ..**�
3� lo

Time (seconds)
Figure 5. Measurements of the forward connection operating
over the 10 Mbps Hybrid wireless cable network. The sharp
upswings in its data rate occur whenever the reverse connec-

tion suffers a loss and slows down.

4.3 s01uti0us

Most of the problems discussed in the preceding sections arise
because of contention for the bottleneck resources in the reverse
direction - link bandwidth and buffer space. This observation
serves as the starting point for the solutions discussed below.

We first present two techniques - ack congestion control and ack
filtering - for alleviating the effects of congestion of ack packets
on the reverse channel. We then discus5 changes at the TCP sender
to enable it to adapt well to the situation where acks are received
infrequently. Finally, we present a simple scheduling algorithm for
data and ack packets at the reverse channel router to improve per-
formance when there are two-way transfers.

4.3.1 Ack Congestion Control (ACC)

The idea here is to extend congestion control to TCP acks, since
they do make non-negligible demands on resources at the low-
bandwidth bottleneck link in the reverse direction. Acks occupy
slots in the reverse channel buffer, whose capacity is often limited
to a certain number of packets (rather than bytes), as is the case in
our BSD/OS systems.

Our approach is to use the BED (Random Early Detection) algo-
rithm [9] at the gateway of the reverse link to aid congestion con-
trol. The gateway detects incipient congestion by tracking the
average queue size over a time window in the recent past, If the
average exceeds a threshold, the gateway selects a packet at ran-
dom and marks it, i.e. sets an Explicit Congestion Notification
(ECN) bit using the BED algorithm2. This notification is reflected
to the sender of the packet by the receiver, Upon receiving a packet
with ECN set, the sender reduces its sending rate.

The important point to note is that with ACC, both data packets
and TCP acks are candidates for being marked. The TCP receiver
maintains a dynamically varying delayed-ack factor, d, and sends
one ack for every d data packets. When it receives a packet with
the ECN bit set, it increases d multiplicatively, thereby decreasing
the frequency of acks also multiplicatively. Then for each subse-
quent round-trip time (determined using the TCP timestamp
option) during which it does not receive an ECN, it linearly
decreases the factor d, thereby increasing the frequency of acks.

2. The gateway can also be configured to drop the selected packet
(Random Early Drop), but we chose to mark it instead.

81 I

Thus, the receiver mimics the standard congestion control behavior
of TCP senders in the manner in which it sends acks.

There are bounds on the delayed-ack factor d. Obviously, the mini-
mum value of d is I, since at most one ack is sent per data packet.
The maximum value of d is determined by the sender’s window
size, which is conveyed to the receiver in a new TCP option. The
receiver should send at least one ack (preferably more) for each
window of data from the sender. Otherwise, it could cause the
sender to stall until the receiver’s delayed-ack timer (usually set at
200 ms) kicks in and forces an ack to be sent.

4.3.2 Ack Filtering (AF)

The ACC mechanism described above modifies the TCP stack at
the receiver in order to decrease the frequency of acks on the con-
strained reverse link. Ack filtering, based on an idea suggested by
Kam [15], is a gateway-based technique that decreases the number
of TCP acks sent over the constrained channel by taking advantage
of the fact that TCP acks are cumulative.

When an ack from the receiver is about to be enqueued, the router
(or the end-host’s routing layer, if the host is directly connected to
the constrained link) traverses its queue to check if any previous
a&s belonging to the same connection are already in the queue. It
then removes some fraction (possibly all) of them, depending on
how full the queue is. The removal of these “redundant” acks frees
up space for other data and ack packets. The policy that the filter
uses to drop packets is configurable and can either be deterministic
or random (similar to a random-drop gateway, but taking the
semantics of the items in the queue into consideration). There is no
need for any per-connection state to be maintained at the router -
all the information necessary to implement the drop policy is
already implicitly present in the packets in the queue.

In the experiments reported in this paper, AF deterministically
clears out all preceding acks belonging to a connection whenever a
new ack for the same connection with a larger cumulative ack
value enters the queue.

4.3.3 TCP Sender Adaptation

ACC and AF alleviate the problem of congestion on the reverse
bottleneck link by decreasing the frequency of acks, with each ack
potentially acknowledging several data packets. As discussed in
Section 4.2.1, this can cause probIems such as sender burstiness, a
slowdown in window growth, and a decrease in the effectiveness of
the fast retransmission algorithm.

We combat sender burstiness by placing an upper bound on the
number of packets the sender can transmit back-to-back, even if
the window allows the transmission of more data. If necessary,
more bursts of data are scheduled for later points in time computed
based on the connection’s data rate. The data rate is estimated as
the ratio cwndhrtt, where cwnd is the TCP congestion window size
and srtt is the smoothed RTT estimate. Thus, large bursts of data
get broken up into smaller bursts spread out over time.

The sender can avoid a slowdown in window growth by simply
taking into account the amount of data acknowledged by each ack,
rather than the number of acks. So, if an ack acknowledges s seg-
ments, the window is grown as ifs separate acks had been
received. This policy works because the window growth is only
tied to the available bandwidth in the forward direction, so the
number of acks is irrelevant.

Finally, we solve the fast retransmission problem by not requiring
the sender to count the number of duplicate acks. Instead, with
ACC when the receiver observers a threshold number of out-of-
order packets, it marks all of the subsequent duplicate acks with a
bit to indicate that a fast retransmission is requested, With AF, tho
reverse channel router takes similar action when it has filtered out
a threshold number of duplicate acks. The receipt of even one such
marked packet causes the sender to do a fast retransmission.

4.3.4 Scheduling Data and Acks

In the case of two-way transfers, data as well as ack packets com-
pete for resources in the reverse direction (Section 4.2.2). In this
case, a single FIFO queue for both data and acks could cause prob-
lems. For example, if the reverse channel is a 28.8 Kbps dialup
line, the transmission of a 1 KB sized data packet would take about
280 ms. So if two such data packets get queued ahead of ack pack-
ets (not an uncommon occurrence since data packets are sent out in
pairs during slow start), they would shut out acks for well over half
a second. And if more than two data packets are queued up ahead
of an ack, the acks would be delayed by even more.

To alleviate this problem, we configure the router to schedule datn
and ack packets differently from FIFO. A particular scheduling
algorithm we consider is one that always gives higher priority to
acks over data packets (uckslfrst scheduling). The motivation for
this is that with techniques such as header compression [8], the
transmission time of acks becomes small enough that it affects
subsequent data packets very little (unless the per-packet overhead
of the reverse channel is large, as is the case in packet radio net-
works). At the same time, it minimizes the idle time for the for-
ward connection by minimizing the amount of time acks remain
queued behind data packets.

Note that as with ACC, this scheduling scheme does not rcquiro
the gateway to explicitly identify or maintain state for indivldual
TCP connections.

4.4 Simulation Results

In this section, we present the results of several simulations of onc-
way and two-way TCP transfers on a network that exhibits band-
width asymmetry. The simulation topology, depicted in Figure 2,ls
modeled after the Hybrid wireless cable modem network.

4.4.1 Single One-way eansfer

We conducted a set of experiments, each involving a 50.second
transfer in the forward direction. There was no traftlc in the reverse
direction other than the acks for the forward transfer. Table 1 sum-
marizes the throughputs obtained for three protocol conftgurntions
-regular TCP Reno, Reno with ACC and Reno with AP - with
different types of return channels. With both ACC and AF, WC
included the sender adaptation technique described In
Section 4.3.3.

The socket buffer size at the sender and receiver was set to 100 KB
and each data packet was 1 KB in size, The buffer size at each
router was set to 10 packets. The ack size was set to 6 bytes and 40
bytes, respectively, with and without header compression.

The main observation here is that since the transfers are long, the
reverse buffer fills up early on. Beyond that point, only one ack in k
gets through on average, causing the sender to send out bursts of k
packets. As long as k does not exceed the bottleneck buffer size in
the forward direction (which is 10 packets in our topology), the
increased burstiness of the sender does not lead to losses.

-_ --- : 5 ----

Reverse Chan-
nel Bandwidth

9.6 Kbps

9.6 Kbps C

28.8 Kbps

28.8 Kbps C

Reno Reno+ACC Reno+AF

1.78 3.64 6.28

6.67 7.69 7.93

4.35 7.58 9.49

9.78 9.77 9.88

Table 1. Throughputs (in Mbps) from the simulation of a
single one-way transfer in the forward direction. “C?’

indicates the use of SLIP header compression.

The factor k (the normalized asymmetry ratio) exceeds 10 for the
cases of SLIP without header compression, which explains the
poor throughput of TCP Reno in those cases (1.78 and 4.35 Mbps).
The sender adaptation employed in conjunction with ACC and AF
breaks up potential bursts, avoiding performance degradation in
those cases.

For the 9.6 Kbps reverse channel with header compression, k is
6.25, which is less than 10. Still, the throughput obtained with TCP
Reno (6.67 Mbps) is worse than that for the other schemes. This
happens because the reverse channel buffer gets filled with acks
(totalling 10*6 = 60 bytes), which adds a significant delay (60*8/
9.6 = 50 ms) to the connections round-trip time (RTI’). The same
effect also explains why the performance with ACC is somewhat
worse than that with AF for both the 9.6 Kbps and 28.8 Kbps
cases. The former only tries to ensure that the reverse channel
queue does not get completely filled up. The latter ensures that
there is not more than one ack per connection in the queue, which
minimizes the effect of queuing on the round-trip time.

To summarize, TCP Reno suffers performance degradation when k
is large and there is significant queuing delay. ACC and AF allevi-
ate these problems by decreasing the frequency of a&s.

4.4.2 Two Simultaneous One-way Transfers

We now consider two simultaneous one-way transfers with the
same topology as in Section 4.4.1 and the reverse channel fixed to
be a 28.8 Kbps dialup line with header compression. The first
transfer is initiated at time 0 and continues for 50 seconds. The
second transfer starts at a randomly picked time between 5 and 10
seconds and ends at time equal to 50 seconds. Ten runs were con-
ducted for each configuration. The goal here is to see how the two
connections share the reverse channel bandwidth and buffer, which
impacts the throughput of each.

Table 2 summarizes the results obtained in terms of the aggregate

Metric Reno

Total throughput 9.80

Reno+ACC

8.59

Reno+AF

8.98

I Fairness index I 0.5 I 0.95 1 0.99 -1

Table 2. The aggregate throughput (in Mbps) and the
fairness index based on the simulation of two one-way

transfers in the forward direction. The reverse channel is
a 28.8 Kbps diahrp line with header compression.

throughput for the two connections and the fairness index (as
defined in Section 3.2) computed over the period during which
both connections are active. We see that unmodified TCP Reno
yields the best aggregate throughput but has a much worse fairness
index value than the others.

The high degree of unfairness with TCP Reno arises because the
acks of the first connection quickly fill up the reverse channel
buffer. So, when the second connection starts up, it suffers ack
losses early on, leading to timeouts and hence a lack of progress.
Even if all acks of the second connection were not lost, the growth
of its window during the slow start phase would be slowed down
because of the large queuing delay that its acks would encounter.

By decreasing the frequency of acks, ACC and AF keep the reverse
channel queue small, so that the new connection does not face
problems such as the ones that happen with unmodified TCP Reno.
Consequently, the fairness indices in these cases are close to the
maximum value of 1.

4.4.3 Two-way Transfers

Next we consider two simultaneous transfers, one each in the for-
ward and the reverse directions. Again we fix the reverse channel
to be a 28.8 Kbps dialup line with header compression. The for-
ward transfer is initiated at time 0. The reverse transfer is initiated
at a randomly picked time between 5 and 10 seconds. Both trans-
fers continue until time equal to 50 seconds. Table 3 summarizes

Protocol

TCP Reno

Forward Reverse
Throughput Throughput

9800.00 0.00

I ACC I 1740.00 1 24.22 1

1 ACC + acks-first t 2670.00 1 27.17 1

Table 3. The throughput (in Kbps) from the simulation of
simultaneous forward and reverse transfers. The reverse

channel is a header-compressed 28.8 Kbps dialup line.

the results.

We make several interesting observations. With unmodified TCP
Reno, acks of the forward connection fill up the reverse channel
buffer, thereby completely shutting out reverse transfer that starts
later. However, if the reverse connection were to start before the
forward connection, the situation is very different, with the reverse
connection achieving close to optimal throughput at the cost of the
forward connection (this data not shown in Table 3). The reason
for this entirely different behavior will become clear in our discus-
sion below of performance with ack filtering.

AF achieves very poor throughput for the forward transfer but
close to optimal throughput for the reverse transfer. The reason this
happens is that when the reverse transfer starts up, 1 KB sized data
packets start entering the reverse channel queue. The transmission
delay of each data packet over the 28.8 Kbps line is 280 ms.
Because of FIFO scheduling, acks of the forward transfer get
queued behind these data packets for this entire duration, causing
the sender of the forward transfer to stall. Many acks are also lost
during this period. These may cause the sender to time out while
waiting for acks. But the reverse connection continues building up
its window, so as time progresses, ack packets get queued behind
not one but several data packets. The end result is that the forward
connection makes progress in short bursts interspersed by multi-
second idle times. Figure 6 illustrates this for a simulation experi-
ment with AF.

5420 -

! 5400 5380, ’

j 5360.

% 5340.

2 5320’

I

1

5260 I.

Time (seconds)
Figure 6. Simulation results showing a portion of the

sequence number trace for the forward transfer after the
reverse transfer has started up. The reverse channel router
uses ack filtering, The multi-second idle times are caused by

acks getting queued behind multiple 1 KB data packets
betonging to tire reverse transfer.

With ACC (and the reverse channel router employing the RED
algorithm), the throughput of the reverse transfer is quite high
(24.22 Kbps as against the maximum possible of 28.8 Kbps). At
the same time. the throughput of the forward transfer (1.74 Mbps)
is much better than before. The reason for the better performance
is that feedback from the RED gateway prevents the reverse trans-
fer from filling up the reverse gateway with its data packets. The
reverse connection can sustain optimal throughput without having
to grow its window to more than l-2 packets. (Even assuming a
rather large R’IT of 500 ms for the reverse connection, the band-
width-delay product is 28.8 Kbps * 500 ms = 1.8 KB which is less
than two 1 KB packets.) Thus, the reverse connection can decrease
the impact that its data packets have on ack packets of the forward
transfer, while sustaining optimal throughput.

Even with the RED algorithm in operation, ack packets could get
queued behind more than one data packet, which decreases for-
ward throughput. The a&s-first scheduling scheme (Section 4.3.4)
avoids this by prioritizing acks over data. The assumption is that
such scheduling will not add significantly to the queuing delay of
data packets. With ACC (which decreases the frequency of acks)
and header compression (which makes them small in size), data
packets are indeed not affected significantly. As shown in Table 3,
ACC with acks-first scheduling achieves a forward throughput of
2.67 Mbps while maintaining a close-to-optimal reverse through-
put (27.17 Kbps).

A simple calculation shows that with the parameters we have cho-
sen, we cannot do much better than 2.85 Mbps while maintaining
optimal reverse throughput. While a data packet of the reverse con-
nection is undergoing transmission on the 28.8 Kbps link (lasting
280 ms), the forward connection sender does not receive any new
acks. Figure 7 illustrates this effect through simulation. So it can
send at most one window’s worth of data in 280 ms. With the
socket buffer size of 100 KB that we have chosen, the maximum
sender throughput works out to 100*8/280 = 2.85 Mbps.

In contrast to ACC, combining acks-first scheduling with AF leads
to starvation of data packets of the reverse transfer. This is because
ack packets arrive at the queue at a faster rate than they can be
drained out, so there is always an ack waiting to be sent in the
queue. Note that an ack undergoing transmission is no longer in
the queue, and so is not considered by the ack filtering algorithm.

Finally, to point out the benefits of using RED feedback to do
ACC, we consider the case where feedback from the RED gateway
is onIy applied to data (of the reverse connection) and not to a&s.

- a 14200 J
;;’ 14100
$ 14000

1 13900 13800
E I3700
g 13600
; 13500
F 13400

WJ 13300
1320%

i .
i .

i
:
:

i
:
: .

: .
:

* :

a.3 LA L’L.3 25

Time (seconds)
Figure 7. Simulation resu1t.s showing a portion of the ack

trace for the forward transfer after the reverse transfer has
started up. ACC is used in conjunction with a&s-first sched-
uling. There is an idle time of about 280 ms between bursts of

acks because of the 1 KB data packets belonging to the
reverse transfer.

The forward throughput (more than 3 Mbps) is higher than before,
but the reverse throughput is only 17.8 Kbps. Since scks arc not
subject to congestion control like data, they cause the reverse con-
nection to lose packets and time out periodically. During these idle
periods of the reverse connection, the forward transfer makes rapid
progress, resulting in a higher forward throughput than before,

Figure 8. Topology of the Ricochet packet radio network. The
Mobile Host (MH) has a modem attached to it, which commu-

nicates with a Fixed Host (FH) on the Internet through the
Poletop Radios (PT) and Ethernet Radios (ER). The Gateway
(GW) routes packets between the packet radio network and

the Internet.

5 Latency and Media-Access Asymmetry

In this section, we discuss the effects of latency and media-access
asymmetry on TCP performance. As before, we use a combination
of measurements and simulations to obtain our results, We focus
on TCP connections through a packet radio network as an example
of a situation with this type of asymmetry. We start by describing
the topology of the network and the media-access and link-layer
protocoIs. We then discuss the results of our experiments and solu-
tions to observed problems. Finally, we discuss some scaling and
fairness issues in this network.

5.1 Network Topology and Underlying Protocols

Topology: The topology of the packet radio network is shown in
Figure 8. The maximum link speed between two nodes in the ~irc-

84

2 4 6 8 10 12 14 16 18
Time (s) Sample number

Figure 9. (a) Packet and ack sequence trace of a 200 KB TCP bulk transfer measured over one wireless hop in the Ricochet net-
work. The three pauses are sender timeouts, lasting between 9 and 12 seconds each because large round-trip time variations cause

the retransmission timeout estimate to be very long. (b) Twenty round-trip time samples collected during this connection are
shown. The samples have a mean of about 2.5 s and a standard deviation of about 1.5 s.

less cloud is 100 Kbps. Packets from a fixed host (FH) on the Inter-
net are routed via the Metricom Gateway (GW) and through the
poletop radios (XT), to the end mobile host (MH). The number of
wireless hops is typically between 1 and 3.

Radio Turnarounds: The radio units in the network are half-
duplex, which means that they cannot simultaneously transmit and
receive data. Moving from transmitting to receiving mode takes a
non-trivial amount of time, called the transmit-to-receive tum-
around time, Z’TR Similarly, going from receiving to transmitting
mode takes a time equal to the receive-to-transmit turnaround time,

TRT-

MAC Protocol: The radios are frequency-hopping, spread-spec-
trum units operating in the 915 MHz ISM band. The details of the
frequency-hopping protocol are not relevant to this paper, since the
predominant reason for variability is the MAC protocol. The MAC
protocol is based on a polling scheme, similar to (but not identical
to) the RTSlCTS (“Request-To-Send/Clear-To-Send”) protocol
used in the IEEE 802.11 standard. A station wishing to communi-
cate with another (called the peer) first sends it an RTS message. If
the peer is not currently communicating with any other station, it
sends a CTS message acknowledging the RTS. When this is
received by the initiator, the data communication link is estab-
lished. A data frame can then be sent to the peer. If the peer cannot
currently communicate with the sender because it is communicat-
ing with another peer, it does not send a CTS, which causes the
sender to backoff for a random amount of time and schedule the
transmission for later. It could also send a NACK-CTS to the
sender, which achieves the same effect. In all this, care is taken by
both stations to ensure that messages and data frames are not lost
because the peer was in the wrong mode, by waiting enough time
for the peer to change modes. To do this, each station maintains the
value of the turnaround times of its neighbors in the network.

Link-Layer Protocol: The reliable link-layer protocol used in this
network is a simple frame-by-frame protocol with a window size
of 1. When a frame is successfully received, the receiver sends a
link-level ACK to the sender. If the frame is not received success-
fully, the sender retransmits after a timeout. Such simple link-layer
protocols are the norm in several packet radio networks (see, e.g.,
I141).

Variable Delays: The need for the communicating peers to first
synchronize via the RTS/CTS protocol and the significant tum-

around time for the radios result in a high per-packet overhead.
Further, since the RTS/CTS exchange needs to back off when the
polled radio is otherwise busy (for example, engaged in a conver-
sation with a different peer), the overhead is variable. This is the
main reason for large and variable latency in packet-radio net-
works. It is also clear why an increase in “interfering” traffic (like
TCP a&s) can significantly impact the flow of TCP data packets.

5.2 Measurements

We now discuss the results of several measurements and simula-
tions under various network topologies and traffic workloads. We
start with the simplest case of a bulk TCP transfer across one wire-
less hop running the MAC and link-layer protocols described
above. Although these particular measurements were made using
the Phase 1 Ricochet modems, we have observed similar effects in
measurements made with the newer Phase 2 modems as well.

Figure 9 shows the packet sequence trace of a measured 200 KB
TCP transfer across one wired and one wireless hop in the Rico-
chet network. This clearly shows the effect of the radio tum-
arounds and increased variability affecting performance. The
connection is idle for 35% its duration, as a result of only three
coarse timeouts (six other losses are recovered by TCP’s fast
retransmission mechanism). Ideally, the round-trip time of a data
transfer will be relatively constant (i.e., have a low deviation).
Unfortunately, this is not true for connections in this network, as
shown in Figure 11. This figure plots the individual round-trip time
estimate samples during a TCP connection over the actual Rico-
chet network. The mean value of these samples is about 2.5 sec-
onds and the standard deviation is about 1.5 seconds. Because of
the high variation in the individual samples, the retransmission
timer, set to srtt + I*mdev, is on the order of 10 seconds, causing
long idle periods. In general, it is correct for the retransmission
timer to trigger a segment retransmission only after an amount of
time dependent on both the round-trip time and the linear (or stan-
dard) deviation, since this avoids spurious retransmissions. Thus,
techniques are needed to alleviate the problems caused by large
deviations in TCP round-trip times to the loss recovery process.
These problems are exacerbated in the presence of two-way traffic
as well as other competing traffic.

Based on several experimental measurements of the Ricochet net-
work, we modeled the system in the ns simulator. We extended the
point-to-point link abstraction of ns to a more general shared LAN

85

1;

‘,

and added support for arbitrary MAC and link-layer protocols. The
simulation parameters used to obtain the results described in
Section 5.3 are shown in Table 4. We do not consider the impact of
wireless bit errors in these simulations, to isolate the impact of
variability due to the MAC protocol on performance. In practice,
link-layer retransmissions of corrupted packets will only add to the
variability of the network.

11
Table 4. Simulation parameters of the multi-hop packet

radio network. The number of wireless hops varies
between 1 and 3.

5.3 ’ Analysis and Solutions

In this section, we perform a detailed analysis of the problems
caused by this type of asymmetry and present some solutions that
alleviate the adverse effects of increased variability.

5.3.1 Piggybacking Link-Layer Acks with Data

This scheme is motivated by the observation that the radios tum-
around both for data frames as well as for link-layer acks. The
presence of traffic in both directions, even when caused by TCP
acknowledgments, already causes turnarounds to happen. Thus,
link-layer acks can be piggybacked with data frames, thereby
avoiding some extra radio turnarounds.

The basic reliable link-layer protocols in severa systems do not
piggyback acks with data. However, recent releases of the radio
software in the Ricochet network attempt to do this whenever pos-
sible. Our simulations of the multi-hop wireless network assume
that the radio units piggyback link-layer acks with data.

Despite this optimization, the fundamental problem of additional
traffic and underlying protocols affecting round-trip time estimates
and causing variabilities in performance still persists. Connections
traversing multiple hops of the wireless network are more vulnera-
ble to this effect, because it is now more likely that the radio units
may already be engaged in conversation with other peers.

5.3.2 Ack Filtering and Ack Congestion Control

We now analyze this system in more detail and present the results
of two improved protocols -one that performs AF (Section 4.3.2)
at the entry (from the receiver’s side) to the packet radio network,
coupled with TCP sender adaptation (Section 4.3.3), and the other
that performs ACC using RED (Section 4.3.1) - to reduce the
effects of variability and improve performance. Figure 10 shows
these results. The performance of AF and ACC are better than
Reno, and AF is better than ACC. The reason for this are the
reduced number of packets and reduced round-trip variability of
the two improvements compared to Reno.

86

c

I

AC(:

3 40
Rr

$9.

Number of vv&ess hops
3

R: Reno
AF: Ack filtering
ACC: Ack Cong Ctrl

Figure 10. TCP throughputs from simulations of Reno, ACC
and AF, as a function of the number of wireless hops.

5, . . - - 1

4.5

4 t
5 3.5 ’

i2:

3 ‘2

$ 1.5

8 l
0.5 ~

000
Time (s)

Figure 11. Round-trip times obtained from simulations of TCP
Reno and TCP with AF and traffic shaping for a connection

over two packet radio hops. The round-trip times for the Reno
connection are much more variable, with a mean of 2.67 sees

md a standard deviation of 1 set, whereas AF reduces the mean
to 1.85 sets and the standard deviation to 0.6 sets.

Figure 11 shows the round-trip times of simulations of a TCP
Reno connection and a TCP connection with AF, over two wireless
hops (in a chain-like topology between sender and receiver). For
Reno, the mean round-trip time is about 2.67 seconds and the stan-
dard deviation is about 1 second. AF reduces the mean round-trip
time to 1.85 seconds and the corresponding standard deviation to
only 0.6 seconds. The number of packets traversing each node also
drops, reducing the amount of contention. These factors result in a
25% improvement in end-to-end throughput, from 19 Kbps (Rcno)
to 24 Kbps over 2 wireless hops. Similar improvement in perfor-
mance is seen for connections traversing three wireless hops -
end-to-end throughput improves on average from 12.1 Kbps
(Rena) to 17.0 Kbps (AF), an improvement of 40%. Finally, WC
note that AF outperforms ACC because the former completely
eliminates all redundant acks and reduces the amount of “intcrfcr-
ing” traffic to a greater extent.

5.3.3 Scaling and Fairness Issues

We now investigate the scaling properties of two protocols in the
packet radio network - TCP Reno and Reno enhanced with AF,
We are interested in this to understand performance as a function
of the number of connections traversing the network and compct-

Y------
1

=i v
+

0.9

3
$3

0.8

1 0.7

1 0.6

‘0
k 0.5

TCP with ack filtering

0.4hhZ

Number of connections

Figure 12. Simulation results for the fairness index of TCP
Reno and TCP with AF’, as a function of the number of con-

nections traversing one hop of the packet radio network.

ing for resources. For simplicity, we consider connections over one
wireless hop in this section.

We consider two important metrics while studying the impact of
increasing the number of connections in the network: utilization
andfairness. Network utilization is defined as the ratio of the
aggregate throughput of all connections to the maximum achiev-
able throughput of the network. Fairness is quantified using the
fairness index defined in Section 3.2. We are interested in having
large values of both the network utilization as well as the fairness
index for any configuration.

Table 5 shows the simulated aggregate throughput achieved by all
the connections in the network, as a function of the number of
competing connections for Reno and AF. The table also shows the
standard deviation of the resulting performance, which shows the
degree of variation in the throughputs seen by the different concur-
rent connections. The aggregate performance varies between 44

Connections Reno throughput Reno+AF (Kbps)
(Kbps) [std-dev] [std-dev]

1 44.69 f-1 52.17 I-1 .

12 1 42.8 U3.11 I 51.8 [lO.Ol I

4 45.2 [24.9] 49.3 [8.9]

6 47.1 [32.5] 49.3 [20.2]

IS 1 45.0 [37.6] 1 49.6 [28.0] 1

10 45.6 [42.2] 48.4 [32.4]

12 45.8 r4s.01 48.8 [36.4]
I 1 I I

Table 5. Throup;huuts of TCP Reno and Reno with AF as
a function of the number of connections (1 wireless hop).

and 47 Kbps for TCP Reno and between 4S and 52 Kbps with AF,
as the number of connections varies, implying that there is little
change in utilization as a function of the number of connections.
However, the standard deviation of the performance, calculated
over concurrent connections, is much higher for Reno than for ack-
filtered Reno. This suggests that the distribution of throughputs is
more spread out and less equal across any set of connections, espe-
cially as their number increases.

1600
I

SLIP-compr

P

sion enabled

14001

3 1200

3 5 1000

% so0

: L 600

2oo0 1 50 100 150 200 250 I

Socket buffer size (KBytes)

Figure 13. Measured performance of a 1 MRyte TCP transfer
across a Hybrid wireless cable downlink and Ricochet return

channel. The large errorbars are a consequence of the inherent
variability of the Ricochet return channel.

We quantify this effect further in Figure 12, where the fairness
index of throughput is plotted as a function of the number of con-
nections. TCP Reno is often grossly unfair in the distribution of
throughput, reaching a value as low as 0.49 (n=l2) and not exceed-
ing 0.85 (n=2). In contrast, AF substantially improves the fairness
index of the throughput distribution, while also improving the
overall utilization of the network.

Thus, we see that our enhancements to TCP and the reverse boffle-
neck router help improve overall utilization and fairness as the
number of connections increases.

6. Combing Wireless Technologies: Wireless
Cable and Packet Radio

In this section, we investigate the effects of combining different
types of asymmetry on TCP performance. We focus on a network
topology with a high-bandwidth forward path modeled after
Hybrid’s wireless cable channel, and a low-bandwidth, packet
radio reverse path modeled after the Ricochet network. Such com-
posite network topologies are relevant in several application sce-
narios. For example, a disaster relief vehicle or ambulance with a
unidirectional high-bandwidth link would use a wide-area wireless
network as its reverse channel.

Figure 13 shows the measured performance of 1MB TCP transfers
as a function of the receiver socket buffer size using a Hybrid Net-
works’ wireless cable forward path and a one-hop wireless Rico-
chet return path. The error-bars show the standard deviation of
measured performance (20 runs each). These controlled measure-
ments were performed in the absence of any cross-traffic and the
inherent variability of the return path manifests itself in the signifi-
cant error-bars on the graph.

We focus on a Web-like benchmark in the following simulations
and study the performance of this network as the number of hosts
and connections increases. We investigate the various modifica-
tions to the transport and router protocols to help reduce the aver-
age completion time of a Web request in such networks.

We model the Web microbenchmark as a 500 byte Web request
followed by set of 4 concurrent TCP transfers of 10 KE? each to the
client. This is not intended to be an accurate model of reality, but

Ack Congestion Control /I

-Yl TCP Reno
/ Ack Filteri&

Number of hosts
Figure 14. Simulated scaling behavior of TCP Reno, AF,

and ACC as a function of the number of connections for a
Web-like microbenchmark over a packet radio return

path. The graph shows average completion time vs. II, the
number of hosts (4 concurrent connections per host). The

ack filtering protocol performs the best as n increases.

rather to understand the effects of small and concurrent connec-
tions, as well as competing and interacting users, on performance.
Since latency is a critical factor that impacts performance in the
packet radio network, we implicitly assume that the Web requests
use pipelining [19] and that one 500 byte request results in 4 down-
loads.

We vary the number of hosts from 1 to 50 in the simulations. Hosts
make requests independent of each other at a time uniformly dis-
tributed in [0,5] seconds. We measure the mean and standard devi-
ation of the completion time for the entire Web transaction (i.e., all
4 connections).

.Figure 14 shows the mean completion time for a transaction as the
number of hosts varies, for TCP Reno, Reno with ACC
(Section 4.3.1) and Reno with AF (Section 4.3.2). Two curves are
shown for the AF case - with sender adaptation enabled based on
the round-trip time and the congestion window, and without
(Section 4.3.3). These results indicate that AF is very beneficial in
reducing the response time and improving the throughput of the
network as the system scales. The reason ACC is not as beneficial
as in the cases investigated in Section 4 is the shorter transfer
lengths in this benchmark. No connection exceeds 10 packets, so
the sender’s window is never very large3. This limits the extent to
which ACC can be performed. The other reason is the larger num-
ber of acks traversing the network with ACC, compared to AF.
One critical factor in this network is the latency and variability
associated with each packet on the wireless network. AF results in
significant gains because it purges all redundant acks from the
queue independent of the state of congestion, thereby reducing the
number of packets in the wireless cloud. Finally, we note that the
lack of sender adaptation does not significantly hurt performance,
since each connection is rather small. The maximum possible burst
in the network is automatically limited by this short length and the
slow start process starting from 1 segment.

3. With persistent-connection HTIT [19]. recommended by
HTTP/l. 1 [S], connections will tend to be longer. This should help
ACC.

7. Conclusions

In this paper, we investigated the effects on network asymmetry on
TCP performance in the context of wide-area wireless networks.
We studied the impact of the reverse path, used primarily for
acknowledgments and data requests, on end-to-end performance in
the forward direction. We distinguished between bandwidth asym-
metry, latency and media-access asymmetry, and loss asymmetry,
and focused on the first two types.

The following are our main results:

l SLIP header compression [l 1] alleviates some of the problems
due to bandwidth asymmetry, but does not completely elimi-
nate all problems, especially those that arise in the presence of
bidirectional traffic.

l Connections traversing packet radio networks suffer from large
variations in round-trip times caused by the half-duplex nature
of the radios and asymmetries in the media-access protocol,
which lead to variable latencies. This adversely affects TCP’s
loss recovery mechanism and results in degraded performance.

l The various end-to-end and router-based techniques that WC

propose help improve performance significantly in many
asymmetric situations. These include decreasing the frequency
of acknowledgments (acks) on the constrained reverse channel
(ack congestion control and ackfiftering), reducing source
burstiness when acknowledgments are infrequent (TCP sender
adaptation), and scheduhng data and acks intehigently at the
reverse bottleneck router.

l In addition to improving throughput for individual conncc-
tions, our proposed modifications also help improve the fair-
ness and scaling properties when several connections contend
for scarce resources in the network. We demonstrate this via
simulations of bulk and Web-like transfers.

8. Future Work

There are several areas of future work that we plan to investigate.

We plan to investigate ack reconstruction, as a complement to
ack filtering and alternative to sender adaptation, to shield the
end-hosts from disruptions in the ack stream. The main idea is

for the reconstructor to smooth out the filtered ack stream by
inserting new acks to fill in the gaps, after it has traversed the
constrained reverse channel. The ack reconstructor would be
located at the other end of the constrained reverse channel.

The asymmetry in loss and error rates, especially in the context
of wireless return channels, poses new challenges. Current
packet radio networks use link-layer protocols for local error
recovery, but this results in increased latency and varlabllity in
latency. We plan to extend Explicit Loss Notification (ELN)
schemes proposed in the context of single-hop cellular nct-
works [2] to multi-hop wireless networks, with the goal of
reducing variability without sacrificing local error recovery,

Cellular Digital Packet Data (CDPD) networks exhibit mcdia-
access asymmetry. Communication from the base station to the
end stations is unimpeded, but end stations contend with each
other for channel access in the reverse direction. It will be
informative and useful to study the impact of this asymmetry
on reliable transport performance.

Finally, we intend to implement and measure the promising
techniques over the asymmetric, wide-area wireless networks
in our testbed and measure their performance.

88

9. Acknowledgments 171

We are grateful to several people for their help in setting up and
debugging our various experimental testbeds: Mike Ritter, Mike
Cunningham, Bob Luxemburg, Sheela Rayala, and Will SanFil-
ippo (Metricom, Inc.); Ed Moura (Hybrid Networks, Inc.); Andrew
Nestor (MetroNet, Inc.); and Ken Lutz. Steve Hawes, and Fred
Archibald (UC Berkeley). We appreciate their time and assistance.

@I

PI
We thank Mary Baker, Sally Floyd, Tom Henderson, Mike Ritter,
Srinivasan Seshan, and the anonymous Mobicom referees for sev-
eral comments and suggestions that helped improve the quality of
this paper. Our special thanks to Giao Nguyen for his contributions
to ns, which greatly facilitated our work

This work was supported by DARPA contract DAABO7-95-C-
D154, by the State of California under the MICRO program, and
by the Hughes Aircraft Corporation, Metricom, Fuji Xerox, Daim-
ler-Benz, Hybrid Networks, and IBM. Hari is partially supported
by a research grant from the Okawa Foundation.

[W

r111

rsl

1131
10. References

PI

t31

141

&I

A. Bakre and B. R. Badrinath. Handoff and System Sup-
port for Indirect TCP/B? In Proc. Second Usenk Symp.
on Mobile and Location-Independent Computing, April
1995.

H. Balakrishnan, V N. Padmanabhan, S. Seshan, and
R.H. Katz. A Comparison of Mechanisms for Improving
TCP Performance over Wireless Links. In Proc. ACM
SIGCOMM ‘96, August 1996.

H. Balakrishnan, S. Seshan, and R.H. Katz. Improving
Reliable Transport and Handoff Performance in Cellular
wireless Networks. ACM wireless Networks, l(4),
December 1995.

R. Caceres and L. Iftode. Improving the Performance of
Reliable Transport Protocols in Mobile Computing Envi-
ronments. IEEE Journal on Selected Areas in Communi-
cations, 13(S), June 1995.

S. Cheshire and M. Baker. A Wireless Network in Mos-
quitoNet. IEEE Micro, Feb 1996.

D-M. Chiu and R. Jain. Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in Com-
puter Networks. Computer Network and ISDN Systems,
17514, 1989.

1141

WI

WI

u71

WI

IPI

PO1

R. Durst, G. Miller, and E. Travis. TCP Extensions for
Space Communications. In Proc. ACM Mobicom Con-

ference, November 1996.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Bemers-Lee. Hypertext Transfer Protocol - HTTP/
1.1. RFC, Jan 1997. RFC-2068.

S. Floyd and V. Jacobson. Random early detection gate-
ways for congestion avoidance. IEEEJACM Transactions
on Networking, l(4k397-413, August 1993.

V. Jacobson. Congestion Avoidance and Control. In
Proc. ACM SIGCOMM 88, August 1988.

! ,
1

V. Jacobson. Compressing TCP/IP Headers for Low-
speed Serial Link-s. RFC-I 144, Feb 1990.

R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, 1991.

L. Kalampoukas, A. Vat-ma, and K. K. Ramakrishnan.
Performance of ‘lwo-Way TCP Traffic over Asymmetric
Access Links. In Proc. Interop ‘97 Engineers’ Confer-
ence, May 1997.

F! Kam. MACA - A New Channel Access Method for
Packet Radio. In Proc. 9th ARRL Computer Networking
Conference, 1990.

P. Karn. Dropping TCP a&s. Mail to the end-to-end
mailing list, February 1996.

T. V Lakshman, U. Madhow, and B. Suter. Window-
based Error Recovery and Flow Control with a Slow
Acknowledgement Channel: A study of TCP/IP Perfor-
mance. In Proc. Infocom 97, April 1997.

ns - Network Simulator. http://www-mash.cs.berke-
f
I

ley.edu/ns/, 1996.

V.N. Padmanabhan, H.Balakrishnan, K. Sklower, I

E. Amir, and R. Katz. Networking Using Direct Broad-
cast Satellite. In Proc. Workshop on Satellite-Based
Information Systems, November 1996.

Y N. Padmanabhan and J. C. Mogul. Improving HTTP
Latency. In Proc. Second Intemational WWW Confer-
ence, October 1994.

L. Zhang, S. Shenker, and D. D. Clark. Observations and
Dynamics of a Congestion Control Algorithm: The
Effects of Two-Way Traffic. In Proc. ACM SIGCOMM
‘91, pages 133-147,199l.

89

