Web Overview

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

11d_web_overview: CSci551 SP2006 © John Heidemanr

What’s important about the web?

* everybody uses
—end user
— huge economic impact

* uses lots of the things we talked about
—TCP, self-sim, etc.

* people care about performance

11d_web_overview: CSci551 SP2006 © John Heidemann

Why was the web successful?

e gives access to information
independent of location

* very put up, cheap

* flexible
—works with many hosts, links
—also can serve many kinds of data

11d_web_overview: CSci551 SP2006 © John Heidemanr

Aside: the web and computer

Sclence
« the web was invented by a physicist; why
not a computer scientist?
- cg(r)nputer scientists did hypertext since the late
’60s
— invented by a physicist
« had a real problem to solve
« vs. academics that tend to favor complexity
— why it’s not “intersting”
« not reliable
« not searchable
« scalable

11d_web_overview: CSci551 SP2006 © John Heidemann 17

What is the web?

* protocols

— formatting: HTML, now XML, also video,
sound, etc.
— addressing: URLs
— data retrieval: HTTP, streaming?
— anything else?
« other thigns as the web via web services
* security / encryption issues
* browsers and servers, proxies, search engines

11d_web_overview: CSci551 SP2006 © John Heidemann

Formatting: HTML

e SGML subset: simple ASCII with tags

— structure (ex. blockquote, headings, em)—
logical info

— display (ex. fonts, justification, colors, it)—
physical layout

— pro: easy to write (no special tools req’d)
« extensible (has grown [a lot!] over time)

— now includes forms, tables, frames, math, style
sheets, etc.

— augmented by CSS (Cascading Style Sheets) do
define display for HTML markup

— and being augmented with XML

11d_web_overview: CSci551 SP2006 © John Heidemann 23

More than HTML [me]

» originally, HTML was just static
document markup
» what now?
— DHTML: dyanmic
- XML
—applets, Flash

11d_web_overview: CSci551 SP2006 © John Heidemanr

Addressing: URLs

* protocol://host:port/hierarc « cons:

hy#part?search —central authority (hostnames):
—multiple protocols (http, ftp, ICANN
e —tied to the server (vs. URNS)
—host:port—use DNS,
distributed « other comments:
—hierarchy—locally defined —XXX
* pros:

~human readable

—exposes some hierarchy, has
meaning (often)

—sort of indrect from servers
—many URLSs are possible

11d_web_overview: CSci551 SP2006 © John Heidemann 32

More Than URLS

» originally URLs were it
— XXX

* now?
—search engines
—directories

11d_web_overview: CSci551 SP2006 © John Heidema;

Data Transfer: HTTP

« stateless: no inherent notion of client

— 50 no shopping carts! later work added
optional cookies to identify clients

* layers over TCP
« designed as faster replacement to FTP
» many features tacked on:
— content negotiation (graphics, language)
— caching support

11d_web_overview: CSci551 SP2006 © John Heidemann 35

HTTP/0.9

original protocol
—client: “GET /path” (close)
—server: “data” (close)

very, very simple
still valid
but no way to do control

11d_web_overview: CSci551 SP2006 © John Heidemann

HTTP/1.0

« informational rfc1945 (60 pages)
* client
— “GET /path HTTP/1.0”, headers, body (close)

— other operations (GET, HEAD, POST)
« can send data (POST)
« can check for changes (HEAD)

e server
— headers, data (close)
— headers allow info (type, change time, etc.)
— uses MIME types, adds content negotiation, etc.

11d_web_overview: CSci551 SP2006 © John Heidemann 37

HTTP/1.1

* 1rfc2068 (162 pages!)

* basically like 1.0, but adds:
— persistent connections
— identity of host (supports virtual hosts)
— detailed caching models

11d_web_overview: CSci551 SP2006 © John Heidemanr

HTTP Request—More Detail

* Request line

— Method
e GET —return URI
« HEAD - return headers only of GET response
* POST - send data to the server (forms, etc.)
- URI
* E.g. http://www.isi.edu/~govindan/index.html with a
proxy
* E.g. /index.html if no proxy
— HTTP version

11d_web_overview: CSci551 SP2006 © John Heidemann

HTTP Request

» Request headers
— Authorization — authentication info
— Acceptable document types/encodings
— From — user email
— If-Modified-Since
— Referer — what caused this page to be requested
— User-Agent — client software
* Blank-line
» Body

IS
5}

11d_web_overview: CSci551 SP2006 n Heidemal

HTTP Request Example

GET / HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozillas4.0
(compatible; MSIE 5.5; Windows NT
5.0)

Host: www.isi.edu

Connection: Keep-Alive

11d_web_overview: CSci551 SP2006 © John Heidemann

HTTP Response

» Status-line

—HTTP version

— 3 digit response code
e 1XX - informational
» 2XX — success
e 3XX - redirection
e 4XX —client error
* 5XX — server error

— Reason phrase

11d_web_overview: CSci551 SP2006 © John Heidemann 42

HTTP Response

» Headers
— Location — for redirection
— Server — server software
— WWW-Authenticate — request for authentication
— Allow - list of methods supported (get, head, etc)
— Content-Encoding — E.g X-gzip
— Content-Length
— Content-Type
— Expires
— Last-Modified
 Blank-line
* Body

11d_web_overview: CSci551 SP2006 © John Heidemann 43

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl12 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7allf-10ed-3a75ae4da"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<IDOCTYPE XXX....

11d_web_overview: CSci551 SP2006 © John Heidemanr 44

Caching

* Why cache?
—can save a lot of bandwidth
* Risk: out-of-date data

—file systems are usually strongly cache
coherent, detecting when data is modified
and invalidating cached copies

—the web is provides only weak coherence,
you can get old data

11d_web_overview: CSci551 SP2006 © John Heidemann 45

Web Cache Coherence

+ Assume page isgood * Subsequent request:

until time t —if in valid period, replay
. data out of cache (no
—_t could be in past request)
* First request for —(server can prohibit this
http://foo/ w/0 valid period)
—returns data with valid —if beyond valid period,
period (“Expires: t”) issue a conditional
. N request
—clients may estimate « GET with “If-Modified-
valid period if none given Since” header
« Respose is either “304
Not modified” or “200
OK” + new data
11d_web_overview: CSci551 SP2006 n Heidemanr 46

Example Cache Check Request

GET / HTTP/1.1

Accept: */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001
17:54:18 GMT

1f-None-Match: "7allf-10ed-3a75ae4a"

User-Agent: Mozillas4.0 (compatible; MSIE
5.5; Windows NT 5.0)

Connection: Keep-Alive

11d_web_overview: CSci551 SP2006 © John Heidemann 47

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-
Hat/Linux) mod_ssli/2.7.1
OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7allf-10ed-3a75aeda™

11d_web_overview: CSci551 SP2006 © John Heidemann 48

Cache Coherence

« need some way for client and server too identify out of
date pages
¢ timestamps
— server: page good until 11am
— client knows when got page; when 11am is up, revalidates page
* ETag
— server gives client a “tag” with page
« contents are abcd, tag is “234”
« tag is associated with content (maybe file version)
« value is opaque (not interpreted) by the client
— client later tries to validate cache by present etag
« server checks if etag is same or change

11d_web_overview: CSci551 SP2006 © John Heidemann 49

Web Workloads

» Users make connections and request pages
made up of objects
— a structural model

* user arrival: Poisson

* connection duration, number of object per
page, object size: all often heavy tailed
(Pareto)
— P&M give object stats:

* median: 1946 bytes
* mean: 13767 bytes

11d_web_overview: CSci551 SP2006 © John Heidemanr

Page Stats

* Popularity
— Zipf distribution

—requests for i most popular document ~
i—a

— (popular are really popular, but long tail)

 Requests are bursty
—recall self-similarity lecture

11d_web_overview: CSci551 SP2006 © John Heidemann 51

