
1

11d_web_overview: CSci551 SP2006 © John Heidemann 1

Web Overview

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

11d_web_overview: CSci551 SP2006 © John Heidemann 7

What’s important about the web?
• everybody uses

– end user
– huge economic impact

• uses lots of the things we talked about
– TCP, self-sim, etc.

• people care about performance

11d_web_overview: CSci551 SP2006 © John Heidemann 13

Why was the web successful?
• gives access to information

independent of location
• very put up, cheap
• flexible

– works with many hosts, links
– also can serve many kinds of data

11d_web_overview: CSci551 SP2006 © John Heidemann 17

Aside: the web and computer
science

• the web was invented by a physicist; why
not a computer scientist?
– computer scientists did hypertext since the late

’60s
– invented by a physicist

• had a real problem to solve
• vs. academics that tend to favor complexity

– why it’s not “intersting”
• not reliable
• not searchable
• scalable

11d_web_overview: CSci551 SP2006 © John Heidemann 22

What is the web?
• protocols

– formatting: HTML, now XML, also video,
sound, etc.

– addressing: URLs
– data retrieval: HTTP, streaming?
– anything else?

• other thigns as the web via web services
• security / encryption issues
• browsers and servers, proxies, search engines

11d_web_overview: CSci551 SP2006 © John Heidemann 23

Formatting: HTML
• SGML subset: simple ASCII with tags

– structure (ex. blockquote, headings, em)—
logical info

– display (ex. fonts, justification, colors, it)—
physical layout

– pro: easy to write (no special tools req’d)
• extensible (has grown [a lot!] over time)

– now includes forms, tables, frames, math, style
sheets, etc.

– augmented by CSS (Cascading Style Sheets) do
define display for HTML markup

– and being augmented with XML

2

11d_web_overview: CSci551 SP2006 © John Heidemann 26

More than HTML [me]
• originally, HTML was just static

document markup
• what now?

– DHTML: dyanmic
– XML
– applets, Flash

11d_web_overview: CSci551 SP2006 © John Heidemann 32

Addressing: URLs
• protocol://host:port/hierarc

hy#part?search
–multiple protocols (http, ftp,
etc.)
–host:port—use DNS,
distributed
–hierarchy—locally defined

• pros:
–human readable
–exposes some hierarchy, has
meaning (often)
–sort of indrect from servers
–many URLs are possible

• cons:
–central authority (hostnames):
ICANN
–tied to the server (vs. URNs)

• other comments:
–xxx

11d_web_overview: CSci551 SP2006 © John Heidemann 34

More Than URLs
• originally URLs were it

– xxx
• now?

– search engines
– directories

11d_web_overview: CSci551 SP2006 © John Heidemann 35

Data Transfer: HTTP
• stateless: no inherent notion of client

– so no shopping carts! later work added
optional cookies to identify clients

• layers over TCP
• designed as faster replacement to FTP
• many features tacked on:

– content negotiation (graphics, language)
– caching support

11d_web_overview: CSci551 SP2006 © John Heidemann 36

HTTP/0.9
• original protocol

– client: “GET /path” (close)
– server: “data” (close)

• very, very simple
• still valid
• but no way to do control

11d_web_overview: CSci551 SP2006 © John Heidemann 37

HTTP/1.0
• informational rfc1945 (60 pages)
• client

– “GET /path HTTP/1.0”, headers, body (close)
– other operations (GET, HEAD, POST)

• can send data (POST)
• can check for changes (HEAD)

• server
– headers, data (close)
– headers allow info (type, change time, etc.)
– uses MIME types, adds content negotiation, etc.

3

11d_web_overview: CSci551 SP2006 © John Heidemann 38

HTTP/1.1
• rfc2068 (162 pages!)
• basically like 1.0, but adds:

– persistent connections
– identity of host (supports virtual hosts)
– detailed caching models

11d_web_overview: CSci551 SP2006 © John Heidemann 39

HTTP Request—More Detail
• Request line

– Method
• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

– URI
• E.g. http://www.isi.edu/~govindan/index.html with a

proxy
• E.g. /index.html if no proxy

– HTTP version

11d_web_overview: CSci551 SP2006 © John Heidemann 40

HTTP Request
• Request headers

– Authorization – authentication info
– Acceptable document types/encodings
– From – user email
– If-Modified-Since
– Referer – what caused this page to be requested
– User-Agent – client software

• Blank-line
• Body

11d_web_overview: CSci551 SP2006 © John Heidemann 41

HTTP Request Example
GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
(compatible; MSIE 5.5; Windows NT
5.0)

Host: www.isi.edu
Connection: Keep-Alive

11d_web_overview: CSci551 SP2006 © John Heidemann 42

HTTP Response
• Status-line

– HTTP version
– 3 digit response code

• 1XX – informational
• 2XX – success
• 3XX – redirection
• 4XX – client error
• 5XX – server error

– Reason phrase
11d_web_overview: CSci551 SP2006 © John Heidemann 43

HTTP Response
• Headers

– Location – for redirection
– Server – server software
– WWW-Authenticate – request for authentication
– Allow – list of methods supported (get, head, etc)
– Content-Encoding – E.g x-gzip
– Content-Length
– Content-Type
– Expires
– Last-Modified

• Blank-line
• Body

4

11d_web_overview: CSci551 SP2006 © John Heidemann 44

HTTP Response Example
HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)

mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

<!DOCTYPE xxx……

11d_web_overview: CSci551 SP2006 © John Heidemann 45

Caching
• Why cache?

– can save a lot of bandwidth
• Risk: out-of-date data

– file systems are usually strongly cache
coherent, detecting when data is modified
and invalidating cached copies

– the web is provides only weak coherence,
you can get old data

11d_web_overview: CSci551 SP2006 © John Heidemann 46

Web Cache Coherence
• Assume page is good

until time t
–t could be in past

• First request for
http://foo/
–returns data with valid
period (“Expires: t”)
–clients may estimate
valid period if none given

• Subsequent request:
–if in valid period, replay
data out of cache (no
request)
–(server can prohibit this
w/0 valid period)
–if beyond valid period,
issue a conditional
request

• GET with “If-Modified-
Since” header

• Respose is either “304
Not modified” or “200
OK” + new data

11d_web_overview: CSci551 SP2006 © John Heidemann 47

Example Cache Check Request
GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001
17:54:18 GMT

If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE
5.5; Windows NT 5.0)

Connection: Keep-Alive

11d_web_overview: CSci551 SP2006 © John Heidemann 48

Example Cache Check Response
HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-
Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2
PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

11d_web_overview: CSci551 SP2006 © John Heidemann 49

Cache Coherence
• need some way for client and server too identify out of

date pages
• timestamps

– server: page good until 11am
– client knows when got page; when 11am is up, revalidates page

• ETag
– server gives client a “tag” with page

• contents are abcd, tag is “234”
• tag is associated with content (maybe file version)
• value is opaque (not interpreted) by the client

– client later tries to validate cache by present etag
• server checks if etag is same or change

5

11d_web_overview: CSci551 SP2006 © John Heidemann 50

Web Workloads
• Users make connections and request pages

made up of objects
– a structural model

• user arrival: Poisson
• connection duration, number of object per

page, object size: all often heavy tailed
(Pareto)
– P&M give object stats:

• median: 1946 bytes
• mean: 13767 bytes

11d_web_overview: CSci551 SP2006 © John Heidemann 51

Page Stats
• Popularity

– Zipf distribution
– requests for ith most popular document ~

i-a

– (popular are really popular, but long tail)
• Requests are bursty

– recall self-similarity lecture

