Self-Similarity in Ethernet [Leland94a] and the Web [Crovella97a]

(got to slide 42 on March 23)

CSci551: Computer Networks SP2006 Thursday Section John Heidemann

11b self sim: CSci551 SP2006 © John Heidemann

Key Ideas

- [Leland94a]
 - self-similar network traffic
 - similar at different timescales
 definition: has infinite variance
 - · consequenes: variance decays less than exponentially; ...
 - looks at Ethernet
 - described math needed to check for self-sim
 - guesses at maybe why tfc is self-sim
- [Crovella97a]
 - web traffic and TCP is self-similar and has heavy tailed on-times
 - heavy tailed: distribution has infinite variance.
 - shows why internet tfc is self-sim

11b_self_sim: CSci551 SP2006 © John Heidemann

Traffic Modeling

- Paxson showed microscopic traffic effects
 - ex: reordering, "little stuff", ...
- What about macroscopic traffic behavior?
 - what do traffic aggregates look like?
 - conventional wisdom:
 - traffic is generated by Poisson sources
 - or at least, that's a good approximation
 - · traffic will "smooth out" at large timescales

11b_self_sim: CSci551 SP2006 © John Heidemann

11

Traffic Analysis: A Bit of History

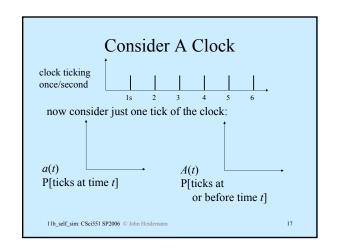
- Phone network is homogeneous and static
 - Call arrivals at trunk groups independent
 - Interarrival times exponentially distributed
 - Call durations are exponentially distributed
- why? people are on both ends
- · so voice traffic is
 - relatively predictable
 - very amenable to mathematical analysis
 - queueing theory (EE549)
 - · with care, some of these techniques can be applied to networking as well
 - · examples from class: Markov modeling in Shakih paper
 - Q: will this change with more fax & data?

12

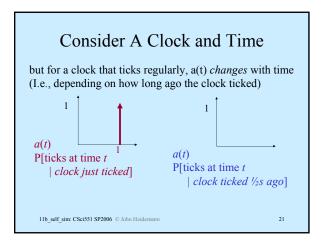
Basic Random Processes

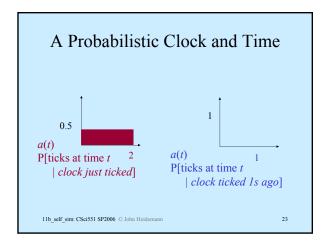
- · How to model the process arrival
 - ex. users to a computer room, or packets to a router, or
- Define an arrival probability
 - -a(t) := P[object arrives at time t] := pdf(probabilty density function)
 - $-A(t) := P[object arrives at t_0 < t] := cdf$ (cumulative distribution function)
 - arrival rate := λ
 - $\lambda^{-1} = \mathbb{E}[a(t)]$

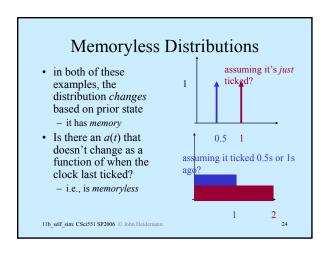
11b self sim: CSci551 SP2006 © John Heidemann

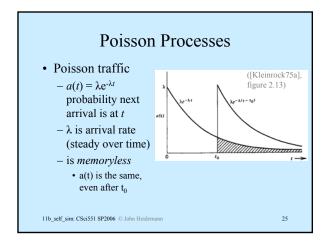


Consider A Probabilistic Clock • assume the clock ticks uniformly randomly with ticks in the range of 0 to 2s • note that the *rate* the clock ticks (λ) is the same as a regular clock, but exactly when the clock ticks is random a(t) P[ticks at time t] P[ticks at or before time t] $11b_\text{self_sim: CSci551 SP2006 O John Heidemann}$

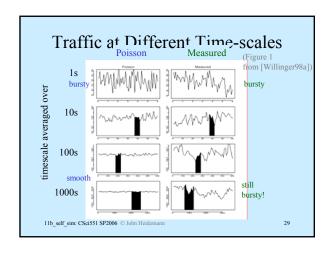








Advantages of Poission Modeling • analytically tractable – can solve hard but relevant problems • applicable to telephone traffic – (may require somewhat more complexity, but basic details are here) • smoothes out when you combine many independent users – allows easier planning • applicable to many computer problems – where did we see this before? xxx



Measured Data

- · shows burstiness at many different scales
 - No natural burst length
 - ... unlike Poisson
- but what does this mean?
 - hard to model with Poisson
 - but will need many parameters
 - not just arrival rate λ
 - models with just simple λ may not match real net traffic
 - would prefer better model

11b_self_sim: CSci551 SP2006 © John Heidemann

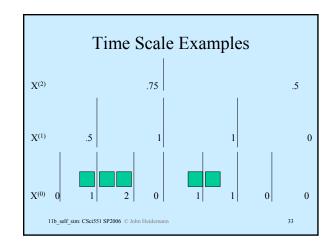
30

Defining Time-scale

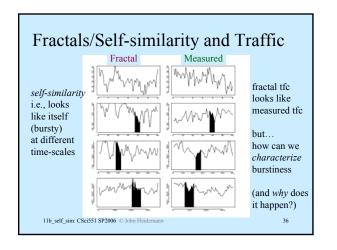
- Given a random variable X
 - say, pkts/s or bytes/s (or pkts/1ms)
 - let X_t be measurement at time t, spaced δ apart
- Define *time-scale m* recursively:
 - $-X_t^{(m+1)} := X_t^{(m)} X_{t+\delta}^{(m)}$
 - basically, add things up into larger intervals
- Poisson gets *smoother* at larger *m*, but Internet traffic stays *bursty*
- Question: how can we model bursty traffic?

11b_self_sim: CSci551 SP2006 © John Heidemann

21

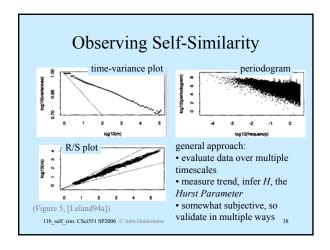


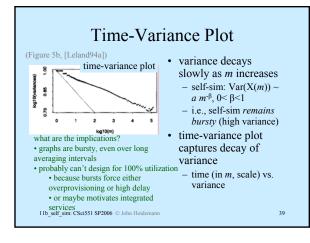
A Hint: Fractals Def: A class of objects with surprising scaling properties Example: Length of coastline depends on level of detail No "natural" length for these objects

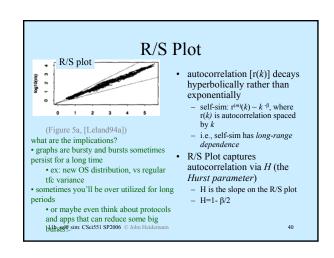


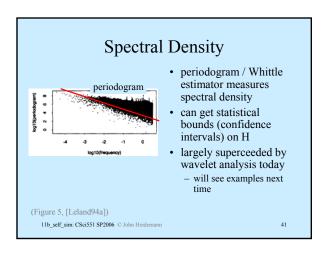
Characteristics of Self-similarity

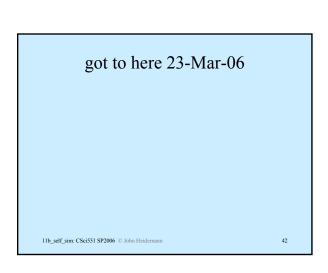
- variance decays slowly as *m* increases
 - self-sim: $Var(X(m)) \sim a m^{-\beta}$, $0 < \beta < 1$
 - − Poisson: $Var(X(m)) \sim a m^{-1}$
 - i.e., self-sim *remains bursty* (high variance)
- autocorrelation [r(k)] decays hyperbolically rather than exponentially
 - self-sim: $r^{(m)}(k) \sim k^{-\beta}$, where r(k) is autocorrelation spaced by k
 - Poisson: $\mathbf{r}^{(m)}(k)$ ~ 0 as m → ∞
 - i.e., self-sim has long-range dependence
- spectral density is power-law near origin

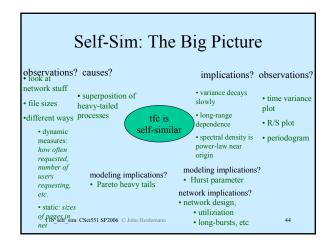












Modeling Self-Similiarty

- Can describe with Hurst parameter, H
 - -0.5 < H < 1
 - $-H = 1 (\beta/2)$
- Can generate from (artificial) models
 - fractional Gaussian noise
 - parameters: mean μ , variance σ^2 , autocorrelation: $r(k) = (\mid k+1 \mid^{2H} \mid k \mid^{2H} + \mid k-1 \mid^{2H}) / 2$
 - fractional autoregressive integrated movingaverage process

11b self sim: CSci551 SP2006 © John Heidemann

45

Implications for Networking

- Queueing delays can be much higher than if all sources were Poisson
 - \Rightarrow Need large buffers to avoid dropping packets
 - \Rightarrow or accept that losses will always be possible
- Cannot determine future buffer requirements based on recent past
- Shouldn't assume Poisson traffic models represent all traffic
- But, we haven't yet looked at why:

- what aspect of networks causes self-similarity

But why is the traffic Self-similar?

- Observation: Superposition of *heavy tailed on-off processes* are self-similar
 - and many, many things have heavy tails
 - web pages, files sizes, CPU job duration,...
 - and network traffic is sort of on-off
 - · get web page, think, repeat
 - but not completely (ex. TCP dynamics)
- Suggested in [Leland94a], verified in [Crovella97a]
- Still a matter of some debate if it's the only
- Cause 11b_seff_sim. Csci551 SP2006 © John Heidemann

47

Causes for Self-Similarity

- Ethernet traffic is self-similar
- But where is this coming from?
 - i.e., what physical processes contribute to selfsimilarity?
- Keys:
 - look for ON/OFF processes with heavy tailed durations
 - what is most Internet traffic? web or maybe p2p, over TCP

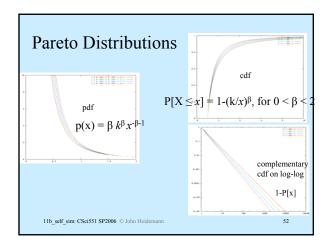
11b_self_sim: CSci551 SP2006 © John Heidemann

50

Pareto Distributions: a simple heavy-tailed distribution

- Pareto:
 - $pdf: p(x) = \beta k^{\beta} x^{-\beta-1}$
 - $\text{cdf: P}[X \le x] = x^{-\beta}, \text{ for } 0 < \beta < 2$
- when β < 2, the variance of the distribution is infinite, when β < 1, the mean is infinite
- for network traffic, $1.2 < \beta < 1.8$

11b_self_sim: CSci551 SP2006 © John Heidemann



Measuring Heavy Tails

- Plot the complementary cumulative distribution function
 - -P'(x) := 1 P(x)
 - on log-log plot
- If "enough" of the tail is linear => heavy tail
 - "enough" means 3 orders of magnitude or more
 - estimate β from slope of log-log plot

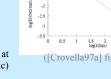
$$\frac{\partial \log P(x)}{\partial \log x} = -\alpha, \text{ for } x > \theta$$

11b_self_sim: CSci551 SP2006 © John Heidemann

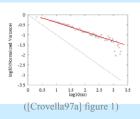
53

Web Traffic Self-Similar

- time-variance plot shows that the Hurst parameter is 0.76
 - web traffic at a campus site, at high enough loads, is self-similar
- · confirms results of Leland et al. study
 - (Leland et al. looked at aggregate of all traffic)



11b_self_sim: CSci551 SP2006 © John Heidemann



Analyzing Web Traffic

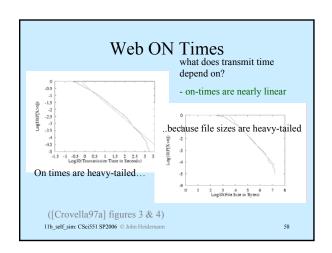
- · update browser to log request start and end times, and file sizes transferred
- then analyze the four busiest hour periods
 - more long-range dependence in the busy periods
- show that the Hurst parameter is significantly different from 0.5
 - use variance-time plots, R/S plots, periodogram

11b_self_sim: CSci551 SP2006 © John Heidemann

Superimposing Heavy Tails

- consider an ON/OFF process
 - with a heavy tailed distribution (parameter β_1) distribution of ON times, heavy tailed distribution of OFF times (parameter β_2), or
- superimpose many such processes
 - Count the number of ON processes at any given
 - this process is self-similar with Hurst parameter $H = [(3 - \min(\beta_1, \beta_2)) / 2]$
- so, is an aspect of Web tfc is heavy-tailed?

11b_self_sim: CSci551 SP2006 © John Heidemann



Why are file sizes heavy tailed?

- 1. look at network traffic, TCP connections are HT
- 2. file sizes on web servers are HT
- just the way things work (natural phenomena), but why?
 - not just file type
 - most things should work quickly, therefore have small files
 - and many people have a few big things

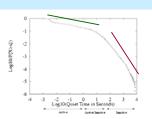
11b_self_sim: CSci551 SP2006 © John Heidemann

60

Web OFF Times

- · Two different regimes
 - Active OFF
 - · Display, rendering time
 - Inactive OFF
 - · User-think time
- Crovella says inactiveoff is heavy tailed
 - others have modeled as Poisson
 - ⇒ be careful interpreting graphs!

11b_self_sim: CSci551 SP2006 © John Heidemann



61

Summary

- Aggregate Ethernet traffic is self-similar
 - shown statstically
- Web transfers are heavy tailed
 - ON times are heavy-tailed because file sizes are heavy tailed
 - provides a physical interpretation
- General approach:
 - make statistical observation (self-sim)
 - but also find *physical interpretation* (heavy tailed files)

11b_self_sim: CSci551 SP2006 © John Heidemann

62

questions

- how does this change protocol evaluation?
 - previously: people just assumed tfc was Possion
 - enabled queueing theory and mathematical modeling of tfc
 - but could give incorrect answers for network tfc since it's not possion
 - now:
 - if answers depend on tfc model, then you should definitely consider a self-similar traffic model
 - vary object sizes
 - think about variable burstiness
 - · what about effects on protocols?
 - and what do people do today? lots of things

11b_self_sim: CSci551 SP2006 © John Heidemann

63

A More Complex Story

- but traffic cannot be exactly self-similar
 - traces are finite duration
 - computers/connections are finite
 - can never really see infinite variance
- and, what happens at fine timescales? instead, traffic is multi-fractal
 - some behavior at fine timescales (<few RTT)
 - some behavior at time timescales (sew RTT)
 self-similarity at medium timescales (few RTT to hour/hours)
 - longer-term behavior dominated by outside factors (daily work cycles)
 - but *computer-originated* traffic could remove some of this in the future, maybe

11b_self_sim: CSci551 SP2006 © John Heidemann

54

Are There *Other* Causes of Self-Similarity?

- heavy-tailed on-off processes
 - but could be just a cause, not necessarily the only cause
- what about protocols?
 - chaotic TCP interactions?
 - TCP retransmit behavior (Figueiredo et al, U. Mass)
 - explains self-sim over several orders of magnitude
- does topology matter? (Feldmann et al, SIGCOMM 1999)

11b_self_sim: CSci551 SP2006 © John Heidemann

Traffic at High Levels of Aggregation

- what about traffic levels at very high levels of aggregation (i.e., Gb/s)
 - some recent work suggests that traffic does smooth out with *enough* users and *enough* traffic
 - intuition: each individual can only give so much burstiness, in a big enough pipe they get lost
 - certainly human generated traffic has limits (but what about computer generated traffic?!?)

11b_self_sim: CSci551 SP2006 © John Heidemann

66

Implications

- For network traffic: discussed earlier
- For modeling network traffic:
 - should use appropriate models (not just Poisson)
 - should study at *many* time-scales (not just mean and std. dev)
 - $\bullet \ {\rm suggests} \ structural \ modeling$
 - model user arrivals, web connections, TCP details
 - has been shown to accurately reproduce Internet traffic

11b_self_sim: CSci551 SP2006 © John Heidemann

67

Other questions/observations?

• XXX

11b_self_sim: CSci551 SP2006 © John Heidemann