
CSCI-551 Project B
Analyzing BitDrip

March 27, 2006

This project is due noon, May 3, 2006. Late submissions cause a 25% per day
penalty for that part of the project. See the class web page for details.

1 Introduction
The purpose of this project is to explore analyzing network traffic. You will be modify-
ing and using your code from Project A, or if you prefer you can use the code provided
by the TA.

Your final turned in code must compile and run on nunki.usc.edu, but for testing
and development we highly recommend you use on-campus workstations when ever
possible.

(Just a reminder: ISD has asked that students not run their programs on aludra.usc.edu,
since that server is used by many people. They also encourage students doing devel-
opment on campus to use workstations rather than nunki. Students working remotely
should use nunki.)

Your modifications to the BitDrip P2P simulation code will help you do a simple
analysis of the throughput between peers. Additionally you will be using libpcap tools
to analyze pcap network traffic traces of your BitDrip peer to peer simulation.

2 Overview
To complete project B, you must modify the BitDrip code to do two things:

1. Detect freeloaders. Freeloaders discussed in more detail in section 2.1. You will
design an approach that lets each peer detect peers that don’t “pull their weight”.

2. Analyze tcpdump traces of your peer interaction, both to verify your perfor-
mance, and to relate TCP behavior to your application behavior.

2.1 Freeloaders
Peer-to-Peer systems work because everyone shares data with each other, thus the sys-
tem benefits from everyone’s bandwidth rather than just the server’s bandwidth or the

1

Draft of: March 27, 2006 2

seeder’s bandwidth. (Recall, a seeder is a peer that has a complete copy of the desired
file.)

A freeloader is a peer that only takes data from the system but does not upload any
data to others, or that takes much more than it sends.

To study freeloaders, in Project B, when you ask for class peers, one (or more) of
them may be a freeloader. It is your job to minimize the impact of the freeloader on the
peer group. To do this, you must do two things:

1. Identify if there is a freeloader, and which peer is freeloading.

2. Reduce the amount of sharing done with a freeloader.

It is OK if your simulation quits and the Class Freeloader does not have the full
file—in fact, this is desirable.

Be careful though in determining which peer is a freeloader—remember that peers
just starting out in downloading a file may not have any data to upload and share—
and so these new peers may appear to be freeloaders at first. It is important to give
new peers a chance to download some of the file before you determine if they are a
freeloader.

Note that we expect each peer to determine for itself which other peers may or may
not be freeloaders. (We do not expect you to create a distributed algorithm where your
peers communicate out-of-band for this purpose!)

3 Phases
Like Project A, we’ve divided Project B into phases to help you work through the
project step by step. In Project B, however, a phase number corresponds to an actual
test—most phases do not involve any more coding, they only require you to test your
code for that phase. In other words, phases numbers are used to provide an easy way
to select from different inputs.

Also, a significant focus of Project B is not just your code, but your writeup about
what the code does. Please consider that when writing up your answers for the project.

3.1 Phase 10–19
The purpose of these phases is to add and test the ability to detect freeloaders (on the
fly).

First, you need to document your plan to detect freeloaders. Create a text file called
“freeloader-plan.txt”. In this file, describe specifically a) how you define a freeloader
(quantitatively), b) what statistics each peer collects to identify this, c) when you expect
to be able to make a decision, and why you cannot make a decision earlier or later.

Starting with your Phase 6 code from Project A (or the TA’s code for project A),
modify the code so that when a freeloading peer is detected your peers write out this
information to a file called “xx-freeloader.out”, where xx is the peer ID of the peer that
detected the freeloader. The contents of the file should contain three numbers—the
peer ID of the detected freeloader, the time in peer xx determined that this peer ID

Draft of: March 27, 2006 3

was a freeloader (measured in seconds since the freeloader contacted peer xx), and the
number of bytes peer xx sent to the detected freeloader before it was detected. If no
freeloader is detected by the time a peer is ready to terminate, the peer should output
“no freeloaders” to the xx-freeloader.out file.

(For this question, “bytes sent” mean all application bytes sent over the TCP con-
nection. This count doesn’t include TCP or IP headers, but does include application
protocol headers and control messages.)

For example, if peer 3 first contacts the tracker at 5 seconds after your experiment
was started (i.e., when you started your manager), and then peer 3 determined that
peer 28 was a freeloader one second later after sending it 4,148 bytes, peer 3’s “3-
freeloader.txt” should contain:

28 1 4148

When testing with the class peers, the class peer spawner will spawn 2–4 class
peers for you. At most one of those peers will be a freeloader. In some cases none
will be a freeloader, in some cases there will be freeloaders who share nothing, and in
others cases freeloaders who share just a bit (a “semi-freeloader”).

We will provide three known test cases:

• Phase 10 will have no freeloaders.

• Phase 11 will always have a known complete freeloader running on one class
peer.

• Phase 12 will always have a semi-freeloader running on one class peer.

• Phase 13 will have a random class peer be either a freeloader or a semi-freeloader.
In some cases no freeloader will be started for phase 13.

We will use phases 14–19 for our use to evaluate your code (they will not work before
the due date, but you should treat them like phases 10–13 for freeloader detection).

3.1.1 Sample Input
Your peers to spawn.
Peer ID File Name Start Time
1 file09.jpg 0
2 file09.jpg 1
3 file09.jpg 1
-1 ----- -1

Class Peers
Number to Spawn Phase Number
3 11

3.2 Phases 20–29
For these phases, the emphasis is on analysis of the network performance of your protocol.

After modifying your code to output received throughput and related statistics, you will run
phases 20–25 and summarize the results in a file called “analysis.txt” as discussed below.

Draft of: March 27, 2006 4

We will use phases 26–29 for our use to evaluate your code (they will not work before the
due date, but you should treat them like phases 20–25).

Starting with your code for the previous phases, modify it so that your peer can determine
the following:

1. The start and end time your peer communicates with each other peer.
2. The number of bytes your peer receives from each other peer.
3. The mean received throughput to retrieve your file (for the whole duration of the ex-

change, from when you get your first byte to the last byte).
Each peer should output two files: one called “xx-stats.out” and one called “xx-total.out”.
The file “xx-stats.out” should have the following format:

peer_id start_time end_time bytes_from_peer bytes_to_peer mean_throughput

There should be one line in this file for each peer your peer communicates with.
The “xx-total.out” file should contain the average (across all peers your peer communicated

with) received throughput obtained.
All units should be in seconds, bytes or bytes/s.
When you’re code is ready, run one experiment for each of the six configuration files for

phase 20-26 listed below. Calculate the average throughput (the average of the results from all
the “xx-total.out” files from that run) across all your peers for each experiment and put the results
in a file called “analysis.txt”.

The file “analysis.txt” should contains one line per phase number:

phase_num averg_recved_throuput

We will look at several possible cases: phases 20–22 will vary parameters on the class peer
with a single student peer. Phases 23–25 will vary the number of student peers. Phases 26–29
will be used in testing.

When you have completed these experiments, create a file called “analysis-discussion.txt”
and in it answer the following questions:

1. What trends, if any, did you see in phases 20–22? What was the cause of these trends (if
any)?

2. What trends, if any, did you see in phases 23–25? What was the cause of these trends (if
any)?

3. How does the overall downloading rate change when you have more non-freeloading
peers? What about your experiments support that result? Why does the downloading
result change this way?

3.2.1 Sample Input
Sample input manager.conf files:

1. Phase 20 “manager.conf”:
Your peers to spawn.
Peer ID File Name Start Time

1 file09.jpg 0
-1 ----- -1

Class Peers
Number to Spawn Phase Number

1 20

Draft of: March 27, 2006 5

2. The other phase 21–22 will be the same as phase 20 except for the phase number. (We
will change parameters on the class peer.)

3. Phase 23 “manager.conf”:

Your peers to spawn.
Peer ID File Name Start Time

1 file09.jpg 0
2 file09.jpg 0
-1 ----- -1

Class Peers
Number to Spawn Phase Number

1 23

4. Phase 24 “manager.conf”:

Your peers to spawn.
Peer ID File Name Start Time

1 file09.jpg 0
2 file09.jpg 0
3 file09.jpg 0
-1 ----- -1

Class Peers
Number to Spawn Phase Number

1 24

5. Phase 25 “manager.conf”:

Your peers to spawn.
Peer ID File Name Start Time

1 file09.jpg 0
2 file09.jpg 0
3 file09.jpg 0
4 file09.jpg 0
-1 ----- -1

Class Peers
Number to Spawn Phase Number

1 25

3.3 Phases 30–39
These final phases explore analysis using tcpdump.

For this phase you need to relate the TCP packets you see in a tcpdump output to the
application-level behavior you know about from bit drip.

Each student will do one of phases 30–39. To pick which one you do, use the last digit of
your student ID and put a ’3’ in front of it.

First, modify your code to output your tracker’s listening port and the listening port of the
class peer. (It’s probably easiest to have your tracker output this information).

Run a one-on-one experiment with the class peer spawner using the phase number that cor-
responds to your student ID. A text output of a tcpdump packet capture of your experiment can
then be found at:
http://sea.usc.edu/csci551/dumps/USERNAME-CLASSPEERPORT-TRACKERPORT.
txt where USERNAME is replaced by the username you gave to the class peer spawner (your

Draft of: March 27, 2006 6

class wiki username), CLASSPEERPORT is replaced by the listening port the class peer reported
to your tracker and TRACKERPORT is the listening port of your tracker.

Copy this tcpdump file into the file “phase-xx-tcpdump.txt” (where xx is the phase you
chose). Make a second copy of that file as phase-xx-annotated.txt, and then go through and add
the following annotations:

• “start of new connection for zz” any time your peer makes a new connection to the seeder
to send zz type of request. If you’re sending multiple requests per connection, say what
is requested during this connection.

• “connection established” after a connection has been established.
• “communication with tracker” any time the class peer contacts your tracker.
• “segment update request” every time your peer asks for a segment update request
• “segment update reply” every time the class peer responds with its segment update
• “segment xxx request” every time your peer requests a segment from the class peer
• “segment xxx reply” every time the class peer responds with a segment
• “end message” after every time a BitDrip message has been completely sent

In addition, answer the following questions in the file “phase-xx-discussion.txt”:
1. How did you determine which TCP segments correspond to which application-level events?
2. Did you observe anything unusual observed in the protocol? If so, what was it? (For

example, did it follow the protocol.)
3. What is the delay between requesting a piece and the class peer’s response? Is this delay

consistent?

3.3.1 Sample Annotated Tcpdump File
Below is a snippet of what we expect your annotated tcpdump file to look like. Lines are trun-
cated to just show part of the tcpdump output.

>>>>>> start of new connection for segment 1 request
1143444533.571610 128.125.5.168.34906 > 204.57.0.97.36978: S [tcp sum ok]
1143444533.571627 204.57.0.97.36978 > 128.125.5.168.34906: S [tcp sum ok]
1143444533.572198 128.125.5.168.34906 > 204.57.0.97.36978: . [tcp sum ok]
>>>>>> connection established

>>>>>> segment 1 request
1143444533.572343 128.125.5.168.34906 > 204.57.0.97.36978: P [tcp sum ok]
1143444533.572355 204.57.0.97.36978 > 128.125.5.168.34906: . [tcp sum ok]
1143444533.573081 128.125.5.168.34906 > 204.57.0.97.36978: P [tcp sum ok]
1143444533.573221 204.57.0.97.36978 > 128.125.5.168.34906: . [tcp sum ok]
1143444533.573956 128.125.5.168.34906 > 204.57.0.97.36978: P [tcp sum ok]
1143444533.574093 204.57.0.97.36978 > 128.125.5.168.34906: . [tcp sum ok]
[....]

Draft of: March 27, 2006 7

4 File Layout, Turn In and Writeup
Your program must run on nunki.usc.edu, and be written in C or C++. It must compile using
/usr/usc/bin/gcc (if using C), or /usr/usc/bin/g++ (if using C++).

Your project must have the following for turn-in:

1. A Makefile for compiling all source files.
The Makefile should have the following targets:

all : builds all executables, including an executable file called ”projb”
clean : removes all old .o files (*.o) and all executables.

The make file must also use /usr/ccs/bin/make - so be careful not to use extensions that
will not work with SunOS’s make.

2. All C/C++ files needed to run your simulation. The whole project should be broken up
into at least two C/C++ files (modularize!!). If you have a good file hierarchy in mind,
break it up into more files, but the divisions should be logical and not just spreading
functions into many files. Indicate in a comment at the front of each file what functions
that file contains.

3. Header files (.h files) used to define all data structures you use, any #defines you use and
#includes.

4. freeloader-plan.txt, as described in 3.1.
5. analysis.txt, as described in 3.2.
6. analysis-discussion.txt, as described in 3.2.
7. phase-xx-tcpdump.txt, as described in 3.3.
8. phase-xx-annotated.txt, as described in 3.3.
9. A ”README” file. This file describes your project and must include the following sec-

tions:

Re-used Code : Did you use code from another source in your project? If not, say so.
If you did, say what functions you borrowed, and where they came from. (Also
comment this in the source code.) If you use the class timer code, you must say this
here and describe any changes you made to it. If you used the TA code for Project
A, please note that here.

Idiosyncrasies : Is there anything in your code that does not work? Is there a phase you
didn’t implement or test?

Take time to write a good ”README” file. It should not be just a few sentences. You need
to take some time to describe what you did and especially anything you didn’t do. Expect the
grader to take off more points for things they have to figure out are broken (rather than learning
about the problems through your ”README” file).

5 Submission
On nunki, create a directory of all the files you want to turn in and call this directory ”projb-xxx”,
where ”xxx” is your username on nunki.

TEST your code before turning it in. Sanity check what you’re turning in. Run a few tests to
make sure you’re turning in your most up-to-date code.

Draft of: March 27, 2006 8

Do not turn in any binaries. Remove all output text files your project produces (xx-file.dat,xx.config,xx.out
etc.).

Then create a tar file of this directory by running the following command from the directory
containing your ”projb-xxx” directory:
% tar cvf projb.tar projb-xxx

If you are turning in your project on or before the deadline, turn in your tar file by running
the following on nunki:
% submit -user csci551 tag projb projb.tar

If you are turning in your project late, but would like to use your slip-day please email the
TA that you will be using your slip day and turn in your tar file by running the following on
nunki:
% submit -user csci551 tag projbSlip projb.tar

If you are turning in your project late and will not be using your slip-day turn in your tar file
by running the following on nunki:
% submit -user csci551 tag projbLate projb.tar

6 Cautionary Words
In view of what is a recurring complaint near the end of the project, we want to make it clear
that the target platform on which the project is suppose to run is SunOS. Although students are
encourage to develop their programs on their personal machines, the final project must run on
nunki.usc.edu under SunOS. If you choose to do initial development on other machines, make
sure you include only the libraries in your code that are available on nunki.

All students are expected to write ALL their code on their own. Copying any code from
friends is plagiarism and any copying of code will result in an F for the entire course. Any li-
braries or other code that you did not write must be listed in your ”README” file. All programs
will be compared using automated tools and by the grader to detect any similarities between
turned in code from students this year as well as code turned in in previous years. Any demon-
stration of code copying will result in an F for the entire course.

IF YOU HAVE ANY QUESTIONS ABOUT WHAT IS OR ISN’T ALLOWED, TALK TO THE
TA OR PROFESSOR. ”I didn’t know” is not an excuse.

You should expect to spend at least 5-15 hours or more on this assignment. Please plan
accordingly. If you leave all the work until the week before it is due, you are unlikely to have a
successful outcome.

