
The Jini™ architecture exemplifies a new approach to computing

systems—making the network the central connecting tissue. By replacing the

notion of peripherals and applications with that of network-available services

and clients that use those services, the Jini system breaks down the conven-

tional view of what a computer is, while including new classes of devices in

a unified architecture.

Jim Waldo

A federation of spontaneously networked electronic
components of all types can communicate, interact, and
share their services and functions, as explained
by Jini’s lead architect.

THE JINI ARCH I
NETWORK-CENT R

Jini technology assumes a changing net-
work, in terms of both the components
that make up the network and the way
these components interact. Networks are
generally long-lived entities that, as they
grow to include ever-larger populations of

users and machines, become increasingly
difficult to upgrade as a single entity. That’s
why the Jini architecture is designed
around support for incrementally upgrad-
ing network components (hardware and
software) [9]. So, for example, installing a

76 July 1999/Vol. 42, No. 7 COMMUNICATIONS OF THE ACM

08 Waldo lo 6/14/99 6:53 PM Page 76

TE
R

R
Y

M
IU

R
A

H ITECTURE FOR
T RIC COMPUTING

network printer in a Jini environment
involves simply plugging it into the net-
work and turning on the power; remov-
ing it from the network involves no
more than unplugging it.

Because it is designed for the network,
Jini challenges the presuppositions that
have shaped conventional thinking about
computers and how software is written
for them. The result is a system that offers
considerable new power but is simpler to
use and adapt than current systems.

Jini allows anything with a processor,
some memory, and a network connec-
tion to offer services to other entities on
the network or to use the services that are
so offered. This class of devices includes
all the things we traditionally think of as
computers but also most of the things we
think of as peripherals, such as printers,
storage devices, and specialized hard-
ware. In the near future, the definition
will also encompass a host of other
devices, such as cell phones, personal
digital assistants, and microprocessor-
controlled devices, such as televisions,
stereo components, and even modern
thermostats.

Making the network central requires a
design that allows updates and changes
to individual components without the
wholesale shutdown of the network.
Unlike a single machine, a large network
cannot be shut down without great diffi-
culty; updating the entire network is
more difficult still. So the Jini system
allows upgrades and updates to be
installed and used by the components
being networked without requiring that
the network be shut down or all individ-
ual components be updated.

An additional result of building
around the network is that the data and
code running on any device in the net-
work cannot be assumed by users or
developers to have been built especially
for that device. Indeed, given the
longevity of networks and the rapid rate
of change in small devices, the code and
the information used on a particular
processor is often constructed or gath-
ered long before the processor is
designed or built.

The combination of rapid change and
long-running networks imposed another
goal on Jini’s designers. Users of a Jini-

COMMUNICATIONS OF THE ACM July 1999/Vol. 42, No. 7 77

08 Waldo lo 6/14/99 6:55 PM Page 77

78 July 1999/Vol. 42, No. 7 COMMUNICATIONS OF THE ACM

based network should be able to add or remove mem-
ber components without having to update other
member components in the network community.
Further, the way these components communicate
with one another had to be able to change over time.

A final goal for Jini’s designers was imposed by the
size of today’s networks and how rapidly they are
growing. If we have all the embedded systems that
could possibly be given access to a network as part of
our system, Jini technology has to be able to scale to
levels previously unthought of. (The specifications for
the Jini system, along with the source code for the ref-
erence implementation, are at www.sun.com/jini.)

A Simple Set of Conventions
Jini technology is not a distributed operating system (in
the traditional sense) or an application. It is, in a classic
sense, a system defining a small, simple set of conven-
tions that allows services and clients to form a flexible
distributed system that can change easily over time.

We separated the system’s various components into

the infrastructure, the program-
ming model, and the clients and
services themselves. While each of
these components is logically
independent, together they can
use one another to make an over-
all system that is more flexible and
reliable than the sum of its parts.

Each component of the Jini
system can be viewed as a logical
extension of the Java language
system to the fully distributed
case [1, 3] (see Figure 1). The Jini
infrastructure is built on the Java
Remote Method Invocation sys-
tem, which has been part of the
Java platform since the release of
Java 1.1 in January 1997 [12].
On top of this base, Jini adds to
the infrastructure two compo-

nents: the discovery protocol, which allows an entity
wishing to join a Jini network to find a lookup ser-
vice, and the lookup service, which acts as a place
where services advertise themselves and clients go to
find a service.

The Jini programming model consists of three sets
of interfaces meant to extend the usual single virtual
machine programming model at the core Java pro-
gramming libraries to allow the connection of dis-
tributed objects in robust ways. One set of interfaces
defines a distributed event model that is an extension
of the standard Java event model in Java Beans [7]. A
second set of interfaces enables a two-phase-commit

protocol—a simplified distributed version of the
transaction model in the Java transaction service [8].
Finally, there is a set of interfaces and classes that
define the notion of leasing, developed specifically for
problems in resource allocation and reclamation in
distributed systems.

The Jini system’s services and the clients that use
them are open-ended; the services offered depend on
the Jini federation—the informal group of clients and
services that use the Jini-defined interaction pat-
terns—in question and the time one happens to be
looking at the federation. The other parts of the sys-
tem aid in offering and finding these services. The vast
range of services that can live in the system includes
hardware implementations of Jini interfaces, software
services that act as distributed components, and hard-
ware/software combinations.

Jini and Java
The Jini system is Java-centric—because it builds on
the existing Java environment and because it requires

Figure 1. Jini system structure, including its
relationship with the Java language.

ServicesInfrastructure

Java

Jini

Java virtual machine

Java Remote
 Method
 Invocation

Discovery
Lookup service

Leasing
Transactions
Distributed events

JavaSpaces
Transaction manager

Enterprise Java Beans
Java naming and
 directory services
Java transaction service

Beans
Swing graphics
 toolkit

Programming
Model

Lets objects find
and communicate
with one another

Everything else
is a service

Adds simple APIs
for remote
objects and

basic distributed
computing

Jini service Lookup service

Figure 2. Jini stores the
proxy for a service in the Lookup service

as part of registration

Discovery request

Discovery response

Service registration

Service
proxy
object

08 Waldo lo 6/14/99 6:55 PM Page 78

features that are widely available only within the
Java platform. The Jini enabler is the ability of a
service to move code into a client that wants to
make use of that service. Such mobility is not
unique to the Java environment; indeed, other sys-
tems, such as Inferno, a network operating system
from Bell Laboratories [2], Telescript, an object-
oriented programming language from General
Magic, Inc. [11], and Tcl, a scripting lan-
guage from Scriptics Corp. [6], have all
been used for mobile code.
However, the Java environ-
ment combines mobile code
with other important properties
that make exploitation of that
mobility easy and safe.

Java’s most basic property is
that it turns an otherwise het-
erogeneous network of comput-
ing entities into a homogeneous
collection of Java virtual
machines. By ensuring a basic
and consistent environment in
which the Jini system can exist,
services written in the Java lan-
guage can provide implementa-
tions that run in the
environment of the clients that
want to use these services.

While the Java environment
provides homogeneity with
respect to the virtual machine
and its basic class libraries, the
resources on a particular machine
can vary widely. But in a Jini
environment, such resource
variations are far less important
than they would be in a more tra-
ditional mobile-code environ-
ment, since programs written for
the Jini environment look for all
such resources on the network, not
only those on an individual machine.

A second property enabled by the Java environ-
ment is mobile object code. Most software engi-
neers are accustomed to the notion of code
portability, but it has always been source code that is
portable. Java allows the byte codes the Java source
is compiled into to be moved from machine to
machine. This portability also yielded Java’s “write-
once-run-everywhere” slogan.

The write-once-run-everywhere property of Java
byte codes, when coupled with the dynamic nature
of Java, allows object code to be moved and dynam-

ically loaded into a process even while the process
is running. The Jini system uses the dynamic mov-
ing and loading of code to allow new functions to be
introduced into a running program. This dynamic
nature of the Java environment is a third enabler of
the Jini system.

Being able to move code to a new system and
dynamically load that code into a running process
allows great flexibility, but it also introduces serious

risk to the program accepting the
code. Allowing code to be
imported into a running process
from possibly unknown sources

requires a level of trust few users
are willing to grant. However,
Java’s inherent security can be
relied on to allow such trust.

Another property of the Java
environment enabling Jini is its
inherent safety—in the sense of
referential integrity, array-
bounds checking, and type

safety. The Java security model
also allows fine-grain control of

the operations that can be per-
formed by any code.

While the Jini system design
assumes the Java environment
will run on all components, Jini
requires only that there be a Java
virtual machine somewhere on

the network. Components unable to
run the Java environment can del-
egate functions requiring a Java

virtual machine to this other
machine [10].

Spontaneous Networking
The Jini infrastructure, combined
with the Java environment’s ability
to move code safely, allows the sys-

tem to represent a spontaneous form
of networking. Services and clients can join or

leave a network federation anytime. More impor-
tant, new and enhanced services can be intro-
duced to extend the functionality of the
networked federation.

The notion of a proxy is central to the Jini sys-
tem—as well as to many other distributed systems.
A proxy is a local object that stands in for the
remote object. While presenting the same pro-
grammatic interface to the local code, the proxy
deals with any network-related functions, transmit-
ting any parameters to the remote service and receiv-

COMMUNICATIONS OF THE ACM July 1999/Vol. 42, No. 7 79

EACH

COMPONENT

OF THE JINI

SYSTEM CAN BE

VIEWED AS A

LOGICAL

EXTENSION OF

THE JAVA

LANGUAGE

SYSTEM TO

THE FULL

CASE.

08 Waldo lo 6/14/99 6:55 PM Page 79

ing any return values from that service.
A service (hardware or software) that wants to join

a Jini federation sends out a packet, multicast over the
LAN to a well-known port, asking for any lookup ser-
vice to respond. The packet might specify that only
lookup services within a particular (named) group
respond, but in the simplest case, any and all lookup
services on the local network would respond. The
packet also contains the information necessary for any
lookup service to respond to the requester.

Upon receipt of such a request, a lookup service
responds by sending the requester a local proxy to the
lookup service. This proxy, when loaded into the Java
virtual machine running on the requester, contains
enough information that, if the code needed for the
proxy is not present at the site of the requester, it can
be downloaded over the network. Therefore, the
proxy returned to the requester is always matched to
the lookup service that sent it (see Figure 2).

Upon receipt of a proxy for a lookup service, a ser-
vice can register to offer itself for use to other mem-
bers of the Jini federation by placing a proxy object of
its own in the lookup service. If the service has
received a response to more than one lookup service,
it can register itself in any or all of these services.

Clients looking for a service find the lookup service

in the same way—by multicasting a discovery
request. Upon receipt of a proxy from any available
lookup service, a client can request a service. Such a
request takes the form of asking for an object imple-
menting a particular Java language type. So, for exam-
ple, a client could ask for something—either
hardware or software—that implements a Java print-
ing interface, rather than asking for something called
a printer (see Figure 3).

This distinction is important, as it allows the
lookup service to return a subtype of the requested
type. If a client requests something of type printer,
the lookup service is permitted to return a proxy for a
subtype of the printer type, possibly a color printer. As
in any strongly typed object-oriented system, this sub-
type includes all the characteristics of the requested
super type, but also has additional behaviors. The
client can then use these additional behaviors, which
can be found through the Java language’s reflection
and type-discovery operations. If the client needs the
code that implements the new behaviors, this code is
downloaded when the proxy is recreated in the client’s
Java virtual machine.

Since the proxy used by the client to talk to a ser-
vice is placed in the lookup service by the entity to
which it communicates, the proxy can know details
about the service to which it talks. All the client needs
to know about the proxy is the Java interface it sup-
ports. This interface-based communication means
that the proxy and the service can talk by way of
whatever protocol they need. Further, the way the
proxy talks to the service can change over time with-
out the client’s needing to be altered or even to be
aware of the change (see Figure 4).

The ability of the service to move code into the
client means that all the client has to worry about is
the interface to the service. The actual implementa-
tion of the interface is a private matter between the
service and the proxy supplied by the service. Since
the client finds the service through its Java language
type, the client knows the programmatic interface
needed to talk to the service. This interface-based
approach moves object-oriented programming tech-
niques out of the address space and onto the network;
all the client need worry about is what it needs done
(expressed in the interface), not how it is done.

The ability to move code from the service to its
client is the core difference between the Jini environ-
ment and other distributed systems, such as the Com-
mon Object Request Broker Architecture (CORBA)
[4] and the Distributed Common Object Model
(DCOM) [5]. In such systems, the code used to com-
municate with a service is associated with the client
and knows how to transfer information to the service

80 July 1999/Vol. 42, No. 7 COMMUNICATIONS OF THE ACM

Jini client Lookup service

Discovery request

Discovery response

Lookup request

Lookup response

Figure 3. Upon receipt of a proxy
from a lookup service associated with Jini,

a client can make requests of a service.

Service
proxy
object

Jini client

Figure 4. The proxy and the service can
communicate via whatever protocol they need.

Network communication is between the proxy
provided by the service and the service itself,
without intervention from the lookup service.

Service
proxy
object

Jini service

08 Waldo lo 6/14/99 6:55 PM Page 80

using a static protocol defined in terms of an inter-
face definition language, which defines the infor-
mation exchanged. This built-in knowledge means
that any change in the communications protocol
requires a coordinated change in both the client and
the service.

Using mobile code, the Jini environment down-
loads the code used to communicate with the ser-
vice into the client at the time the client
wants to use the service. Changes in the
protocol are private to the ser-
vice and to the code sent to the
client by that service. This privacy
allows changes to be propagated as
needed without the client’s being
aware of the changes.

The discovery protocol and
the lookup service allow clients
and service providers to join a Jini
federation spontaneously. However,
a genuinely spontaneous federation
also requires that clients and ser-
vices be able to leave the federa-
tion easily in a way that is not
disruptive to its other members.
The ability to leave is accomplished
through the Jini programming
model, which includes the notion
of “leasing” resources. Services and
clients can leave a Jini federation
easily by way of the Jini leasing
model.

Jini’s leasing model introduces
time into the allocation of
resources. A Jini member com-
ponent offering a resource does
so through a lease, in a way that
does not allow the resource to be
used until it is explicitly released.
The lease represents a period of
time during which the resource is
available. The client wanting the
resource requests a lease period, but the
actual period of the lease is determined by the
grantor of the resource.

Even a lease that is handed out can be cancelled by
the client holding the lease—if the client is finished
with the leased resource before the lease expires. The
lease can also be renewed—if the client requests it
and the grantor agrees. However, when the lease
expires, the lease grantor may free up the leased
resource, and the lease holder knows the resource’s
availability is no longer guaranteed.

To see how Jini service leasing works, consider the

Jini lookup service, which leases service registrations.
Any service registering with a lookup service is
granted a lease on that registration. Cancelling the
lease is equivalent to unregistering with the lookup
service. The service is expected to renew the lease
for as long as it wants to be available to clients look-

ing for that kind of service.
However, if the lease expires because it was not

renewed (due to, say, a network failure, a service
crash, or the service’s being

abruptly removed from the net-
work), the service registration is
dropped. Such lease expiration

allows services to be removed
from the Jini federation without
warning or administrative inter-
vention. Moreover, the federa-
tion can reflect the loss of that
particular service in a timely
fashion. This quick reflection
of the loss of a service repre-
sents the other half of

spontaneous networking, com-
plementing the discovery and

join functions.

Federation and
Centralized Control
In the broadest sense, a Jini fed-
eration is defined by the set of
services registered with a partic-

ular (set of) lookup service(s) and
the clients using these lookup
services to find these registered

needed services.
But the term “federation” con-

veys more than just this limited def-
inition. In a federated system of
government, most of the power
belongs to the local authorities,
with federal authorities having

only the authority to ensure local entities
work together. Similarly, the Jini system aims to

provide the minimal set of rules to allow clients
and services to find each other and interact. By
supplying the lookup service and the discovery
protocol, a Jini federation dictates how its mem-

bers join, leave, and find one another. And by dic-
tating the use of the Java language’s type system, the
Jini federation dictates how services are identified.
The Jini programming model codifies certain
common styles of object interaction. Finally, by
requiring that the proxy code for a service be down-
loadable, the Jini federation dictates how the ser-

COMMUNICATIONS OF THE ACM July 1999/Vol. 42, No. 7 81

THE JINI SYSTEM

AIMS TO PROVIDE

THE MINIMAL SET

OF RULES TO

ALLOW CLIENTS

AND SERVICES

TO FIND EACH

OTHER AND

INTERACT.

08 Waldo lo 6/14/99 6:55 PM Page 81

vices and their clients manage change in their imple-
mentations and the way they are extended.

Using a federated model instead of the usual model
of centralized control (as in distributed operating sys-
tems) was a conscious decision by the Jini designers.
While centralized systems can be optimized for some
cases, changing them over time is difficult. More
important, centralized systems do not scale well—and
as Jini federations (and federations of federations)
begin to emerge, they have to scale to very large num-
bers. The federated approach allows such scaling in
ways not available to centralized systems.

Disk-centric Computing
The concentration on the network, the ability to
move code, and the federated nature of the Jini sys-
tem result in an architecture that is fundamentally
different from the one used for the past 50 years.
Traditional computing architectures are built
around three central components: the central pro-
cessing unit, which does the computing; dynamic
memory, where temporary results are stored; and a
disk, which acts as stable storage. These elements
have supported the computing industry since the
earliest days of the stored-program computer in the
late 1940s and early 1950s.

Given the changes in the technology, it is surpris-
ing that this architecture has remained so stable for so
long. Each of the components has decreased in size
and increased in capacity and speed during the 50
years of computing history, but their relationship has
remained remarkably constant. The transitions from
mainframes to minicomputers to workstations to per-
sonal computers changed many things about the way
we build hardware and design software. But in all
these transitions, the base of the computer itself has
remained the CPU, dynamic memory, and a disk for
stable storage.

We are so familiar with this kind of architecture,
we tend to forget that there are implications to this
approach. An obvious example is the nearly univer-
sal use of virtual memory, which allows part of the
disk to be used to augment a computer’s physical
memory. The fact that virtual memory is part of
nearly every commercial operating system is an out-
growth of the assumption that memory and disk are
always present together.

There are more interesting, and subtler, implications
of this architectural assumption. For example, because
we assume that the processor is tightly associated with
a disk, we store programs on disks that are compiled
specifically for a particular kind of processor. Associat-
ing storage and processor leads to binary programs that
are finely tuned to a particular kind of processor—and

cannot be used on any other kind.
Moving to a network-centric design means that

these assumptions cannot be made. The code that is to
be run on a particular processor may come from any
part of the network and therefore cannot be specialized
for any particular kind of processor. Indeed, given the
long-lived nature of networks, the code run on a par-
ticular processor may have been placed on the network
long before the processor was even designed.

While processor-independence makes it impossible
to specialize the code to a processor, the coupling
between code and machine is far looser than has been
the case historically. This looser coupling allows new
services to be introduced into the network and inject
their code into the processors that want to use the ser-
vice for instant connection. This architecture makes
the network the computer and allows connectivity to
achieve a simplicity never before possible.

References
1. Arnold, K., and Gosling, J. The Java Programming Language. Addison-

Wesley Longman, Reading, Mass., 1996.
2. Dorward, S., Pike, R., Presotto, D., Ritchie, D., Trickey, H., and Win-

terbottom, P. The Inferno Operating System. Tech. Rep., Bell Labora-
tories; see www.lucent.com/ideas2/perspectives/bltj/winter_97/pdf/
paper01.pdf.

3. Gosling, J., Joy, B., and Steel, G. The Java Language Specification.
Addison-Wesley Longman, Reading, Mass., 1996.

4. Object Management Group. Common Object Request Broker: Architec-
ture and Specification. OMG Doc. No. 91.12.1, 1991.

5. Rogerson, D. Inside COM. Microsoft Press, Redmond, Wash., 1997
6. Scriptics Corp. Tcl home page; see www.scriptics.com/.
7. Sun Microsystems, Inc., Java Beans documentation; see www.java.sun.

com/beans/glasgow/.
8. Sun Microsystems, Inc. Java transaction service specification; see www.

java.sun.com/products/jts/jts_090.pdf.
9. Sun Microsystems, Inc. Jini architectural overview; see www.sun.com/

jini/whitepapers/architecture.html.
10. Sun Microsystems, Inc., Jini device architecture; see www.sun.com/

jini/specs/deviceArch.ps.
11. Telescript Language Reference Manual; see www.science.gmu.edu/

~mchacko/Telescript/docs/telescript.html.
12. Wollrath, A., Riggs, R., and Waldo, J. A distributed object model for

the Java system. Comput. Syst. 9, 4 (Dec. 1996), 265–290.

Jim Waldo (jim.waldo@sun.com) is a Distinguished Engineer at
Sun Microsystems in Burlington, Mass., where he is the lead architect
of Jini, and an adjunct faculty member in the department of computer
science at Harvard University, Cambridge, Mass.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 1999 ACM 0002-0782/99/0700 $5.00

c

82 July 1999/Vol. 42, No. 7 COMMUNICATIONS OF THE ACM

08 Waldo lo 6/14/99 6:55 PM Page 82

