
1

15c_Stoica00a: CSci551 SP2006: © John Heidemann 1

Chord (Stoica, Morris, Karger,
Kaashoek, Balakrishnan)

[Stoica00a]

CSci551: Computer Networks
SP2006 Thursday Section

John Heidemann

15c_Stoica00a: CSci551 SP2006: © John Heidemann 2

Napster Digression
• digresson on napster:

– innovations: directory of stuff: search on names,
location of data, peer-to-peer sharing of that stuff

15c_Stoica00a: CSci551 SP2006: © John Heidemann 7

Key ideas
• distributed algorithm to locate nodes that have a key: a p2p

system
• goal: scale to many nodes, files, searches
• simple way to locate data:

– each key is mapped to a node
– put all nodes in a logical circle
– each node covers from its location to the next node’s location
– each node in the circle maintains fingers into exponentially far

places around the circle
– do binary search to find the exact location

• vs. Freenet: no anonymity, very efficient location of data
• vs. Napster: decentralized, but no replication of data (load

problems?), no search for names, but very efficient binary
search for contents

15c_Stoica00a: CSci551 SP2006: © John Heidemann 12

Their Performance Model
• main goal: locate data contents very efficiently

(and deterministically)
• basic performance: O(lg n) where n is number of

nodes
• caveats/complications:

– beware churn: nodes coming and going
• also beware node failure
• also network parititions

– must trust nodes
– assumes all nodes are equally fast to get to

• is this true? latency anywhere wired < 250ms
• but bandwidth varies quite a bit

15c_Stoica00a: CSci551 SP2006: © John Heidemann 16

Compare Location in Several
Peer-to-Peer Systems

• (given a key, how do you find the
contents)

• Napster: central server tells you where
to go

• FreeNet: hill-climbing algorithm
• Chord:

– binary search around ring

15c_Stoica00a: CSci551 SP2006: © John Heidemann 17

Basic Search in Key Space
• finger table lets you

quickly get around circle
– first step gets half way

there
– next step gets quarter
– etc.

• take advantage that in
Internet, everything’s
pretty close
– goal is few questions in

logical space, not asking
questions of topologically
near nodes

[Stoica00a, Figure 3a]

2

15c_Stoica00a: CSci551 SP2006: © John Heidemann 18

Mapping Real Nodes to Key
Space

• must map keys to
nodes to do search

• not all keys have
real nodes
– nodes must cover

whole space
– pointers point to

nodes that are
present

[Stoica00a, Figure 3b]

15c_Stoica00a: CSci551 SP2006: © John Heidemann 19

Node Joins
• must keep successors and finger table

current
• use successors for correctness

– can always fall back on them to find a key
• use finger table for performance

– must update it, but can tolerate temporary errors
• keep successor and predecessor so we can

update our neighbors

15c_Stoica00a: CSci551 SP2006: © John Heidemann 20

Join Example
before node 6 after node 6

when new node enters, it establishes its successor and predecessor
and then builds its finger table, and moves any keys it now “owns”

[Stoica00a, Figure 4]

15c_Stoica00a: CSci551 SP2006: © John Heidemann 25

Topology Maintenance
• uses stabilization algorithm to confirm ring

is correct
– every 30s, confirm that your successor knows

about you
• if not, either fix it, or yourself
• why would it be wrong? if you joined and they

didn’t get updated
• why would you be wrong? someone joined in

between you and your successor
• dealing with unexpected failures:

– keep successor list of r next neighbors
• (so we can lose up to r and still rebuild the ring)

15c_Stoica00a: CSci551 SP2006: © John Heidemann 26

Key Distribution
• data is distributed

unevenly
– since data hashes and

node IDs are random
– and node distribution

around ring may be
uneven

• to reduce this, create
virtual nodes
– “more” nodes gives

data more chance to
even out

[Stoica00a, Figure 8a]

15c_Stoica00a: CSci551 SP2006: © John Heidemann 27

Other Performance Results
• analytic results:

– O(log N) route storage, O(log N) lookup cost,
O(log2 N) cost to join/leave

– intuition: why O(log N)
– (with high probability)

• search path length scales wrt log(N) nodes
• experimental results:

– latency seems reasonable
– fault recovery seems to work

3

15c_Stoica00a: CSci551 SP2006: © John Heidemann 32

Comparing to Other p2p Systems
• search:

– finding names: nothing
– name->key: hash
– key->location: binary serach

• update: straightforward, just give it to the right node
• redundancy: no explicit replication of node content, but do

talk about finger table replication
– lack of file replication is very weak

• very poor reliability if any node is lost
• very poor performance if any node is hot

– no explicit management of out-of-space
• other features:

– strong algorithm bounds on performance
– no relationship between hash and physical location

15c_Stoica00a: CSci551 SP2006: © John Heidemann 35

Other questions/observations?
• xxx

