Internet Overview

(got to slide 35 on Jan. 12, rest on Jan. 19)

CSci551: Computer Networks SP2006 Thursday Section John Heidemann

2b_intro_internet: CSci551 SP2006 © John Heidemann

What Is....

The Global Network

- Structure
 - getting started
 - what and where?
 - getting data there
- Metrics

2b_intro_internet: CSci551 SP2006 © John Heidemann

Getting started: A Host

- host configuration needs:
 - network card, ISP account, IP address, server access (DNS, etc), wireless password
- how much is automated? how much *could* be automated?
 - manually enter password
 - DHCP: Dynamic Host Config Protocol

2b_intro_internet: CSci551 SP2006 © John Heidemann

Getting started: A Network

- network configuration needs:
 - router, cables, IP address range, maybe applications or servers on the machines, maybe an internet connection
- automated?
 - not much is automated todays
 - except in some cases (Mac wireless)

2b_intro_internet: CSci551 SP2006 © John Heidemann

13

Getting started: An ISP

- ISP needs:
 - a big block of addresses
 - connections to one or more other ISPs, peerings
 - multiple routers, probably at exchange point (a POP or MAE)
 - $\,-\,$ servers for your users: mail, web, etc.
 - servers for you: monitoring, etc.
 - an AUP (Acceptable Use Policy)
 - a lawyer

2b_intro_internet: CSci551 SP2006 © John Heidemann

14

Different Kinds of Addresses • will talk about names, addresses, binding in [Saltzer81a] • for now, what are names and addresses in the Internet? – xxx

Finding Things: The USER's Perspective

- · search engines
 - google on "cs551 usc"
- http://www.isi.edu/~johnh/TEACHING/CS 551/
 - bunch of pieces...
 - prototocol
 - · server hostname
 - path

2b_intro_internet: CSci551 SP2006 © John Heidemann

31

What Is.... The Global Network Structure - getting started - what and where? - getting data there Metrics 2b, intro, internet: CSci551 SP2006 © John Heidemann

How Do the Routers Know Where to Send Data?

- Forwarding tables at each router populated by routing protocols.
 - routing tables optimize distance, subject to policies
 - routing tables may have more complete info and are used to compute the routes and populate forwarding tables
 - Forwarding tables then just give next hops
- · Default vs. default-free routing
- Will talk more about this next week.

2b_intro_internet: CSci551 SP2006 © John Heidemann

34

• Got to here on Jan 12; will conclude next time

2b_intro_internet: CSci551 SP2006 © John Heidermann 35

What Is....

The Global Network

- Structure
 - getting started
 - what and where?
 - getting data there
- · Metrics
- · Failure modes

2b_intro_internet: CSci551 SP2006 © John Heio

Network Metrics

- Bandwidth (should really be *bitrate*)
 - Transmission capacity (a.k.a. How many bits can fit in a section of a link?)
- Delay
 - queueing delay
 - Propagation delay (limited by c)
- Delay-bandwidth product
 - Important for control algorithms

2b_intro_internet: CSci551 SP2006 © John Heide

What Is....

2b_intro_internet: CSci551 SP2006 © John Heid

Robustness

- becoming a critical issue
 - cf. the Microsoft memo about "trusted computing" (security robustness)
 - phone networks promise "5 nines" of reliability: 99.999% uptime
 - (= 5 minutes of outage per year
 - the Internet is *not* there

2b_intro_internet: CSci551 SP2006 © John Heiden

Common Network Failures

- location in a 911 call
- router failure
- · physical links can fail
- · servers at the other end
- · misconfiguration of stuff
- · congestion
- malware: viruses, worms, denial-of-service, trojans / phishing

2b_intro_internet: CSci551 SP2006 © John Heidemann

43

(Lack of) Security in the Network

- many things are too easy:

 virus, worms, trojan horses / phising
 - techniques to improve things: authentication,
 - different things provide different benefits:
 integrity of data
 confidentiality
- disclosure of passwords (snooping, etc.)
- but strong security is possible
 - requires *all* of good protocols, implementations, practices, and people

2b_intro_internet: CSci551 SP2006 © John Heiden

48

Engineering Trade-offs

Network can be engineered to provide:

- · reliability
- low delay / high bandwidth
- low cost

Pick any two

2b_intro_internet: CSci551 SP2006 © John Heidemann

Some Backsliding About Robustness

- NAT boxes
- application-level gateways
- layer-3 caches
- · user tweaking
- all violate the end-to-end principle, and can reduce robustness

2b_intro_internet: CSci551 SP2006 © John Heidemann

50

What is...

Technology

Or, how does technology interact with the Internet.

2b_intro_internet: CSci551 SP2006 © John Heideman

51

How does tech affect the net?

- · technology drives much of the net
 - although marketing and politics also have influence
- examples:
 - world wide web
 - wireless: mobility
 - always connected but makes configuration harder
 - and think about what the end users really care about, not just the technology
 - sensor nets
 - optical networking

2b_intro_internet: CSci551 SP2006 © John Heidemann

55