LDplayer: DNS Experimentation at Scale

USC/ISI Technical Report ISI-TR-722, Novemeber 2017

Liang Zhu

*

John Heidemann

USC/Information Sciences Institute

Abstract

DNS has evolved over the last 20 years, improving in
security and privacy and broadening the kinds of appli-
cations it supports. However, this evolution has been
slowed by the large installed base with a wide range
of implementations that are slow to change. Changes
need to be carefully planned, and their impact is diffi-
cult to model due to DNS optimizations, caching, and
distributed operation. We suggest that experimentation
at scale is needed to evaluate changes and speed DNS
evolution. This paper presents LDplayer, a configurable,
general-purpose DNS testbed that enables DNS experi-
ments to scale in several dimensions: many zones, mul-
tiple levels of DNS hierarchy, high query rates, and di-
verse query sources. LDplayer provides high fidelity
experiments while meeting these requirements through
its distributed DNS query replay system, methods to re-
build the relevant DNS hierarchy from traces, and ef-
ficient emulation of this hierarchy of limited hardware.
We show that a single DNS server can correctly emulate
multiple independent levels of the DNS hierarchy while
providing correct responses as if they were independent.
We validate that our system can replay a DNS root traf-
fic with tiny error (& 8ms quartiles in query timing and
+0.1% difference in query rate). We show that our sys-
tem can replay queries at 87k queries/s, more than twice
of a normal DNS Root traffic rate, maxing out one CPU
core used by our customized DNS traffic generator. LD-
player’s trace replay has the unique ability to evaluate
important design questions with confidence that we cap-
ture the interplay of caching, timeouts, and resource con-

*Research by Liang Zhu and John Heidemann in this paper is par-
tially sponsored by the Department of Homeland Security (DHS) Sci-
ence and Technology Directorate, HSARPA, Cyber Security Division,
BAA 11-01-RIKA and Air Force Research Laboratory, Information
Directorate under agreement number FA8750-12-2-0344, and contract
number DO8PC75599. The U.S. Government is authorized to make
reprints for Governmental purposes notwithstanding any copyright.The
views contained herein are those of the authors and do not necessarily
represent those of DHS or the U.S. Government.

straints. As an example, we can demonstrate the memory
requirements of a DNS root server with all traffic running
over TCP, and we identified performance discontinuities
in latency as a function of client RTT.

1 Introduction

The Domain Name System (DNS) is critical to the In-
ternet. It resolves human-readable names like www.
iana.org to IP addresses like 192.0.32.8 and service
discovery for many protocols. Almost all activity on
the Internet, such as web-browsing and e-mail, depend
on DNS for the correct operations. Beyond name-to-
address mapping, DNS today has grown to play various
of broader roles in the Internet. It provides query en-
gine for anti-spam [14] and replica selection for content
delivery networks (CDNs) [19]. DANE (DNS-based Au-
thentication of Named Entities) [11] provides additional
source of trust by leveraging the integrity verification of
DNSSEC [3]. The wide use and critical role of DNS
prompt its continuous evolution.

However, evolving the DNS protocol is challenging
because it lives in a complex ecosystem of many imple-
mentations, archaic deployments, and interfering mid-
dleboxes. These challenges increasingly slow DNS de-
velopment: for example, DNSSEC has taken a decade to
deploy [17] and current use of DANE is growing but still
small [25]. Improvements to DNS privacy are needed [5]
and now available [24, 12], but how long will deploy-
ment take?

DNS performance issues are also a concern, both for
choices about protocol changes, and for managing in-
evitable changes in use. There are a number of important
open questions: How does current server operate under
the stress of a Denial-of-Service (DoS) attack? What is
the server and client performance when protocol or archi-
tecture changes? What if all DNS requests were made
over QUIC, TCP or TLS? What about when DNSSEC
keys change size?

www.iana.org
www.iana.org

Ideally models would guide these questions, but DNS
is extraordinarily difficult to model because of inter-
actions of caching and implementation optimizations
across levels of the DNS hierarchy and between clients
and servers. Estimating system-wide costs are also quite
difficult: for example, accounting for the memory of
TCP and TLS is difficult since it is split across the kernel,
libraries, and in the application.

Definitive answers to DNS performance therefore re-
quire end-to-end controlled experiments and trace replay.
Experiments enable testing different approaches for DNS
and evaluating the costs and benefits against different in-
frastructures, revealing unknown constraints. Trace re-
play can drive these experiments with real-world current
workloads, or with extrapolated “what-if” workloads.

Accurate DNS experiments are quite challenging. In
addition to the requirements of modeling, the DNS sys-
tem is large, distributed, and optimized. With millions
of authoritative and recursive servers, it is hard to recre-
ate a global DNS hierarchy in a controlled experiment.
A naive testbed would therefore require millions of sep-
arate servers, since protocol optimizations cause incor-
rect results when many zones are provided by one server.
Prior DNS testbeds avoided these complexities, instead
studying DNSSEC overhead in a piece of the tree [2] and
query distribution of recursive servers [22]. While effec-
tive for their specific topics, these approaches do not gen-
eralize to support changing protocols, large query rates,
and diverse query sources across a many-level hierarchy.

In this paper, we present LDplayer, a configurable,
general-purpose DNS testbed that enables DNS experi-
ments at scale in several dimensions: many zones, nu-
merous levels of DNS hierarchy, large query rates, and
diverse query sources. Our system provides a basis for
DNS experimentation that can further lead to DNS evo-
lution.

Our first contribution is to show how LDplayer can
scale to efficiently model a large DNS hierarchy and
playback large traces (§2). LDplayer can can correctly
emulate multiple independent levels of the DNS hier-
archy on a single instance of DNS server, exploiting a
combination of proxies and routing to circumvent opti-
mizations that would otherwise distort results. Our in-
sight is that a single server hosting many different zones
reduces deployment cost; we combine proxies and con-
trolled routing “pass” queries to the correct zone so that
the server gives the correct answers from a set of differ-
ent zones. To this framework we add a two-level query
replay system where a single computer can accurately re-
play more than 87 k queries per second, twice as fast as
typical query rates a DNS root letter. Multiple computers
can generate traffic at 10-100x that rate.

Second, the power of controlled replay of traces is that
we can modify the replay to explore “what if”” questions

in DNS evolution (§5). We demonstrate this capabil-
ity with two experiments. We explore how traffic vol-
ume changes if all DNS queries employ DNSSEC. We
also use LDplayer to consider how server memory and
client latency changes if all queries were TCP instead
of UDP. Other potential applications include the study
server hardware and software under denial-of-service at-
tack, growth of the number or size of zones, or changes
in hardware and software. All of these questions are im-
portant operational concerns today. While some have
been answered through one-off studies and custom ex-
periments or analysis, LDplayer allows evaluation of ac-
tual server software, providing greater confidence in the
results. For example, relative to prior studies of DNS
over TCP [24], our use of trace-replay provides strong
statements about all aspects of server memory usage and
discovers previously unknown discontinuities in client
latency.

2 LDplayer: DNS trace player

We next describe our requirements, then summarize the
and architecture and describe critical elements in detail.

2.1 Design Requirements

The goal of LDplayer is to provide a controlled testbed
for repeatable experiments upon realistic evaluation of
DNS performance, with the following requirements:

Emulate complete DNS hierarchy, efficiently: LD-
player must emulate multiple independent levels of the
DNS hierarchy and provide correct responses using min-
imal commodity hardware.

We must support many zones. It is not scalable to use
separated servers or virtual machines to host each zone
because of hardware limits and many different zones in a
network trace. A single server providing many zones of
DNS hierarchy does not work directly, because the server
gives the final DNS answer straightly and skips the round
trip of DNS referral replies.

Replays do not leak traffic to the Internet: Experi-
mental traffic must stay inside the testbed, without pol-
luting the Internet. Otherwise each experiment could
leak bursts of requests to the real Internet, causing prob-
lems for the Internet and the experiment. For the Internet,
leaks of replay from high-rate experiments might stress
real-world servers. For the experiment, we need to con-
trol response times, and queries that go to the Internet
add uncontrolled delay and jitter.

Repeatability of experiments: LDplayer needs to
support repeatable, controlled experiments. When an ex-
periment is re-run, the replies to the same set of query
replay should stay the same. This reproducibility is
very important for experiments that require fixed query-
response content to evaluate new transform in DNS,

such as protocol changes and new server implementa-
tions. Without building complete zone, the responses
could change over time when re-looked up. Some zones
hosted at CDNs may have external factors that influence
responses, such as load balancing.

Controlled variations in traffic, when desired: Re-
play must be able to manipulate traces to answer “what
if” questions with variations of real traffic. Since input is
normally binary network trace files, the main challenge
is how to provide a flexible and user-friendly mechanism
for query modification. We also need to minimize the
delay by query manipulation, so that input processing is
fast enough to keep up with real time.

Accurate timing at high query rates: LDplayer
must be capable of replaying queries at fast rates, while
preserving correct timing, to reproduce interesting real-
world traffic patterns for both regular and under attack.
However, both using a single host and many hosts have
challenges. Due to resource constraints on CPU and the
number of ports, a single host may not be capable to re-
play fast query stream or emulate diverse sources. A po-
tential solution is to distribute input to different hosts,
however, it brings another challenge in ensuring the cor-
rect timing and ordering of individual queries.

Support multiple protocols effectively: LDplayer
needs to support both connectionless (UDP) and
connection-oriented (TCP and TLS), given increasing
interest in DNS over connections [24]. However,
connection-oriented protocols bring challenges in trace
replay: emulating connection reuse and round-trip time
(RTT). The query replay system of LDplayer is the first
system that can emulate connection reuse for DNS over
TCP. Emulation of RTT is important for experiments
of connection-oriented DNS, because RTT will affect
protocol responses with extra messages for connection
setup, while connectionless protocols do not incur those
extra messages.

2.2 Architecture Overview

We next describe LDplayer’s architecture (Figure 1).
With captured network traces of DNS queries (required)
and responses (optional), a researcher can use our Zone
Constructor to generate required zone files. LDplayer
uses a logically single authoritative DNS server with
proxies to emulate entire DNS hierarchy (Hierarchy Em-
ulation). The single DNS server provides all the gener-
ated zone files. The proxies manipulate packet addresses
to achieve successful interaction between the recursive
and authoritative servers, such as providing correct an-
swers to replayed queries. As a distributed query sys-
tem, the Query Engine replays queries in the captured
traces. Optionally, the researcher can use Query Muta-
tor to change the original queries arbitrarily for different
replay, and query mutator can run live with query replay.

Pre-captured
Network trace

- T~

: -
Zone
_ Constructor)
Query |
| Engi Hierarch M
| | Engine Y Root, TLD,
I recursive| Emulation ¢ . SD)
= replay | \(TT=-=-- 000 oo
2 Iré Recursive Authoritative
8 L%— Server Server
SIE
318 [Authoritative | .-----=========--. N
2 s { Single zone >
erver - ;

Figure 1: LDplayer architecture

Each component in LDplayer addresses a specific de-
sign requirement from §2.1. In LDplayer’s zone con-
structor, we synthesize data for responses and gener-
ate required zone files by performing one-time fetch of
missing records (§2.3). We run a real DNS server that
hosts these reusable zone files and provides answers to
replayed queries, so that we can get repeatable experi-
ments without disturbing the Internet.

With generated zone files, we need to emulate DNS hi-
erarchy to provide correct answers. Logically, we want
many server hosts, one per each zone, like the real world.
However, we compress those down to a single server
process with single network interface using split-horizon
DNS [1], so that the system scales to many zones. For
easy deployment, we redirect the replayed experimen-
tal traffic to proxies, which then manipulate packet ad-
dresses to simplify routing configuration and discrimi-
nate queries for different zones to get correct responses
(§2.4). We could run multiple instances of the server to
support large query rate and massive zones, with routing
configuration that redirects queries to the correct servers.

In LDplayer’s query mutator, we pre-process the trace
so that query manipulation does not limit replay times.
We convert network traces to human-readable plain text
for flexible and user-friendly manipulation. After nec-
essary query changes, we convert the result text file to
a customized binary stream of internal messages for fast
query replay (§2.5). In principle, at lower query rates, we
could manipulate a live query stream in near real time.

In LDplayer’s query engine, we use a central con-
troller to coordinate queries from many hosts and syn-
chronize the time between the end queriers, so that LD-
player can replay large query rates accurately. The query

engine can replay queries via different protocols (TCP or
UDP) effectively. We distribute queries from the same
sources in the original trace to the same end queriers for
replay, in order to emulate queries from the same sources
which is critical for connection reuse (§2.6). LDplayer
replays queries based on the timing in the original trace
without preserving query dependencies.

2.3 Synthesize Zones to Provide Responses

To support experiment repeatability and avoid leaking
bulk experimental DNS queries to the Internet, we build
the zone files that drive the experiment once and then
reuse them in each experiment. We build zones by re-
playing the queries, once, against the real-world servers
on the Internet and harvesting these responses.

One-time Queries to the Internet: We need to build
a DNS hierarchy that includes answers to all the queries
that will be made during replay. When emulating an au-
thoritative server, we can often acquire the zone from its
manager, but when emulating recursive servers we must
recreate all zones that will be queried. (If any part of hi-
erarchy is missing, replayed queries may fail.) For exam-
ple, if . com delegation (NS records of .com) is missing
in the root zone, a recursive server will fail to answer all
the queries for . com names in experiments.

To build a DNS hierarchy that covers all queries, we
send all unique queries in the original trace to a recursive
server with cold cache and allow it to query Internet to
satisfy each query. We then capture the DNS responses
all authoritative servers that respond, recording traffic at
the upstream network interface of the recursive server.
Since the recursive server walks down the DNS hierar-
chy for each queries, the captured trace contains all au-
thoritative data needed to build zones for the parts of the
DNS hierarchy that are needed for the replay.

Zone construction need to be done only once (we save
the recreated zones for reuse) so any load it places on the
original servers is a one time cost. (We also prototyped
an alternative that primes these zones with replies from
the trace, but we found that caching makes raw traces
incomplete. We therefore rebuild the entire zone from
scratch to provide a consistent snapshot.)

Construct Zones from Traces: Given the traces cap-
tured at the recursive server, we next reverse the traces to
recreate appropriate zone data.

We convert traces to multiple zone files, since
a full DNS query (for example, mail.google.
com) may touch several different servers (root, .com,
googlemail.l.google.com, plus their authoritative
nameservers, DNSSEC records, etc.).

We first scan the whole trace and identify authorita-
tive nameservers (NS records) for different domains and
their host addresses (A or AAAA records) from all the re-
sponses. Since most of domains have multiple name-

servers (for example, google.com has 4 nameservers:
ns{1-4}.google.com), a recursive server may choose
any of them to trace the query based on its own strat-
egy. We group the set of nameservers responsible for the
same domain, and aggregate all DNS response data from
the same group of nameservers by checking the source
address in responses. We then generate an intermediate
zone file from the aggregate data.

Since a nameserver can serve multiple different zones,
the intermediate zone file we generate may contain data
of different domains and may not be a valid zone file ac-
ceptable by a DNS server. We further split the response
data in the intermediate zone file by different domains,
and output corresponding separated zone files. Option-
ally we can also merge the intermediate zone files of mul-
tiple traces. To determine zone cuts (which parts of the
hierarchy are served by different nameservers), we probe
for NS records at each change of hierarchy.

Similarly, we can recreate a zone file for queries re-
playing at an authoritative server. Since only single au-
thoritative server is involved without the recursive, the
zone file reconstruction is straightforward.

Recover Missing Data: Sometimes records needed
for a complete, valid zone will not appear in the traces.
For example, a valid zone file needs SOA (Start of Author-
ity) record and NS records for the zone, however, those
records are not required for regular DNS use. We cre-
ate a fake but valid SOA record and explicitly fetch NS
records if they are missing.

Handle inconsistent replies: DNS queries sometimes
vary over time, such as replies to CDNs that balance load
across a cluster, or in the unlikely event that the zone is
modified during our rebuild. DNS records can be up-
dated. However sometimes those update conflict with
each other, such as multiple CNAME records for the same
name while only one allowed in principal. More often,
the address mapping for names may change over time,
such as content delivery network (CDN) redirecting by
updating DNS using its own algorithm.

By default, To build a consistent zone, we choose the
first answer when there are multiple differing responses.
Simulating the various CDN algorithms to give different
addresses for queries is future work.

2.4 Emulate DNS Hierarchy Efficiently

With zones created from traces, we next introduce how
we emulate DNS hierarchy in order to answer replayed
queries correctly in LDplayer. Handling queries to a re-
cursive server requires emulating multiple hierarchical
zones, while handling queries to an authoritative server
does not need to emulate hierarchy due to a single zone.

The greatest challenges of emulating full DNS hier-
archy in a testbed environment are scalability to support
many different zones and easy deployment. Since we use

.com
.com
.com
mail.google.com
mail.google.com
.com
googlemail.l.google.com
google.com
ns{1-4}.google.com

Recursive Authoritative
Proxy From: .com Server
From: Rec To: Aut all responses
To: .com (sport: 53)
Recursive Authoritative
TUN TUN
all queries From: Aut
(dport: 53) From: .com To: .com
Recursive To: Rec Authoritative
Stub
Server Proxy

Figure 2: Server proxies manipulate the source and des-
tination addresses in the queries and responses to make
routing work and get the correct responses.

real DNS records (such as real public IP addresses) in
zone files, the other challenge is how to make these zone
files work in a private testbed environment with local IP
addresses. A naive way would use separate authorita-
tive servers for each zone, each on its own server. Even
with virtual machines, such an approach cannot emulate
typical recursive workloads that see hundreds or thou-
sands of zones over days or weeks—it will encounter
limits of memory and virtual network interfaces. We see
549 valid zones in a 1-hour trace Rec-17 (Table 1) cap-
tured at a department-level recursive server. DNS server
software can host multiple zones in one server, but opti-
mizations built into common server software mean that
putting the whole hierarchy in one server gives differ-
ent results. (Asking for www.example. com will directly
produce an IP address from a server that stores the root,
.com, and example. com zones, not three queries.)

Scale to many zones with a single server: To emu-
late complete DNS hierarchy efficiently, instead we con-
tribute a meta-DNS-server: a single authoritative server
instance with a single network interface correctly emu-
lates multiple independent levels of DNS hierarchy us-
ing real zone files, while providing correct responses as
if they were independent.

Challenges: There are some challenges in making
the recursive server successfully interact with the meta-
DNS-server during query replay, because we use a single
server instance and a single network interface to provide
authoritative service to all relevant zones in the trace.

First, how do the queries sent by the recursive
server merge to the same network interface at meta-
DNS-server? Typically, if a recursive receives an in-
coming query (for example, www.google.com A) with
cold cache, it walks down the DNS hierarchy (for
example, root — com — google.com) and sends
queries to respective authoritative servers (for exam-
ple, a.root-servers.net — a.gtld-servers.net

—nsl.google.com). As aresult, the queries out of the
recursive have a set of different destination IP addresses.
Without changes, those queries will not be routed to the
meta-DNS-server by default.

Second, how does the meta-DNS-server know which
zone files to use in order to answer the incoming queries
correctly? When a recursive server resolves a incom-
ing query iteratively with cold cache, the query con-
tent sent by the recursive is the same, regardless of
which level of the DNS hierarchy it is contacting. As-
sume the meta-DNS-server receives a query (for exam-
ple, www.google.com A) which was meant to send to
the authoritative server of com. The meta-DNS-server
is not able to identify the target zone (com) based on
the query content. The answers from root, com and
google.com zones are are completely different (a refer-
ral answer of com, a referral answer of google. com, and
an authoritative answer of www.google.com A respec-
tively). A wrong answer which is not from the correct
zone (com) can lead to a broken hierarchy at the recur-
sive and further failure of query replay.

Third, how are meta-DNS-server’s responses accepted
by the recursive server? Assume the meta-DNS-server
can pick the correct zone (for example, com) to answer
queries (we will present the solution later). All the reply
packets by meta-DNS-server have the same meta-DNS-
server’s address as source IP addresses. Even if the re-
cursive receives this “correct” reply, it will not accept
the reply because the reply source address (the address
of meta-DNS-server) is not matched with the original
query destination address (for example, the address of
a.gtld-servers.net)

Solutions: To overcome those challenges, at high
level, we use split-horizon DNS [1] to host differ-
ent zones discriminated by incoming query source ad-
dresses. We use network tunnel (TUN) to redirect all
the DNS queries and responses to proxies. Those prox-
ies further manipulate packets addresses to successfully
deliver the packets and to let the meta-DNS-server find
the correct answers (Figure 2). We explain details of our
solutions in the following.

To redirect recursive server’s queries to meta-DNS-
server we must change the destination or source ad-
dresses of those DNS packets.

Before any address manipulation, we first need to cap-
ture all the queries and responses, because any leaked
packets is non-routable and dropped, leading to the fail-
ure of trace replay. We create two TUN interfaces to
get all required packets at the recursive and meta-DNS-
server respectively (Figure 2). We use port based routing
that all queries (packets with destination port 53) at the
recursive, and responses (packets with source port 53) at
the meta-DNS-server are routed to TUN interfaces. We
manage this routing by using iptable: first mark the

www.example.com
.com
example.com
www.google.com A
root
com
google.com
a.root-servers.net
a.gtld-servers.net
ns1.google.com
www.google.com A
com
com
root
com
google.com
com
google.com
www.google.com A
com
com
a.gtld-servers.net

desired packets using mangle table, and then redirect all
the marked packets to TUN interfaces. We choose TUN
interface because it let us observe all raw IP packets to
manipulate IP addresses.

We build two proxies (recursive proxy and authorita-
tive proxy) to manipulate packet addresses at the recur-
sive server and meta-DNS-server respectively (Figure 2).
The common task of the proxies is to make sure cap-
tured packets can be routed to the server at the other end
smoothly for correct trace replay. Specifically, recursive
proxy captures recursive server’s queries and authorita-
tive proxy captures meta-DNS-server’s responses. Then,
both of the proxies rewrite the destination address with
the IP address of the server at the other end.

To make the meta-DNS-server determine the correct
answer and let the recursive server accept the reply, the
proxies replace the source address with the original des-
tination address in the packets. We will explain the func-
tionality of using original destination address below. Af-
ter recalculating the checksum, the proxies send the mod-
ified packets directly to the meta-DNS server and the re-
cursive server respectively.

This process with proxy rewriting allows the meta-
DNS server to determine to which zone each query is
addressed. To address the zone selection, the meta-DNS
server hosts multiple zones using software-based split-
horizon DNS [1], where a server provides different an-
swers based on query source and destination addresses.
When a recursive server resolves a incoming query iter-
atively with cold cache, the destination addresses (target
authoritative server address) of the iterative queries is the
only identifier for different zones, because the query con-
tent is always the same and not distinguishable by itself.
However, matching queries by destination addresses at
the meta-DNS-server requires the server listens on dif-
ferent network interfaces for each zone separately, which
brings deployment complexity, such as creating many
(virtual) network interfaces and a giant routing table in
testbed. This complexity conflicts our goal of scalability
and deployability to support many different zones.

With split horizon, the meta-DNS server listens on
one address and uses the source IP address to deter-
mine for which level of the hierarchy the query is des-
tined. Since recursive proxy already replaces the query
source address with the original query destination ad-
dress (OQDA), the current query source address be-
comes the zone identifier now. To correctly discrimi-
nate queries for different zones, we take the public IP
addresses of zone’s nameservers as the matching criteria
(query source addresses). In this way, the meta-DNS-
server sees a query coming from OQDA instead of the
recursive server’s address (Figure 2). The meta-DNS
server then determines the correct zone file from the this
source address, and issues a correct reply where the des-

tination address is OQDA. As discussed above, the au-
thoritative proxy captures this reply, and puts the des-
tination address in source address. As a result, the re-
cursive server observes a normal reply from OQDA and
can match this reply to the original query, without know-
ing any address manipulation in the background. Our
method works with authoritative server implementation
that supports split-horizon DNS, such as BIND with its
view and match-clients clauses in configuration.

2.5 Mutate Trace For Various Experiments

Another benefit of our system is that we support arbitrary
trace manipulation to study different questions from one
trace.

There are two challenges to change the traces. First,
binary network trace is complicated to edit directly be-
cause changes are not space-equivalent. We need a user-
friendly method to manipulate queries. Second, the delay
caused by manipulation and processing traces, may also
bring problems for accurate query replay.

Plain text for easy manipulation: To easily manipu-
late input queries, we convert network traces to human-
readable plain text. We develop a DNS parser to eas-
ily extract relevant data from network trace, and output
a column-based plain text file where each line contains
necessary information of a DNS message. In this stage,
users can edit DNS messages as desired.

Binary for fast processing: Since plain text as input
delays building DNS messages, we convert the resulting
text file to a customized binary stream of internal mes-
sages to serve as input for trace replay (Figure 3) for fast
processing. To distinguish different messages in the in-
put stream, we pre-pend the length of each message at
the beginning of each binary message.

To save unnecessary input delay in query replay, we
pre-process the input and separate the input processing
from the query replay system. Optionally, the input en-
gine of our system can also read network trace and for-
matted text file directly, and convert to internal binary
messages on the fly.

2.6 Distribute Queries For Accurate Re-
play

With server setup and input trace, the next step for a suc-
cessful DNS trace replay is to emulate DNS queries with
correct timing from different sources and connections.
Fast query replay and diverse sources: There are
several resource limit in a single host: CPU, memory and
the number of ports. The query rate generated at a single
host is limited because of CPU constraints. The ability to
maintain concurrent connections in a single host is lim-
ited by memory and the number of ports (typical 65 k).

Input files LDplayer’s input engine
Network Trace
" -
_ Trace Converter
wv o pcap, erf ...
§ Z 2
5° L <z
S - Text Qo
g- Plain Text %--> C ; ¢ 3
© time: 1461234567.012345 ONVErter ® D
= P src: 192.168.1.1
& - query: example.com A IN ~
< g protocol: TCP ... %
gl c o - F
o Customized Binary 3
o . — =
] binary Reader N
Length: 200 bytes -
~—/ 010101110001.....

Figure 3: Trace manipulator converts network trace to
plain text for easy editing, and further converts to cus-
tomized binary stream as input. LDplayer accepts three
types of input: network trace, formatted plain text and
customized binary files.

To support fast query rates from many sources, our
approach is to distribute query stream to many different
hosts to allow many senders to provide a large aggre-
gate query rate In particular, we coordinate queries from
many hosts with a central Controller managing a team
of Distributors which further controls several Queriers.
The end Queriers directly interact with DNS servers via
UDP or TCP. For reliable communication, we decide to
choose TCP for message exchange among distributors.

The primary purpose of multiple levels is to connect
enough end Queriers when there is a limit on the num-
ber of distribution connections in each Distributor. With-
out limit, theoretically one-level distribution (Controller
distributes to Queriers directly) can bring 4 billion con-
nections in total, with maximum 65 k Querier hosts con-
nected at any time.

If the input trace is extremely fast, the CPU of Con-
troller may become bottleneck because it limits the speed
of input processing. To solve this problem, we can split
input stream to feed multiple controllers.

Correct timing for replayed queries: The ultimate
goal of query replay system is to replay DNS queries
with correct timing and reproduce the traffic pattern.

Due to distributing queries among different hosts, it is
challenging to synchronize time and ensure the correct
timing and ordering of individual queries.

To replay queries at accurate time, LDplayer keeps
tracking trace time and real time, and schedules timer
events to send queries. When getting the first input query
message, controller broadcasts a special time synchro-
nization message to all the queriers to indicate the start
time of the trace. Upon receiving the time synchroniza-
tion message, a querier obtains the query time in the trace

(f1) and the current real time (¢1).

After time synchronization message, controller starts
to distribute input query stream based on the strategy of
distribution by sources discussed above. On receiving a
query message (g;), a querier extracts current absolute
query time in trace (f;) and computes the relative trace
time (Af;), as Af; =1; — 1.

The relative trace time is the ideal delay that should be
injected for trace replay assuming no input delay. Simi-
larly, the querier also gets current absolute real time (¢;)
and the relative real time (At;) as At; =t; —t;. The rel-
ative real time represents the accumulated program run-
time delay, such as input processing and communication
delay, that has already been generated.

To replay the query (g;) at correct time, LDplayer re-
moves the added latency and schedules a timer event at
AT; in the future, where AT; = Af; — At;.

By tracking timing and continuously adjusting, LD-
player provides good absolute and relative timing (as
shown in §4). If the trace is extremely fast and the in-
put processing falls behind (A7; < 0), LDplayer sends
the query immediately without setting up a timer event.

Some experiments, such as load testing, prefer large
query streams, as fast as possible, instead of tracking
original timing time. As an option, LDplayer can disable
time tracking and replay as fast as possible.

Emulating queries from the same source: Some
traces or experiments require reproduction of inter-query
dependencies. Two examples are UDP queries where the
second query can be sent only after the first is answered,
or when studying TCP queries where connections are
reused. In general, we assume all queries from the same
source IP address are dependent and queries from differ-
ent sources are independent.

We use different network sockets to emulate query
sources. To emulate queries from the same sources, we
must first deliver all the queries from the same sources
(IP addresses) in the original trace to the same end
querier for replay.

To accomplish this, each distributor tracks the orig-
inal query source address and the lower level compo-
nent in the message distribution flow. When queries are
distributed, each distributor either picks the next entity
based on a recent query source address in record, or se-
lects randomly otherwise (during startup). Each entity
keeps the record during the experiments.

Similarly, queriers map the query sources and the
underlying network socket, insuring that same-source
queries use the same socket if it is still open. New
sources start new sockets.

When emulating TCP connection reuse, queriers also
track of open TCP connections. They may close them
after a pre-set timeout.

As a result, during query replay, a DNS server ob-

Controller

—>{ Reader

Client instance
o

Distributor

DNS

Postman Server

| Distributor
G777
tream

Figure 4: A prototype of distributed query system with
two-level query distribution. Distributors and queriers
are implemented as processes and running on the same
host (client instance). Optionally, a single distributor can
read input query stream directly.

Querier

serves queries from the same set of host addresses but
with a range of different port numbers, which emulates
different queries from the same sources.

An alternative is to setup virtual interfaces with differ-
ent IP addresses at queriers, and use those interfaces for
each query sources address in query replay. However, the
method does not scale to a large number of addresses.

3 Implementation

We implement our prototype replay system and proxies
in C++, to provide efficient runtime and controlled mem-
ory usage.

Query System: In two-level query distribution system
(Figure 4), with a controller and multiple clients. The
controller runs two processes, the Reader, for trace in-
put, and another, the Postman to distribute queries. One
or more machines are clients, each with distributor and
multiple querier processes. Processes use event-driven
programming to minimize state and scale to a large num-
ber of concurrent TCP connections. The reader pre-loads
a window of queries to avoid falling behind real time.

Server Proxy: The proxies around the server run as
either recursive proxy or authoritative proxy (§2.4). A
single reader thread reads from a tunnel network inter-
face, while multiple worker threads read from a thread-
safe queue that rewrites queries (§2.4).

4 Evaluation

We validate the correctness of our system by replaying
different DNS traces in controlled testbed environment
(64.1). Our experiments show that the distributed client
system replays DNS queries with correct timing, repro-
ducing the DNS traffic pattern (§4.2).

Figure 5: Network topology for experiment: controller
(T), server (S), and client instances (C) running with dis-
tributor and querier processes.

4.1 Experiment Setup and Traces

To evaluate our system, we deploy the network shown
in Figure 5 in the DETER testbed [4]. We use a controller
(T) to distribute query stream to client instances (C; to
C,). Each client instance runs several distributor and
querier processes to replay input queries. The query traf-
fic merges at a LAN representing an Internet Exchange
Point, and is then sent to the server (S). Each hosts is
a 4-core (8-thread) 2.4 GHz Intel Xeon running Linux
Ubuntu-14.04 (64-bit). We use several traces, listed in
Table 1 and described below, to evaluate the correctness
of our system under different conditions.

B-Root: This trace represents all traffic at B-Root
DNS server over one hour during the 2016 and 2017
DITL collections [8]. It is available from the authors and
DNS-OARC. We use B-Root-16 trace (Table 1) in this
section to validate our system can accurately replay high-
volume queries against an authoritative server. We use
other groups of B-Root-17 traces in later sections (§5).

Synthetic: To validate the capability to replay query
traces with various query rates, we create five synthetic
traces (syn-0O to syn-4 in Table 1), each with different,
fixed inter-arrival times for queries, varying from 0.1 ms
to 1s. Each query uses a unique name to allow us to
associate queries with responses after-the-fact.

4.2 Accuracy of Replay Timing and Rate

We first explore the accuracy of the timing and rate of
query replay.

Methodology: We replay B-Root and synthetic traces
over UDP in real time and capture the replayed traffic
at server. We match query with reply by prepending a
unique string to every query names in each trace. We
then report the query timing, inter-arrival time and rate,
comparing the original trace with the replay. We use a
real DNS root zone file in server for B-Root trace re-
play to provide responses. For synthetic trace replay,
we setup the server to host names in example.com with
wildcards, so that it can respond all the queries within

example.com

inter-arrival

traces start (min) (seconds) client IPs records
B-Root-16 ~ 2016-04-06 +60 .000027 1.07M 137M
15:00 UTC +.000619
B-Root-17a 2017-04-11 +60 .000023 1.17M 141 M
15:00 UTC +.001647
B-Root-17b +20 .000025 725k 53M
+.001536
Rec-17 2017-09-01 +60 180799 91 20k
17:22 UTC +.355360
Synthetic
syn-0 60 1 3k 3.6k
syn-1 60 1 9.7k 36k
syn-2 60 .01 10k 360k
syn-3 60 .001 10k 3.6M
syn-4 60 .0001 10k 36 M

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

dash lines: original
— dots: replayed

synthetic'
1ms,

r

synthetic
100 ms

synthetic
10 ms

synthetic
1s]

K2
(2
(2

query inter-arri

‘Q -0,
(%% 7

val time (seconds)

u |

Table 1: DNS traces used in experiments and evaluation.
Mean and standard deviation of inter-arrival time for B-
Root and Rec traces.

20

10

L

—
T—
i am—
e —
L

-10 -

query time error (ms) in replay
o o
1

20 I I I I I

B Root .0001 .001 .01 A 1
trace Synthetic trace: query inter-arrival time (seconds)

Figure 6: Query timing difference between replayed and
original traces. Figure shows quartiles, minimum and
maximum. The empty circles on x-axis exceed + 20 ms
(outliers).

that domain. We repeat each type of trace replay for 5
times to avoid outliers.

Query time: We use unique query names to iden-
tify the same queries in original and replayed traces, and
study the timing of each query: the absolute time dif-
ference compared to the first query. We ignore the first
20-seconds of the replay to avoid startup transients.

Figure 6 shows that timing differences in replay are
tiny, usually quartiles are within £2.5ms. We observe
small, but noticeably larger differences when the query
interarrival is fixed at 0.1s: £8ms quartiles. We are
examining this case, but suggest it is an interaction be-
tween application and kernel-level timers at this specific
timescale. Even when we look at minimum and maxi-
mum errors, timing differences are small, within &+ 17 ms.

Query Inter-arrival Time: We next shift from abso-
lute to relative timing with inter-arrival times.

Figure 7 shows the CDF of experimental interarrival

Figure 7: Cumulative distribution of the inter-arrival time
of original and replayed traces.

times for real (B-Root-16) and synthetic traces of dif-
ferent interarrival rates. (Note that timescale is shown
on a logarithmic scale.) Interarrival is quite close for
traces with input inter-arrivals of 10 ms or more, and
for real-world traffic with varying interarrivals. We see
larger variation for very small, fixed interarrivals (less
than 1ms), although the median is on target, there is
some variation. This variation occurs because it is hard
to synchronize precisely at these fine timescales, since
the overhead from system calls to coordinate take nearly
as much time as the desired delay, adding a lot of jit-
ter. We see divergence for the smallest interarrivals for
the real-world B-Root trace, but little divergence for the
50% longest B-Root interarrivals. Uneven spacing in real
traces gives us fee time to synchronize. We repeat this
experiment for 5 times; all show similar results to the
one shown here.

Query Rate: We finally evaluate query rates. To do
so, we replay the B-Root-16 trace and compute the query
rate in each second of trace replay against the corre-
sponding rate of that second in the original trace. We
repeat this test five times.

Figure 8 shows the CDF of the difference in these per-
second rates for all 3,600 seconds of each of the five re-
plays. We observe that almost all (4 trials with 98%-
99% and 1 trial with 95%) of 3.6k data points (1-hour
period) have tiny (£0.1%) difference in average query
rate per second. This experiment uses the B-Root be-
cause it has large query rate (median 38 k queries/s) and
the rate varies over time. We use a 1-second window to
study overall replay rate; finer (smaller) windows may
show greater variation as OS-scheduling variation be-
comes significant.

4.3 Single-Host Throughput

Having shown our query system is accurate to replay dif-
ferent traces, we next evaluate the maximum throughput:

B root trace replay
for 5 times
0.8 - _
W 0.6 - L ES -
3 sla
0.4 - i -
02 J .
original median query rate:
38K a/s
0 A ‘\ |

-2% -1% 0 1%

query rate (per second) difference

2%

Figure 8: Query rate differences between replayed and
original B-Root trace (5 trials). Black solid circles on the
edge are a few cases out of +2%.

how fast can our system replay using a single host?

Methodology: We use an artificial query generator
for controlled, high-speed replay. We send a continu-
ous stream of identical queries (www.example.com) to
the target, sending them with UDP, without timeouts,
to an authoritative server hosting example.com zone
with wildcards. We run our query replay system with
one distributor and six querier processes, along with the
query generator (total 8 processes), on a single 4-core
(8-hyperthread) host. We monitor the packet rate and
bandwidth after the query system is in steady state.

Results: With this setup we replay 87k queries/s
(60Mb/s), as shown in Figure 9). This rate is more
than twice of normal DNS B-Root traffic rate (as of mid-
2017). In this experiment the query generator is the bot-
tleneck (it completely saturates one CPU core), while
other processes (distributor and queriers) each consumes
about 50% of single CPU core. Higher rates would be
possible with faster query generation.

5 Applications

With controlled, configurable and accurate trace replay,
our system provides a basis for large-scale DNS experi-
mentation which further enables real world applications
to answer open research questions. We next show ex-
ample applications of LDplayer, including studying the
impact of increased DNSSEC queries and exploring the
performance of DNS over TCP at a DNS Root server.

5.1 Impact of Increased DNSSEC Queries

How does the root traffic change when more and more
applications start to use DNSSEC? We start to answer
this question and predict future DNS root traffic by re-
playing traffic with a mix of different key sizes and dif-
ferent portions of queries with DNSSEC. With the same

10

100k T T T T T 100
w%hm EWW%E@%W@%@
80kf 505" @ &% 0 4 80
oo o~ o o &
2 3
% 60k W%%ZA% z%mmf%@%@%%inwmk 60 =
© 1 S s a8 4 =
Z S
=]
§ 40K - 140 2
&]
o
20k — -1 20
0 L L L L L 0
0 50 100 150 200 250 300

time (seconds)

Figure 9: The throughput of fast replay a continuous in-
put query stream over UDP directly: queries are sent im-
mediately without timer events. Data point is sampled
every two seconds over total 5 minutes.

experiment setup (§4.1), we use LDplayer to change
DNSSEC OK (DO) bit in queries and replay B-Root
query traffic (Table 1).

We observe that going from 72% DO (today) to 100%,
root response traffic becomes 296 Mb/s (median) with
2048-bit ZSK in steady state (Figure 10). Compared
to 225 Mb/s with current 72% DO and 2048-bit ZSK,
root response traffic could increase by 31% in the future
when all queries require DNSSEC. Our experiments also
demonstrate 32% traffic increase when DNS root ZSK
was upgraded to 2048-bit from 1024-bit keys, replicating
experiments previously done in a custom testbed [21].
As a future work, we could use LDplayer to study the
traffic under 4096-bit ZSK.

350

250 —
200 —
150 — | —
100 — N
50 - N

Bandwidth of all responses (Mbit/s)

0 1 1 1 1 1 1

ZSK (bits): 1024 2048 2048 1024 2048 2048
...normal... rollover ...normal... rollover
72.3% queries with DO bit (current) All queries with DO bit

Figure 10: Bandwidth of responses under different
DNSSEC ZSK sizes. Trace: B-Root-16. Figures show
medians, quartiles, S5th and 95th percentiles.

www.example.com
example.com

20
18 .
16 .
14 S :

12 - *

10 *
replay 100% queries over TCP -

replay original trace
% queries over TCP) —
with 20s timeout

overall percent of cpu usage

! ! ! ! ! ! !
10 15 20 25 30 35

onNn MO
T

TCP time-out window (seconds) at server

Figure 11: CPU usage with different TCP timeouts un-
der minimal RTT (<1 ms). Trace: B-Root-17a. Figures
show medians, quartiles, Sth and 95th percentiles.

100 T
g &%
g 10 52 3
& 5%
= ol
5 'F |<e =
c
[}
E ©
> 01 ¢ B | o ° E
] i P @i & original trace (3% TCP) 3
o |]
[o
0.01 | | | | | |
0 20 40 60 80 100 120 140

RTT (milliseconds)

Figure 12: Query latency with 20-second TCP timeout
and different RTTs. Trace: B-Root-17b. Figures show
medians, quartiles, Sth and 95th percentiles.

5.2 Performance of DNS over TCP at a
Root Server

We next use experiments to study DNS over TCP, and
determine the effects of such a change of resource usage
(memory and CPU) and latency. These topics have pre-
viously been studied with micro-benchmarks and mod-
eling [24], but our experiments here are the first to study
them at scale with a full server implementation.

5.2.1 Experiment Setup and Methodology

To evaluate server resource requirement and query la-
tency, we deploy the network topology (Figure 5 and
§4.1). We vary the client-to-server RTT for different ex-
periments. All client hosts use 16 GB ram and 4-core
(8-thread) 2.4 GHz Intel Xeon. To support the all-TCP
workload, we configure the authoritative server 24 GB
RAM on a 12-core (24-thread) 2.2 GHz Intel Xeon, us-
ingnsd-4.1.17 with 8 processes. All hosts run Ubuntu-

11

16.04 (64-bit).

We conduct two types of query replay using B-Root-
17 traces (Table 1). First, we replay the queries using the
protocols in the original trace (3% TCP queries) to es-
tablish a baseline for comparison. We then mutate the
queries so all employ TCP. We vary either the client-
server RTTs (Oms to 120 ms) or TCP timeouts (5 ms to
35 ms) at the server.

We use two B-Root traces in the experiments in this
section. We first use use 1-hour B-Root-17a trace to
study server state with controlled minimal RTT (<1 ms),
verifying the experiment reaches steady state in about 5
minutes. For later experiments we use B-Root-17b, a 20-
minute subset of the B-Root-17a trace.

We log server memory with top and ps, CPU with
dstat, and active TCP connections with netstat.

5.2.2 Memory and Connection Footprint

For DNS over TCP, a server should keep idle connec-
tions open for some amount of time, to amortize TCP
connection setup costs [12, 24]. However, a server can-
not keep the connection open forever, since maintaining
concurrent connections costs server memory.

We first evaluate server memory and connection re-
quirement. Figure 13 shows the memory and connection
footprint in experiments of replaying original traces and
all queries over TCP with different connection timeouts.
We demonstrate that both the number of active TCP con-
nections and server memory consumption rise as the TCP
timeout increases. We show that with 20 s TCP timeout
suggested in prior work [24], our experimental server re-
quires about 13 GB memory (Figure 13a) and 180k con-
nections, one-third are active (Figure 13c) and the rest in
TIME_WAIT state (Figure 13b). These values are well
within current commodity server hardware. Resource us-
age reaches steady state in about 5 minutes and is there-
after stable (approximately flat lines in Figure 13).

By contrast, we observe that the server only needs
about 2 GB memory (blue bottom line in Figure 13a),
when replaying the original trace (3% TCP queries) at
20 s timeout. DNS operators with old hardware will need
to upgrade server when preparing for DNS over TCP.

We expected memory to vary depending on querier
RTT, but the memory and CPU usage do not change re-
gardless of the distance from client to server (figure pro-
vided in Appendix A). This resource stability is because
memory and CPU are dominated by connection timeout
duration, which at 20 s is 200x longer than RTTs.

Our experimental results confirm prior models in a
real-world implementation, showing that even if all DNS
were shifted to TCP, memory and CPU requirements are
manageable (13 GB with 20s connection timeout), al-
though much larger than today’s UDP-dominated DNS.

5.2.3 CPU Usage

We next evaluate server CPU usage for DNS over TCP.

Figure 11 shows the statistics of server CPU usage.
We observe that overall the CPU usage is about 10% to
20% over 24 cores for all queries over TCP, again man-
ageable on current commodity server hardware. Results
are stable regardless of the connection timeout window
(the flat red line). We observe a slightly higher (1% more
at median) CPU usage at 5 ms timeout, likely due to more
frequent connection timeout and setup.

In contrast, replaying original trace (3% TCP queries)
with 20 ms TCP timeouts has slightly (2%) lower at max-
imum and minimum CPU usage, although the median
CPU usage is the same as replaying all queries over TCP
(blue bar in Figure 11).

Our experiments confirm that connection tracking in
TCP does not increase CPU usage noticeably over UDP.
This result was only possible in experiment, since there
are no good models of CPU consumption for DNS.

5.2.4 Query Latency

We finally evaluate query latency for DNS over TCP.
Figure 12 shows the statistics of query latency with dif-
ferent RTTs. TCP connection reuse helps to reduce query
latency: median query latency in TCP is only about 50%
to 60% slower than UDP, while if all connections were
fresh, models predict 100% overhead due to the extra
RTT in connection setup.

Experimentation also helps reveal differences due to
RTT—as the RTT increases, the query latency of TCP
become much larger than UDP latency. For example,
latency of all query over TCP is 7-time more (by me-
dian) than original trace (3% TCP) replay at large 120 ms
RTT. We observe that TCP query latency reduces (70 ms
less by median at 100 ms vs 120ms RTT), by enabling
net.ipv4.tcp_low_latency in Linux to avoid adding
latency. However, this optimization does not change
query latency under smaller RTTs (<80 ms).

The multi-time RTT latency of TCP queries is unex-
pected since a single TCP query would only require 2
RTTs. By examining packet traces, we see many server
reply TCP segments (possibly DNS messages) reassem-
bled into a large TCP message, even with net.ipv4.
tcp_low_latency enabled. Resembling may cause the
large delay in DNS over TCP, because waiting for all the
packets. Another optimization is to disable the Nagle al-
gorithm on the server.

By contrast, latency with UDP is consistent regardless
of RTT, because UDP has no algorithms like Nagle try-
ing to reduce packet counts.

Evaluating these real-world performance interactions
between the DNS client and server was only possible
in full trace-driven experiments, since there no generic
model for TCP query processing in DNS servers. Our

12

20GB

| T
dashed lines: All
solid lines: NSD

>
(o)
®

memory consumption

0 10 20 30 40 50 60
time (minute)
(a) Memory consumption.
120000
100000 (=

all queries over TCP g
80000 R
60000
40000

20000

number of established TCP connections

=% original grace (3%%verT P) with 20s timeogt * * 2
0
0 10 20 30 40 50 60
time (minute)
(b) Established TCP connections.
= 160000 T T T T
<
= 140000 |- 5%, . allqueriesover TCP | s Bs
w! N - " ’ 10s|
= 120000 2 < 158
= B 7% e W a vy, L : ki 20
£ 100000 XA P . 4k 25
BN SR "i’“"h"" N .,\. %

g il < Righe Va5
2 80000 [~
3] i
§ 60000 (-
o s
% 40000
t 20000 1~ origijitrace (3% over TACP) with 20s timeout
i 0 | [| | | ‘

0 10 20 30 40 50 60

time (minute)

(c) TCP connections in TIME_WAIT state.

Figure 13: Evaluation of server memory and connections
requirement with different TCP timeouts and minimal
RTT (<1 ms). Trace: B-Root-17a

experiments shows the effect of TCP connection reuse
although the TCP query latency is still noticeably larger
than UDP, providing much greater confidence to testbed
experiments with synthetic traffic and modeling [24].
Our use of real traces and server software also showed
an unexpected increase in TCP query latency for large
client RTTs.

6 Related Work

DNS Replay Systems: Several other systems that replay
DNS traffic and simulate parts of DNS hierarchy. Wes-
sels et al. simulate the root, TLD and SLD servers with
three computers to study the caching effects of different
resolvers on the query load of upper hierarchy [22]. Yu
et al. build a similar system with multiple TLD servers
hosting one TLD (. com), to understand authority servers
selections of different resolvers [23] . Ager et al. set up
a testbed simulating DNS hierarchy to study DNSSEC
overhead [2]. DNS-OARC develops a DNS traffic replay
tool [7] to test server load.

Our system differs from these in scale, speed, and flex-
ibility. Each of these systems host each zone on a dif-
ferent name server, so they cannot scale to thousands of
zones. They also often make modifications to the zones
(dropping and modifying NS records), to make the rout-
ing work and obtain the correct answers from servers.
We instead use proxies to allow all zones to be provided
from one name server, and to provide a query sequence
that matches real DNS. In addition, these systems do not
carefully track timing. (For example, the Ager et al. sys-
tem uses batch-mode dig and so can handle only light
loads.) Our client system replays DNS queries with cor-
rect timing, reproducing the traffic pattern accurately. Fi-
nally, prior systems are designed to recreate today’s pro-
tocol; we instead include the ability to project a current
trace through future protocol options, such as replaying
UDP queries as TCP with preset connection timeout.

Traffic Generators: Several traffic generators can
create DNS [9, 16]. Like these tools, our query replay
system can also generate a stream of DNS packets with
specified parameters. However, these tools are not spe-
cific for DNS; they provide only simple replay or gen-
eration. Our system focuses on DNS protocol and pro-
vides a generic DNS experimentation platform. Our sys-
tem can replay queries with accurate timing, and mutate
queries to test what-if scenarios.

General Network Replay: Several tools replay gen-
eral network traces [15, 20, 10]. While these tools can re-
play DNS trace with timing given in the trace, our replay-
client system simulates the DNS query semantics, allow-
ing us to replay real-world queries with different varia-
tions (such as if all used TCP). Rather than just replaying
each packet in the trace mechanically, our system allows

13

exploration of future DNS design options.

DNS Studies: There are studies that replay DNS
queries to evaluate the performance of DNS applica-
tions [18, 13, 6]. Our replay-client system supports anal-
ysis like these studies, but it provides a more flexible
platform that also enables new studies at high query rates
with protocol variants.

To the best of our knowledge, ours is the only experi-
mental DNS system that can replay DNS trace with orig-
inal zone files, uses distributed clients to handle large
query rate and simulate different query sources, and lets
us vary protocols.

7 Conclusion

This paper has described LDplayer, a system that sup-
ports trace-driven DNS experiments. This replay system
is efficient (87k queries/s per core) and able to reproduce
precise query timing, interarrivals, and rates (§4). We
have used it to replay full B-Root traces, and are cur-
rently evaluating replays of recursive DNS traces with
multiple levels of the DNS hierarchy.

We have used our system to evaluate alternative DN'S
scenarios, such as where all queries use DNSSEC, or
all queries use TCP. Our system is the first to make
at-scale experiments of these types possible, and exper-
iments with TCP confirm that memory and latency is
good (as predicted by modeling), but highlight perfor-
mance variation in latency due to implementation details
not captured in models. In addition, experimental confir-
mation of complex systems factors such as memory us-
age are critical to gain confidence that an all-TCP DNS
is feasible on current server-class hardware.

References

[1] Split-horizon dns.
Split-horizon_DNS.
AGER, B., DREGER, H., AND FELDMANN, A. Predicting the
DNSSEC overhead using DNS traces. In Annual Conference on
Information Sciences and Systems (March 2006), pp. 1484-1489.
ARENDS, R., AUSTEIN, R., LARSON, M., MASSEY, D., AND
ROSE, S. DNS Security Introduction and Requirements. RFC
4033 (Proposed Standard), Mar. 2005. Updated by RFCs 6014,
6840.

BENZEL, T. The science of cyber security experimentation: The
deter project. In Proceedings of the 27th Annual Computer Secu-
rity Applications Conference (New York, NY, USA, 2011), AC-
SAC ’11, ACM, pp. 137-148.

BORTZMEYER, S. DNS privacy considerations. RFC 7626, Aug.
2015.

BRUSTOLONI, J., FARNAN, N., VILLAMARfN-SALOMéN, R.,
AND KYLE, D. Efficient detection of bots in subscribers’ com-
puters. In Communications, 2009. ICC’09. IEEE International
Conference on (2009), IEEE, pp. 1-6.

DNS-OARC. https://github.com/DNS-0ARC/
drool.

DNS-OARC. Day In The Life of the internet (DITL) 2017.
https://www.dns-oarc.net/oarc/data/dit1/2017, Apr.
2017.

https://en.wikipedia.org/wiki/

(2]

[3]

[4]

[5]
[6]
[7] drool.

(8]

.com
https://en.wikipedia.org/wiki/Split-horizon_DNS
https://en.wikipedia.org/wiki/Split-horizon_DNS
https://github.com/DNS-OARC/drool
https://github.com/DNS-OARC/drool
https://www.dns-oarc.net/oarc/data/ditl/2017

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

A

HAAS, H. Mausezahn. http://netsniff-ng.org/.

HENG, A. Y. C. Bit-twist. http://bittwist.sourceforge.
net/.

HOFFMAN, P., AND SCHLYTER, J. The DNS-Based Authentica-
tion of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA. RFC 6698 (Proposed Standard), Aug. 2012.
Updated by RFCs 7218, 7671.

Hu, Z., ZHU, L., HEIDEMANN, J., MANKIN, A., WESSELS,
D., AND HOFFMAN, P. Specification for DNS over Transport
Layer Security (TLS). RFC 7858 (Proposed Standard), May
2016.

KHURSHID, A., KIYAK, F., AND CAESAR, M. Improving ro-
bustness of dns to software vulnerabilities. In Proceedings of the
27th Annual Computer Security Applications Conference (New
York, NY, USA, 2011), ACSAC *11, ACM, pp. 177-186.
LEwIs, C., AND SERGEANT, M. Overview of Best Email DNS-
Based List (DNSBL) Operational Practices. RFC 6471 (Informa-
tional), Jan. 2012.

LOEF, A., AND WANG, Y. libtrace tool: tracereplay. http:
//www.wand.net.nz/trac/libtrace/wiki/TraceReplay.

NATHAN, J. nemesis. http://nemesis.sourceforge.net/.

OSTERWEIL, E., RYAN, M., MASSEY, D., AND ZHANG, L.
Quantifying the operational status of the dnssec deployment. In
Proceedings of the 8th ACM SIGCOMM Conference on Inter-
net Measurement (New York, NY, USA, 2008), IMC ’08, ACM,
pp. 231-242.

PARK, K., PAI, V. S., PETERSON, L. L., AND WANG, Z.
Codns: Improving dns performance and reliability via cooper-
ative lookups. In OSDI (2004), vol. 4, pp. 14-14.

Su, A.-J., CHOFFNES, D. R., KuzMANOVIC, A., AND BUS-
TAMANTE, F. E. Drafting behind akamai (travelocity-based de-
touring). In Proceedings of the 2006 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (New York, NY, USA, 2006), SIGCOMM 06,
ACM, pp. 435-446.

TURNER, A., AND KLASSEN, F.
tcpreplay.appneta. com/.

Tcpreplay. http://
WESSELS, D. Increasing the Zone Signing Key Size for the Root
Zone. In RIPE 72 (May 2016).

WESSELS, D., FOMENKOV, M., BROWNLEE, N., AND CLAFFY,
K. Measurements and Laboratory Simulations of the Upper DNS
Hierarchy. In Passive and Active Network Measurement Work-
shop (PAM) (Antibes Juan-les-Pins, France, Apr 2004), PAM
2004, pp. 147-157.

YU, Y., WESSELS, D., LARSON, M., AND ZHANG, L. Author-
ity server selection in dns caching resolvers. SIGCOMM Comput.
Commun. Rev. 42,2 (Mar. 2012), 80-86.

ZHu, L., Hu, Z., HEIDEMANN, J., WESSELS, D., MANKIN,
A., AND SOMAIYA, N. Connection-oriented dns to improve pri-
vacy and security. In 2015 IEEE Symposium on Security and
Privacy (May 2015), pp. 171-186.

ZHU, L., WESSELS, D., MANKIN, A., AND HEIDEMANN, J.
Measuring DANE TLSA deployment. In Proceedings of the 7th
IEEE International Workshop on Traffic Monitoring and Analay-
sis (Barcelona, Spain, Apr. 2015), Springer, pp. 219-232.

TCP Performance As A Function of
RTT

We expected memory to vary depending on querier RTT,
but the memory and CPU usage do not change regard-
less of the distance from client to server, as shown in
Figure 14. This resource stability is because memory

14

and CPU are dominated by connection timeout duration,
which at 20 s is 200x longer than RTTs.

16GB T
all queries over TCP R
c R b
-%_ 12GB - (,,r: / 20ms
5 i 40ms -
c | ,‘j}’" 60ms —-- -
g 8GB Iy 80ms
> [
E [100ms -----
g 4GB ‘L 120ms
original trace (3% queries over TCP)
e e e f R g R st
d ! !
0 10 20
time (minute)
(a) Memory consumption.
2]
S 100000
;3 L - ~20ms
g 90000 v 40ms
L ° 60ms
§ 80000 °r ° all queries over TCP 80ms
o 70000 == 2 q + 100ms|
) g
2 60000 fl%%gj% \ni%&&,’kw\.
o M :
2 50000 | A ¥ i
(2]
3 40000 - 14
f| [|
@ 30000 (- }
kS 20000 — ¥
3 10000 §- original trace (3% queries over TCP) ;
g 0 f bl A T e R T X g
< 0 10
time (minute)
(b) Established TCP connections.
18
S 16 i
I
S 14 Ao . 8
> — -
s roglk]
S t0r g 1
c ol =
[=
8 65 g iy
T 4+ v 2 B
E 5}
s 2f 1
0 | | | | | |
0 20 40 60 80 100 120 140

RTT (milliseconds)
(c) CPU usage

Figure 14: Evaluation of server resource by replaying
traces with 20-second TCP timeout and different RTTs.
Trace: B-Root-17b

http://netsniff-ng.org/
http://bittwist.sourceforge.net/
http://bittwist.sourceforge.net/
http://www.wand.net.nz/trac/libtrace/wiki/TraceReplay
http://www.wand.net.nz/trac/libtrace/wiki/TraceReplay
http://nemesis.sourceforge.net/
http://tcpreplay.appneta.com/
http://tcpreplay.appneta.com/

