
Measuring the Latency and Pervasiveness of
TLS Certificate Revocation

Liang Zhu1 Johanna Amann2 John Heidemann1

1USC Information Sciences Institute 2International Computer Science Institute

Abstract. Today, Transport-Layer Security (TLS) is the bedrock of
Internet security for the web and web-derived applications. TLS depends
on the X.509 Public Key Infrastructure (PKI) to authenticate endpoint
identity. An essential part of a PKI is the ability to quickly revoke
certificates, for example, after a key compromise. Today the Online
Certificate Status Protocol (OCSP) is the most common way to quickly
distribute revocation information. However, prior and current concerns
about OCSP latency and privacy raise questions about its use. We examine
OCSP using passive network monitoring of live traffic at the Internet
uplink of a large research university and verify the results using active
scans. Our measurements show that the median latency of OCSP queries
is quite good: only 20 ms today, much less than the 291 ms observed in
2012. This improvement is because content delivery networks (CDNs)
serve most OCSP traffic today; our measurements show 94% of queries
are served by CDNs. We also show that OCSP use is ubiquitous today:
it is used by all popular web browsers, as well as important non-web
applications such as MS-Windows code signing.

1 Introduction

Transport Layer Security (TLS), the successor to Secure Socket Layer (SSL) is
one of the key building blocks of today’s Internet security. It provides authen-
tication through its underlying X.509 Public Key Infrastructure (PKI) as well
as encryption for end-to-end communication over the Internet such as online
banking and e-mail.

With the millions of certificates that are part X.509 PKI, it is inevitable
that some private keys will be compromised by malicious third parties, lost, or
corrupted. An attacker that manages to get access to a certificate’s private key
can impersonate its owner until the certificate’s expiration date. Heartbleed is
one example where the private keys of certificates were potentially exposed [9,24].
Even more risky than attacks on individual certificates and keys are attacks
on the infrastructure of specific Certificate Authorities (CAs), which can issue
certificates for any server (e.g. [7,6,5]).

Two primary mechanisms exist to revoke certificates: Certificate Revocation
Lists (CRLs) [8] which provide downloadable lists of revoked certificates, and the
Online Certificate Status Protocol (OCSP) [18] which allows clients to check for
revoked certificates by sending short HTTP requests to servers of the respective
CA. Alternatively, OCSP stapling [17] allows revocation information to be sent
by the server in the initial TLS handshake. Some in the security community

question the usefulness and viability of these approaches, citing privacy, speed,
and other concerns [20,11].

Today, most major web browsers do not reliably check certificate revocation
information [12], thus opening their users up to attacks.

In this work, we examine live traffic at the Internet uplink of the University
of California at Berkeley (UCB) to check the pervasiveness and latency of OCSP,
and then confirm our conclusions with active measurements from two sites.

The primary contribution of this paper is new measurements of OCSP that
show that OCSP latency has improved significantly since 2012. We see a median
latency of only 20 ms (§ 4), far lower than the 291 ms reported in previous stud-
ies [20]. We show that one reason for this improvement is that most OCSP traffic
today is served by content delivery networks (CDNs). Our second contribution
is a cost evaluation of OCSP connections. We identify that OCSP verification
typically accounts for 10% of the TLS setup time. OCSP will almost never delay
TLS when being run in parallel with the TLS handshake, and it only adds a
modest delay if run sequentially (§ 4.3). Our final contribution is examination of
how OCSP is being used today: all popular web browsers and important non-web
applications such as MS-Windows code signing (§ 3) use OCSP. Furthermore,
88% of the IPv4 addresses that perform TLS queries during our measurement
also perform OCSP queries.

2 Data Collection

Our study uses passive data collected from live Internet traffic to determine
characteristics and features of OCSP use. We augment our passive data with
information from active scans to verify our timing results and to check which
OCSP servers use CDNs. We use passive measurements to study how OCSP is
actually used on the Internet, and to evaluate the interplay between server and
client software. These passive measurements are from a specific site (UCB), so
our passive results depend on what sites that population visits. We take active
probes from two sites, Berkeley and the University of Southern California. While
this data source may bias our results, Berkeley has a large user population and
we probe many observed sites, so our data reflects the real experiences of this
population, and does not reflect outliers due to rarely used servers. Our active
measurements are from two sites (to avoid some bias), but both are well connected
and users with slower connectivity may experience higher latencies. We believe
this dataset is informative and reflects the lookup performance of current OCSP
servers and their use of CDNs, even if future work is needed to confirm the results
from other viewpoints. These risks are common to many measurement studies
that depend on data from large, real populations where multiple data sources
are difficult to obtain due to privacy concerns around network measurement.

For our data collection, we extended the Bro Network Monitor [2,15] with
the capability to parse OCSP requests and responses. Bro uses a file signature
(expressed as a regular expression) to detect OCSP requests and replies. We
correlate OCSP messages with TLS connections using IP addresses, certificate
hashes and timing information (see § 4.3). Our changes will be integrated in the
next version of Bro.

category application percent

Web browsers 32.10%

Firefox 31.63%
Chrome .21%
Pale moon .06%
Opera .06%
Rekonq, Bolt, Midori, Iceweasel, Seamonkey, Safari <.15%
Sonkeror, IE, Camino, Epiphany, Konqueror

Library or
daemon used by
applications

66.87%

ocspd 37.15%
Microsoft-CryptoAPI 23.74%
securityd 4.74%
java 1.24%
cfnetwork <.0001%

Email client .32%
Thunderbird .30%
Postbox, Gomeza, Zdesktop, Eudora, Icedove .02%

Other
applications

.33%

Lightning .31%
Zotero .01%
Celtx, ppkhandler, Komodo, Dalvik, slimerjs, Unity <.0074%
Phoenix, Sunbird, Slurp, miniupnpc, googlebot
Entrust entelligence security provider

Unknown .38% Unknown .38%

Table 1: OCSP applications (based on HTTP user agent) observed in 41.87 M
OCSP HTTP requests. Date: 2015-07-28 to 2015-09-28.

Our passive measurements cover 56 days of data taken between 2015-07-28
to 2015-09-28 at the Internet uplink of the University of California at Berkeley
(UCB). We record data for only 56 days of this 63-day period because of outages
due to hardware failures, fire, and preemption by another study that required
complete access to the hardware for about a week. We observed 1690 M TLS
connections with certificates encountered and about 42 M OCSP requests over
this period.

After processing the data we noticed that in 0.43% of the OCSP connections,
we have zero (or in a handful of cases negative) lookup times. We verified the
correctness of our measurement manually against network traces and were not
able to reproduce these error cases. We believe these impossible results are caused
by interactions between packet retransmissions and Bro.

3 OCSP Use in Applications and Hosts

We first want to understand how widely OCSP is used—how many applications
and hosts make OCSP queries.

Applications: We evaluate which applications use OCSP by examining the
user-agent header of the OCSP requests. Table 1 shows the resulting distribution
of user-agents. The majority of the lookups are done by Firefox and system
libraries and daemons: Microsoft-CryptoAPI (Windows) and ocspd (Mac OS).

To understand this distribution, we examine the behavior of common Internet
Browsers (IE, Chrome, Firefox, Safari) and operating systems. We find that
Firefox always uses its own user-agent, which is attributable to the fact that it
uses its own encryption library [1]. Microsoft Internet Explorer and Safari use their
respective operating system functionality for OCSP lookups, not directly revealing
their user-agents. Google Chrome only uses OCSP for extended Validation
certificates [11,12]. It uses the operating system functionality for OCSP lookups

on Windows and Mac OS. On Linux, it performs OCSP requests with its own
user-agent.

This use of libraries makes it difficult to distinguish the different browsers.
This problem is exacerbated by the fact that a manual examination of OCSP
requests revealed that Windows and Mac OS also perform OCSP requests for
application signatures with the same user-agent. When we examine all unique
OCSP requests (those for different certificates), we see that 81% of these unique
certificates account for nearly all (95%) of total OCSP requests observed on
the wire. Hence, the number of code-signing requests is at most the number of
requests without matching certificates in traffic: 5% of all OCSP requests and at
19% of the unique requests encountered.

Application Comments: While examining the OCSP requests, we noticed a
number of software bugs in different implementations. According to the respective
standard, an OCSP request sent with HTTP GET will be base64 and then URL-
encoded. Some clients do not adhere to this standard, skipping the URL-encoding
of requests. Servers still seem to accept these malformed requests. In our dataset,
99.9% of these non-standard requests were caused by the Apple ocspd versions
1.0.1 and 1.0.2. The bug was apparently fixed in version 1.0.3, appearing in
MacOS 10.10. We also encountered requests where the user-agent only contains
the string representation of a memory address.

Clients can choose which hash algorithm they wish to use in an OCSP requests.
During our monitoring effort, all clients used SHA1.

During a random day (2015-08-24), the median size of the OCSP requests
and responses were 300 and 1900 bytes.

Use of OCSP by Hosts: To evaluate how many hosts send OCSP, we
examine how many IP addresses send both OCSP and TLS traffic. We found
that 88% of IPv4 addresses using TLS also send OCSP, suggesting widespread
use of OCSP. We do not measure IPv6 addresses because hosts exchange web
traffic via TLS on IPv6 but issue their OCSP request via IPv4. Underuse of IPv6
for OCSP is likely because of limited support of IPv6 in OCSP servers: only 45%
of the 304 unique OCSP servers we observe have an IPv6 address.

Please note that Network Address Translation may cause an overestimate
of OCSP deployment. Ideally, one would want to determine the exact number
of connections that use OCSP; however performing such measurements would
require simulating the use of OCSP caching and is beyond the scope of this paper.

4 Latency of OCSP

Web browsing is very sensitive to latency, and there have been concerns that the
latency introduced by OCSP is too high [11]. In this section, we study OCSP
latency in three ways. First, we measure OCSP latency in live Internet traffic in
§ 4.1. Then, we verify these results with active probes of OCSP servers in § 4.2.
Finally, we compare OCSP latency to the TLS connection setup latency in § 4.3.

4.1 OCSP Delay in Network Traffic

As a first step, we use our passive dataset (§ 2), to analyze the distribution of
OCSP latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000

median: 19.25 ms
C

D
F

OCSP lookup time (seconds)

all
no connection reuse

connection reuse
get

post

Fig. 1: Cumulative distribution of OCSP lookup time including the TCP hand-
shake time for the first OCSP request in HTTP connection, over 41.12 M OCSP
lookups. Date: 2015-07-28 to 2015-09-28

Methodology: We define OCSP lookup time as the time from setting up a
new TCP connection to getting the first OCSP response. When multiple OCSP
responses are pipelined over a single TCP connection, we define the lookup time
for subsequent requests from start of request to the end of the corresponding
response. This definition reflects the amortization of connection setup time over
several requests, but it may underrepresent the user-perceived time if requests
arrived in a burst.

CDNs used in traffic: We find that overall the current OCSP lookup is
very quick with a median time of 19.25 ms (Figure 1). Even when we include the
connection setup times by considering only new HTTP connections, the median
OCSP lookup time is still only 23.78 ms. Studies by Stark et al. in 2012 showed
medians 14× larger [20] (291 ms compared to our 19 ms). Although most lookups
are fast, the distribution of times has a long tail, with a very few (less than 0.1%)
taking 5 seconds to 8 minutes.

We believe the primary reason OCSP performance has improved since 2012
is that today most OCSP traffic is served by CDNs. To identify OCSP queries
going to CDNs we mapped IP addresses in the traffic to hostnames and well
known CDNs (like Akamai, Edgecast, and Google) or the presence of CDNs in
the reverse hostname.

Table 2 shows the fraction of lookups (dynamic traffic) and servers (static
OCSP sites) that we identify as being served or hosted by CDNs. While only
39% of the servers that are accessed in our passive measurements are hosted by
known CDNs, we see that these servers manage the popular certificates: more
than nine-tenths of queries (94%) are served by CDNs. Service is quite heavily
skewed, with the 68% of traffic serviced by the top 10 busiest OCSP servers
(Table 3). All of them are handled by third party or internal CDNs.

Query Traffic OCSP Servers

CDN 39313464 94% 120 39%
other 2526338 6% 184 61%

total 41839802 100% 304 100%

Table 2: CDN usage of 304 unique OCSP servers discovered in our passive
monitoring over two months. Date: 2015-07-28 to 2015-09-28

server observed CDN lookup

ocsp.digicert.com phicdn.net 6,205,125 14.83%
clients1.google.com self-hosted 4,859,409 11.61%
sr.symcd.com akamaiedge 3,778,672 9.03%
ocsp.entrust.net akamaiedge 2,421,420 5.79%
ocsp.godaddy.com self-hosted (using akadns) 2,399,931 5.74%
ocsp.usertrust.com self-hosted 2,248,577 5.37%
vassg141.ocsp.omniroot.com akamai 1,915,287 4.58%
ss.symcd.com akamaiedge 1,663,053 3.97%
ocsp.comodoca.com self-hosted 1,478,911 3.53%
ocsp.verisign.com akamaiedge 1,345,724 3.22%

all 294 others 13,523,693 32.32%

total 41,839,802 100%

Table 3: Top 10 busy OCSP servers and their lookups discovered in our passive
monitoring. Date: 2015-07-28 to 2015-09-28

CDNs seen on servers: To get further evidence of the use of CDNs by
CAs, we examine the certificates of an Internet-wide scan of TCP port 443
by Rapid7 Labs [3]. Using their scan of 2015-09-28, we extract a list of 455
unique OCSP servers. This list includes 57% of the OCSP servers we discovered,
but neither list subsumes the other. We evaluate this list for CDNs using the
same method as before. We find that 29% of the OCSP servers are invalid
(non-existent domain), which is probably cased by misconfigurations, outdated,
or internal certificates. Of all certificates with valid servers, 23% are served by
CDNs, confirming that many CAs use CDNs for their OCSP servers. It also
shows that CDN use is more common in certificates of popularly used servers
than in all certificates. We believe this skew to be caused by the fact that popular
services keep their certificates updated better than the “average” TLS user. This
result again shows the importance of studying dynamic traffic to differentiate
typical OCSP performance from the worst case.

We have two additional observations about OCSP latency. First, we see that
GET requests are faster than POST requests (median 13.0 ms compared to 22.8 ms,
Figure 1). The HTTP standards recommend GET for short requests, and we see
about half of all OCSP requests using this method.

Finally, we see that it is not uncommon for OCSP requests to reuse an existing
HTTP connection, avoiding connection setup latency. In our measurements, 24%
of all OCSP lookups reuse a connection. Examining random samples of OCSP

requests that were reused reveals that connection reuse has several likely causes:
webpages that include resources from several other pages that share the same
OCSP servers, users accessing pages that share the same OCSP server quickly to
each other, and checks for end-host and intermediate certificates that share the
same OCSP server. Connection reuse reduces the overhead significantly: OCSP
queries that reuse connections complete with a median of 10 ms; less than half
that of those that start new connections (24 ms).

Our data includes OCSP requests for both intermediate certificates and leaf
certificates. Our analysis reflects the overall lookup performance of OCSP servers;
we do not study specific types of certificates.

4.2 OCSP Server Delay

Our passive study of OCSP traffic emphasizes the performance of the most
commonly used servers. We next augment our study with observations of active
probes to OCSP servers, to verify the results of our passive measurements and
capturing a static picture of the time an application takes to verify the validity
of certificates.

Methodology: We actively probe OCSP servers of the Alexa top-1000 from
two different vantage points, UCB and USC. We perform an HTTPS connection
attempt for each site (Figure 2a). We discard 362 (USC: 364) sites with failing
DNS lookups, where servers not answer to HTTPS requests or where we cannot
obtain valid certificate chains. We obtain complete certificate chains for the
remaining 638 (USC: 636) sites. We identify 508 (USC: 506) unique end host
certificates, discarding 130 (USC: 130) duplicate certificates (typically by sites
operated by the same company, such as youtube.com and google.com). We then
query the OCSP servers to check each end certificate using a custom program
that employs the OpenSSL library to send OCSP requests via HTTP POST. We
record the query start and response times. We conducted this experiment on two
well connected, capable machines (32-core with x86-64 Fedora 21 Linux 4.0.5 and
4-core with x86-64 Fedora 22 Linux 4.2.6). We repeat each query 20 times and
report the median value to avoid outliers.

Our active probes show overall short latencies with a median of 22.28 ms at
UCB (Figure 2b), which is similar to the median of OCSP network delay measured
by passively collected data (§ 4.1). It also shows that computational cost for
generating OCSP request and parsing response is small; in our experiment, the
time to generate an OCSP request is normally less than 0.5 ms. The latency
of most OCSP requests is acceptable: at UCB, 77% of the OCSP queries are
completed within 50 ms, although there are also some tardy responses (22%)
taking more than 150 ms. This also confirms our passive measurements of network
delay and reinforces that lookup time improved significantly compared to [20]. Our
measurements from USC show a similar distribution of OCSP lookup performance,
but with slightly smaller latency (median 6.6 ms). We think the difference is
caused by fewer hops to CDNs from our vantage point at USC. The stepped
pattern in Figure 2b is caused by certificates sharing the same OCSP servers and
the speed of the different CDNs.

youtube.com
google.com

sites UCB USC
considered 1000 1000

no IPv4 29 27
no TLS 308 310
TLS 663 663

no cert/chain 25 27
duplicates 130 130
unique certs 508 506

no ocsp url 2 2
complete 506 504

(a) Certificates retrieved.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000

median: 22.28 ms
median
6.6 msC

D
F

OCSP server delay (seconds)

Static: Alexa top-1000 (USC)
Static: Alexa top-1000 (UCB)

Dynamic: Network traffic (UCB)

(b) Cumulative distribution of OCSP delay.

Fig. 2: Evaluating OCSP across the Alexa top-1000 websites. Date: 2016-01-09.

4.3 OCSP Overhead in TLS

Our measurements show only modest OCSP delays. However, this cost needs to
be put into the context of overhead it adds to the TLS connection setup. We
now examine how OCSP affects TLS performance during session establishment,
using our passive dataset (§ 2). We define TLS delay as the time between the
client hello message and the first encrypted application data packet sent by client.
During an OCSP query, the TLS handshake can either be interrupted until an
OCSP response is received, or continue in parallel. In the parallel case, the client
must not send its first request to the server until receiving a valid OCSP response.

Matching OCSP requests to TLS connections: To understand the
overhead OCSP adds to TLS, we must map OCSP messages transmitted via
HTTP to their corresponding TLS connections. We log all TLS connections
and information about their certificates in addition to all OCSP requests and
responses. We then match OCSP requests to TLS connections using the 4-tuple
(source ip, ocsp URL, issuer name hash, serial number) from both flows and
identify the TLS connection closest in time to the OCSP request. We identify
and discard cases where the OCSP request precedes the TLS connection (an
early request), and when it follows by more than 10 s (a late request).

Using the method above, we successfully correlate 52% of the 41 M OCSP
requests with TLS connections (matched requests). We discard 17% as early
requests, 1.8% as late requests and are unable to match 30% using the 4-tuple
(unmatched requests).

Although we match the majority of requests, the high mismatch rate (including
impossible early requests) stems from several challenges in matching. We believe
a large number of mismatches are caused by dual-stack, IPv4/v6 hosts where
TLS connections occur on IPv6 but where the OCSP servers only support IPv4.
While 88% of IPv4 addresses send both TLS and OCSP requests, 90% of IPv6
addresses send no OCSP requests. OCSP requests caused by non-TLS services,
such as code-signing [22] are another reason for unmatched OCSP requests [22]
(see § 3) Finally, while the reported packet-loss in our monitoring infrastructure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

median: 0.0965

median: 15.8 ms

median: 241.3 ms
C

D
F

Latency (seconds)

OCSP/TLS Latency ratio

OCSP (all)
TLS (all)

ratio
TLS (1 OCSP)

TLS (>1 OCSP)

Fig. 3: Cumulative distribution of OCSP network latency and TLS delay for all
matched pairs. Date: 2015-07-28 to 2015-09-28. The blue dotted line shows the
cumulative distribution of the ratio of the sum of OCSP network latency to TLS
delay for every matched pair.

is low (about 1% of packets), it may still prevent the identification and parsing of
some TLS and OCSP connections. To avoid errors, we use only matched requests
in the following analysis.

Finally, we filter empty TLS and OCSP queries: we discard 11% of TLS
connections that have no client application data and 0.9% of OCSP lookups that
are missing either a request or response.

OCSP lookup in TLS Delay: Using the paired OCSP queries and TLS
connections, we evaluate how much latency the OCSP lookup adds to TLS
connections in Figure 3.

The key result is that OCSP typically accounts for one-tenth of the total TLS
delay. We see a median TLS delay of 242 ms compared to a median OCSP lookup
time of 15.8 ms. We compute the ratio of OCSP lookup time to TLS delay for
each paired connection with a median of 0.0965. We see some outliers (1.2%)
where the OCSP lookup time exceeds the TLS delay; we expect these cases to
be caused by timeouts.

The actual delay OCSP incurs to the user depends on the structure of the
application. Many applications do OCSP validation in parallel with starting the
TLS connection. Our evaluation shows that OCSP lookup time is only about
10% of TLS delay overall, as shown by the median latency ratio, and the cost is
typically 16 ms. This cost suggests that, if OCSP is performed in parallel with
TLS session setup, the OCSP delay is almost never visible.

In summary, the OCSP lookup latencies we observe have improved significantly
compared to prior reports [20]. OCSP lookup only adds modest delay to TLS
setup, and potentially never adds latency when performed in parallel.

validity percent
< 1 day 2%
1–6 days 38%
7–10 days 57%
> 10 days 3%

(a) Distribution of
OCSP validity times
for 290 k unique cer-
tificates.

 100000

 1x106

 1x107

 1x108

07-28
08-07

08-17
08-27

09-06
09-16

09-26

 0

 0.01

 0.02

 0.03

 0.04

 0.05

TLS connections

HTTP (OCSP) connections

OCSP requests

Ratio: OCSP/TLS

Ratio: HTTP/TLS

da
ily

 c
on

ne
ct

io
ns

 a
nd

 O
C

S
P

 re
qu

es
ts

R
at

io

(b) Daily number of TLS connections, OCSP requests and
HTTP (OCSP) connections.

Fig. 4: Evaluating OCSP caching. Date: 2015-07-28 to 2015-09-28.

4.4 Effectiveness of OCSP Caching

A final component of OCSP latency is caching of OCSP responses. Our data
does not provide an exact picture of caching, but we can use it to estimate the
effectiveness of caching.

The potential of OCSP caching can be seen in the OCSP validity periods.
Our passive dataset of OCSP traffic, Figure 4a shows that most OCSP responses
have a validity period of a week or more. 95% are valid for at least one day.

To give some estimate of the effectiveness of caching we counted the aggregate
number of OCSP requests relative to TLS connections. Figure 4b shows the
number of TLS connections and OCSP requests per day, with a mean of 30 M
TLS connections and only 0.7 M OCSP requests per day. Since we have shown
that most browsers and most IPv4 addresses use OCSP (§ 3), this ratio of 1 OCSP
request for 40 TLS connections suggests very effective caching. To understand
the exact impact of OCSP caching, future work must distinguish a cache hit from
cases where browsers disable OCSP, and from TLS sessions are established by
software that does not use TLS.

The potential of long-term OCSP caching is important because it significantly
attenuates the information about end-user browsing that is visible to CAs. Since
OCSP replies can be cached for at least one day, the information visible over this
channel is quite limited.

5 OCSP In Action: Revoked certificates

The point of OCSP is to revoke certificate that are no longer suitable for use,
a condition that we expect to be very rare but still very important. OCSP is
effective in practice—we see a few examples of revoked certificates in our data.

As expected, there are relatively few revoked certificates. We see OCSP replies
for 2,180 unique revoked certificates in our passive dataset that contains OCSP

replies for 1,418,315 unique certificates. Only 0.3% of OCSP queries report a
revoked certificate.

We manually examined the top 10 revoked certificates by number of OCSP
requests to understand their use. Seven of these were expired code-signing
certificates for software on the Windows platform. The rest were for subdomains
of t-mobile.com, aol.com and lijit.com that were inaccessible in October
2015. We speculate that these revocations indicate deployed software that has
not been updated and is trying to use discontinued services.

Finally, we observe a very few 638 (0.001%) OCSP responses for 105 unique
certificates with the status of “unknown”. Searching for cases where the same
OCSP responses also returned a different status revealed the cause for 72 of
these requests for 12 unique certificates: The most common cause is certificates
that have just been issued and are not known to the revocation server yet.
For 4 certificates, the CA returned an unknown status, apparently without
reason (certificate valid, later replies indicate “good” again). For 1 code-signing
certificate, the CA apparently returns unknown after the certificate expired. For
the remainder of the requests we could not identify a reason.

6 Related Work

There has been a wealth of work to measure different parts of the TLS and
certificate ecosystem, including studies of details of the CA ecosystem [10], TLS
errors [4] and certificates contained in root stores [16].

Prior work examined different aspects of TLS certificate revocation. After the
2008 Debian OpenSSL vulnerability and the Heartbleed bug, researchers studied
the number of revocations, revocation patterns and patching behavior [23,9,24].
In difference to these studies which focus on certificate revocation patterns
after a vulnerability, we study the performance impact of revocation in general.
Researchers also proposed to use alternative approaches to certificate revocation
like FM radio broadcasts for certificate revocation [19] as well as using short-lived
certificates to make revocations unnecessary [21].

Most recently, Liu et al. use full IPv4 scans and compare them with black-
lists [12]. They also study revocation checking behavior of web browsers and
operating systems as well as Google’s certificate revocation infrastructure. In
difference to us, they do not study the actual use of OCSP on the Internet or its
latency impact on the Internet.

Most related to our work, Stark et al. measured OCSP lookup latency [20].
Like their work, we use active and passive approach to understand OCSP latency.
However, we collect network traffic at a university network with a broader coverage.
Our data has a more diverse and much larger set of clients. Furthermore, we also
compare the speed of OCSP connections to the remainder of the TLS handshake.
Netcraft published OCSP performance surveys of major CAs [14,13]. They use
static sites to study OCSP latency and reliability. In contrast, our analysis uses
live network traffic to understand current OCSP latency.

OCSP stapling [17] was proposed as an alternative. Examining the usage of
OCSP stapling and its overhead is future work.

t-mobile.com
aol.com
lijit.com

To the best of our knowledge, no previous work examined OCSP network
traffic. Our analysis of actual traffic patterns provides insight into dynamic traffic,
complementing these prior studies that focused on analysis of static sites.

7 Conclusion

Our measurements show that the speed of OCSP servers has increased tremen-
dously. Due to the widespread use of CDNs OCSP almost never has any user-
perceived performance cost when done in parallel with TLS setup, and adds only
about 10% additional latency if done sequentially (§ 4.1).

Privacy has been a second concern about OCSP—CAs running the OCSP
servers can potentially deduce parts of a users browsing behavior. We have shown
that OCSP caching means that queries most queries are sent weekly or at most
daily, limiting this channel (§ 4.4).

A third concern about OCSP are problems with captive portals—web-pages
that require a user to agree to terms and conditions before being able to use
the Internet; some of these captive portals use HTTPS. In these cases, the
OCSP servers cannot be contacted to verify that the site certificate has not yet
been revoked. We leave addressing this problem to future work. One possible
approach is to use OCSP stapling [17] for captive portals—in these cases, OCSP
lookups would not be necessary. Alternatively, captive portals could allow HTTP
connections to specific OCSP servers.

Finally, we have shown that while certificate revocations are quite rare (as
expected), they do occur in practice (§ 5).

Ultimately, the data in our paper suggests that OCSP today is both important
and viable—it adds minimal or no user-visible delay or privacy, and it provides
an essential protection against certificate compromise.

Acknowledgments

This work was supported by the National Science Foundation (NSF) under
grant numbers CNS-1528156 and ACI-1348077, by the Department of Homeland
Security (DHS) Science and Technology Directorate, HSARPA, Cyber Security
Division, via SPAWAR Systems Center Pacific (contract N66001-13-C-3001), and
via BAA 11-01-RIKA and Air Force Research Laboratory, Information Directorate
(agreements FA8750-12-2-0344 and FA8750-15-2-0224). The U.S. Government
is authorized to make reprints for governmental purposes notwithstanding any
copyright. The views contained herein are those of the authors and do not
necessarily represent those of NSF, DHS or the U.S. Government.

References

1. Network Security Services. https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS.

2. The Bro Network Security Monitor. https://www.bro.org.

3. Project Sonar: IPv4 SSL Certificates. https://scans.io/study/sonar.ssl, Aug.
2015.

4. D. Akhawe, J. Amann, M. Vallentin, and R. Sommer. Here’s My Cert, So Trust
Me, Maybe? Understanding TLS Errors on the Web. In WWW, May 2013.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.bro.org
https://scans.io/study/sonar.ssl

5. C. Arthur. DigiNotar SSL certificate hack amounts to cyberwar, says
expert. http://www.theguardian.com/technology/2011/sep/05/diginotar-

certificate-hack-cyberwar, Sept. 2011.
6. S. Bhat. Gmail Users in Iran Hit by MITM Attacks. http://techie-buzz.com/

tech-news/gmail-iran-hit-mitm.html, Aug. 2011.
7. Comodo. Comodo Fraud Incident. https://www.comodo.com/Comodo-Fraud-

Incident-2011-03-23.html, Mar. 2011.
8. D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280, May 2008.

9. Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li, N. Weaver,
J. Amann, J. Beekman, M. Payer, and V. Paxson. The Matter of Heartbleed. In
ACM IMC, 2014.

10. R. Holz, L. Braun, N. Kammenhuber, and G. Carle. The SSL Landscape: A
Thorough Analysis of the X.509 PKI Using Active and Passive Measurements. In
ACM SIGCOMM, 2011.

11. A. Langley. Revocation checking and Chrome’s CRL. https://www.imperialviolet.
org/2012/02/05/crlsets.html, Feb. 2012.

12. Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove, A. Schul-
man, and C. Wilson. An End-to-End Measurement of Certificate Revocation in
the Web’s PKI. In ACM IMC, 2015.

13. Netcraft. Certificate revocation and the performance of OCSP. http:

//news.netcraft.com/archives/2013/04/16/certificate-revocation-and-

the-performance-of-ocsp.html.
14. Netcraft. OCSP Server Performance in April 2013. http://news.netcraft.com/

archives/2013/05/23/ocsp-server-performance-in-april-2013.html.
15. V. Paxson. Bro: A system for detecting network intruders in real-time. Comput.

Netw., 31(23-24):2435–2463, Dec. 1999.
16. H. Perl, S. Fahl, and M. Smith. You Wont Be Needing These Any More: On

Removing Unused Certificates from Trust Stores. In FC, 2014.
17. Y. Pettersen. The Transport Layer Security (TLS) Multiple Certificate Status

Request Extension. RFC 6961, 2013.
18. S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509

Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960, June 2013.

19. A. Schulman, D. Levin, and N. Spring. RevCast: Fast, Private Certificate Revocation
over FM Radio. In ACM CCS, 2014.

20. E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh. The Case for Prefetching
and Prevalidating TLS Server Certificates. In NDSS, 2012.

21. E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh. Towards Short-Lived
Certificates. In W2SP, 2012.

22. Wikipedia. Code signing. https://en.wikipedia.org/wiki/Code_signing.
23. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When Private Keys

Are Public: Results from the 2008 Debian OpenSSL Vulnerability. In ACM IMC,
2009.

24. L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove, A. Schulman, and
C. Wilson. Analysis of SSL Certificate Reissues and Revocations in the Wake of
Heartbleed. In ACM IMC, 2014.

http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://www.theguardian.com/technology/2011/sep/05/diginotar-certificate-hack-cyberwar
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
http://techie-buzz.com/tech-news/gmail-iran-hit-mitm.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/04/16/certificate-revocation-and-the-performance-of-ocsp.html
http://news.netcraft.com/archives/2013/05/23/ocsp-server-performance-in-april-2013.html
http://news.netcraft.com/archives/2013/05/23/ocsp-server-performance-in-april-2013.html
https://en.wikipedia.org/wiki/Code_signing

	Measuring the Latency and Pervasiveness of TLS Certificate Revocation

