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ABSTRACT

DNS is the canonical protocol for connectionless UDP. Yet
DNS today is challenged by eavesdropping that compromises
privacy, source-address spoofing that results in denial-of-
service (DoS) attacks on the server and third parties, injec-
tion attacks that exploit fragmentation, and size limitations
that constrain policy and operational choices. We propose
T-DNS to address these problems. It uses TCP to smoothly
support large payloads and to mitigate spoofing and amplifi-
cation for DoS. T-DNS uses transport-layer security (TLS)
to provide privacy from users to their DNS resolvers and op-
tionally to authoritative servers. Expectations about DNS
suggest connections will balloon client latency and over-
whelm server with state, but our evaluation shows costs are
modest: end-to-end latency from TLS to the recursive re-
solver is only about 9% slower when UDP is used to the
authoritative server, and 22% slower with TCP to the au-
thoritative. With diverse traces we show that frequent con-
nection reuse is possible (60—95% for stub and recursive re-
solvers, although half that for authoritative servers), and af-
ter connection establishment, we show TCP and TLS latency
is equivalent to UDP. With conservative timeouts (20 s at au-
thoritative servers and 60s elsewhere) and conservative es-
timates of connection state memory requirements, we show
that server memory requirements match current hard-
ware: a large recursive resolver may have 24k active con-
nections requiring about 3.6 GB additional RAM. We iden-
tify the key design and implementation decisions needed to
minimize overhead: query pipelining, out-of-order responses,
TLS connection resumption, and plausible timeouts.
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The Domain Name System (DNS) is the canonical
example of a simple request-response protocol. A client
uses DNS to translate a domain name like www.iana.
org into the IP address of the computer that will pro-
vide service. Rendering a single web page may require
resolving several domain names, so it is desirable to
minimize the latency of each query [11]. Requests and
responses are typically small (originally capped at 512 B
as a requirement, today under 1500B as a practical
matter), so a single-packet request is usually answered
with a single-packet reply over UDP.

DNS standards have always required support for TCP,
but it has been seen as a poor relative—necessary for
large exchanges between servers, but otherwise discour-
aged. TCP requires greater latency and resources than
UDP, since connection setup requires additional packet
exchanges, and tracking connections requires memory
and computation at the server. Why create a connec-
tion if a two-packet exchange is sufficient?

This paper makes two contributions: first, we show
that connectionless DNS causes fundamental weaknesses
today. DNS’ focus on single-packet, connectionless com-
munication results in weak privacy, denial-of-service (DoS)
vulnerabilities, and policy constraints, problems that
increase as DNS is used in new applications and con-
cerns about Internet safety and privacy grow. While
individual problems can often be worked around, taken
together they prompt revisiting assumptions.

These challenges prompt us to reconsider connection-
oriented DNS: we propose T-DNS, where DNS requests
should use TCP by default (not as last resort), and DNS
requests from end-users should use Transport-Layer Se-
curity (TLS, [17]). Our second contribution is to show
that end-to-end latency of T-DNS is only moderately
more than connectionless. Our models show latency is
only 9% increased for TLS vs UDP-only where TLS is
used just from stub to recursive resolver, and 22% in-
creased when TLS is used end-to-end (from stub to re-
cursive and then from recursive to authoritative). Con-
nection reuse results in latencies almost the same as
UDP once the connection is established. With moder-
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ate timeouts (20 s at authoritative servers and 60 s else-
where), connection reuse is high for servers (85-98%),
amortizing setup costs for client and server. Connec-
tion reuse for clients is lower (60-80% at the edge, but
20-40% at the root), but still results in amortized costs
and lowered latencies.

Connection rates are viable for modest server-class
hardware today. With conservative timeouts (20s at
authoritative servers and 60s elsewhere) and overesti-
mates of per-connection memory, a large recursive re-
solver may have 24k active connections using about

3.6 GB of RAM; authoritative servers double those needs.

Many DNS variations have been proposed, with TCP
in the original specification, and prior proposals to use
TLS, DTLS, SCTP, and HTTP with XML or JSON.
Our contribution is not protocol novelty, but the first
careful performance evaluation of connection-oriented
DNS. While we evaluate our specific design, we suggest
that our performance evaluation generalizes to most
connection-like approaches to DNS, nearly all of which
require some state at both ends. In addition, we identify
the specific implementation choices needed to get good
performance with TCP and TLS; alternative protocols
for DNS encryption will require similar optimizations,
and we suggest they will see similar performance.

Why: Connection-based communication is impor-
tant to improve DNS privacy through the use of en-
cryption. Although alternatives provide encryption over
UDP, all effectively build connections at the application-
layer to keep session keys and manage setup .
DNS traffic is important to protect because hostnames
are richer than already visible IP addresses and DNS

queries expose application information (§ 2.2.3)). DNS
queries are increasingly vulnerable: increasing use of

512 B [53], EDNSO provides a way for clients and servers
to advertise larger limits. 4096 B and 8192 B limits
are commonly observed today. However, due to IP
fragmentation [14], 1500B is seen as an operational
constraint and this limit has repeatedly affected pol-
icy choices in DNS security and applications. IP frag-
mentation presents several dangers: fragments require
a resend-all loss recovery [42], about 8% of middleboxes
(firewalls) block all fragments [79], and fragmentation
is one component in a class of recently discovered at-
tacks [31]. Of course current DNS replies strive to fit
within current limits [77], but DNSSEC keys approach-
ing 2048-bits lead to fragmentation, particularly during
key rollover . Finally, DNSSEC’s guarantees
make it attractive for new protocols with large replies,
but new applications will be preempted if DNS remains
limited to short replies.

How: On the surface, connection-oriented DNS seems
untenable, since TCP setup requires an extra round-trip
and state on servers. If TCP is bad, TLS’ heavier weight
handshake is impossible.

Fortunately, we show that connection persistence, re-
using the same connection for multiple requests, amor-
tizes connection setup. We identify the key design and
implementation decisions needed to minimize overhead—
query pipelining, out-of-order responses, TLS connec-
tion resumption, shifting state to clients when possi-
ble. Combined with conservative timeouts, these bal-
ance end-to-end latency and server load.

Our key results are to show that T-DNS is feasible
and that it provides a clean solution to a broad range of
DNS problems across privacy, security, and operations.
We support these claims with end-to-end models driven
by analysis of day-long traces from three different types

wireless networks, and growth of third-party DNS (OpenDNS of servers and experimental evaluation of prototypesﬂ

since 2006 [59] and Google Public DNS since 2009 [64]),
means that end-user requests often cross several net-
works and may be subject to eavesdropping. Prior work
has suggested from-scratch approaches [57} (16, [80]; we
instead utilize existing standards to provide confiden-
tiality for DNS, and demonstrate only moderate per-
formance costs. As a side-effect, T-DNS also protects
DNS queries from tampering over parts of their path.

TCP reduces the impact of denial-of-service (DoS)
attacks in several ways. Its connection establishment
forces both sides of the conversation to prove their ex-
istence, and it has well-established methods to tolerate
DoS attacks [23]. Lack of these methods has allowed
UDP-based DNS to be exploited by attackers with am-
plification attacks; an anonymous attacker who spoofs
addresses through a DNS server can achieve a 20:1 in-
crease in traffic to its victim, a critical component of
recent multi-Gb/s DoS attacks [3].

Finally, UDP has constrained DNS applications be-
cause of limits on reply sizes. Originally limited to

! This paper is a major revision of the prior technical report
ISI-TR-2014-688. Since that work we have improved our un-
derstanding of the availability of TCP fast open and TLS
resumption, and we have tightened our estimates on mem-
ory based on external reports (§ 5.2)). This additional infor-
mation has allowed us to conduct additional experiments,
improve our modeling, and provide a more accurate view of
what is possible today; our estimates of latency and mem-
ory consumption are both lower than in our prior technical
report as a result. We have also added additional informa-
tion about packet size limitations (Figure 2)), experiments
evaluating DNSCrypt/DNSCurve (§ 6.1)), analysis of DTLS,
and covered a broader range of RTTs in our experiments.
We believe these additions strengthen our central claims:
that connectionless DNS causes multiple problems and that
T-DNS addresses those problems with modest increase in
latency and memory suitable for current hardware.
Discussion with the community and feedback from re-
viewers raised a number of associated issues. These issues
were and are summarized in the body of the paper, but we
have placed detailed discussion in appendices so the body
may focus on our our central claims in a moderate amount
of space. Important additional topics include a detailed

discussion of deployment (Appendix HJ), an evaluation of
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Figure 1: Stub, recursive, and authoritative resolvers.
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2. PROBLEM STATEMENT

We next briefly review today’s DNS architecture, the
specific problems we aim to solve, and our threat model.

2.1 Background

DNS is a protocol for resolving domain names to dif-
ferent resource records in a globally distributed database.
A client makes a query to a server that provides a re-
sponse of a few dozen specific types. Domain names are
hierarchical with multiple components. The database
has a common root and millions of independent servers.

Originally DNS was designed to map domain names
to IP addresses. Its success as a lightweight, well under-
stood key-to-value mapping protocol caused its role to
quickly grow to other Internet-related applications, in-
cluding host integrity identification for anti-spam mea-

sures and replica selection in content-delivery networks [75].

Recently DNS’ trust framework (DNSSEC) has been

used to provide an alternative to traditional PKI/Certificate

Authorities for e-mail |27] and TLS [32].

Protocols: DNS has always run over both connec-
tionless UDP and connection-oriented TCP transport
protocols. UDP has always been preferred, with TCP
used primarily for zone transfers to replicate portions
of the database, kilobytes or more in size, across differ-
ent servers. Responses larger than advertised limits are
truncated, prompting clients to retry with TCP [74].
UDP can support large packets with IP fragmentation,
at the cost of new problems discussed below.

The integrity of DNS data is protected by DNSSEC [4].

DNSSEC provides cryptographic integrity checking of
positive and negative DNS replies, but not privacy. Since
July 2010 the root zone has been signed, providing a
root of trust through signed sub-domains.

As a Distributed System: DNS resolvers have
both client and server components. Resolvers typically
take three roles: stub, recursive, authoritative (Fig-|
. Stub resolvers are clients that talk only to recur-
sive resolvers, which handle name resolution. Stubs typ-
ically send to one or a few recursive resolvers, with con-
figuration automated through DHCP [20] or by hand.

Recursive resolvers operate both as servers for stubs

TCP-specific threats and their applicability to T-DNS (Ap-|
pendix I)), a detailed comparison of the relationship between

T-DNS with TLS to DTLS (Appendix J|), and details about

supporting experiments.

and clients to authoritative servers. Recursive resolvers
work on behalf of stubs to iterate through each of the
several components in a typical domain name, contact-
ing one or more authoritative servers as necessary to
provide a final answer to the stub. Much of the tree is
stable and some is frequently used, so recursive resolvers
cache results, reusing them over their time-to-live.

Authoritative servers provide answers for specific parts
of the namespace (a zone). Replication between author-
itative peers is supported through zone transfers with
notifications and periodic serial number inquiries.

This three-level description of DNS is sufficient to dis-
cuss protocol performance for this paper. We omit both
design and implementation details that are not relevant
to our discussion. The complexity of implementations
varies greatly [68]; we describe some aspects of one op-
erator’s implementation in

2.2 The Limitations of Single-Packet Exchange

Our goal is to remove the limitations caused by op-
timizing DNS around a single-packet exchange as sum-

marized in We consider transition in

2.2.1 Avoiding Arbitrary Limits to Response Size

Limatation in payload size is an increasing problem as
DNS evolves to improve security. Without EDNS [14],
UDP DNS messages are limited to 512 B. With EDNS,
clients and servers may increase this limit (4096 B is
typical), although this can lead to fragmentation which
raises its own problems [42]. Due to problematic mid-
dleboxes, clients must be prepared to fall back to 512 B,
or resend the query by TCP. Evidence suggests that
5% [79] or 2.6% [34] of users find TCP impeded. Such
work-arounds are often fragile and the complexities of
incomplete replies can be a source of bugs and security
problems [31].

Evolution of DNS and deployment of DNSSEC have
pushed reply sizes larger. We studied Alexa top-1000
websites, finding that 75% have replies that are at least
738 B (see for details).

With increasingly larger DNS replies (for example,
from longer DNSSEC keys), IP-level fragmentation be-
comes a risk in many or all replies. To quantify this
problem, [Figure 2]examines a 10-minute trace with 13.5M
DNSSEC enabled responses of one server for|. com. Over
this real-world trace we model the effects of different key
sizes by replacing current 1024-bit RSA signatures with
longer ones. We model regular operation for several
key sizes, showing CDFs for the size of all responses,
and dots for negative responses (NXD, medians; omit-
ted since quartiles are within 1%) using NSEC3 [45],
and DNSKEY replies for several sizes of KSK (each
row) and ZSK (different shapes, exact values).

[Figure 2|shows that with a 2048-bit ZSK, 5% of DNSSEC
responses and almost all NXDomain responses, and
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problem current DNS

with T-DNS (why)

packet size limitations

guarantee: 512 B, typical: 1500 B

no limit (from TCP bytestream)

source spoofing

spoof-detection depends on source ISP

most cost pushed back to spoofer (SYN cookies in TCP)

vulnerable to eavesdropping
aggregation at recursive

privacy (stub-to-recursive)
(recursive-to-authoritative)

privacy (from TLS encryption)
aggregation, or optional TLS

Table 1: Benefits of T-DNS.
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Figure 2: Estimated response sizes with different length
DNSSEC keys. Dots show sizes for DNSKEY and me-
dian for NXDomain replies. (Data: trace and modeling)

some DNSKEYs during rollover will suffer IP fragmen-
tation (shown in the shaded region above 1500 B).
This evaluation supports our claim that connection-
less transport distorts current policies. Worries about
fragmentation have caused delayed and caused concern
about key rollover and use of 2048-bit keys. More im-
portantly, other designs have been dismissed because of
reply sizes, such as proposals to decentralize signing au-
thority for the DNS root which might lead to requiring
TCP for root resolution [71]. For some, this require-
ment for TCP is seen as a significant technical barrier
forcing use of shorter keys or limitations of algorithms.
Finally, size can also preempt future DNS applica-
tions. Recent work has explored the use of DNS for
managing trust relationships, so one might ask how
DNS would be used if these constraints to response size
were removed. We examine the PGP web of trust [62]
as a trust ecosystem that is unconstrained by packet
sizes. Rather than a hierarchy, key authentication PGP
builds a mesh of signatures, so 20% of keys show 10 or
more signatures, and well connected keys are essential
to connecting the graph. PGP public keys with 4 sig-
natures exceeds 4kB, and about 40% of keys have 4 sig-
natures or more [62]. If DNS either grows to consider
non-hierarchical trust, or if it is simply used to store
such information [82], larger replies will be important.
T-DNS’ use of TCP replaces IP-level fragmentation
with TCP’s robust methods for retry and bytestream.

2.2.2 Need for Sender Validation

Uncertainty about the source address of senders is a
problem that affects both DNS servers and others on the
Internet. Today source IP addresses are easy to spoof,
allowing botnets to mount denial-of-service (DoS) at-
tacks on DNS servers directly [35} [69], and to lever-
age DNS servers as part of an attack on a third party
through a DNS Amplification attack |73} 47].

Work-arounds to DNS’ role in DoS attacks exist. Many
anti-spoofing mechanisms have been proposed, and DNS
servers are able to rate-limit replies. T-DNS would greatly
reduce the vulnerability of DNS to DoS and as DoS
leverage against others. Well established techniques
protect DNS servers from TCP-based DoS attacks [23}
70], and TCP’s connection establishment precludes source
address spoofing, eliminating amplification attacks.

We do not have data to quantify the number of DNS
amplification attacks. However, measurements of source-
IP spoofing shows that the number of networks that
allow spoofing has been fairly steady for six years [7].
Recent reports of DoS show that DNS amplification is a
serious problem, particularly in the largest attacks [3].
T-DNS suggests a long-term path to reduce this risk.

Even if TCP reduces DoS attacks, we must ensure it
does not create new risks. Fortunately TCP security
is well studied due to the web ecosystem. We describe
our approaches to DoS above, and most other known
attacks have defenses. A more detailed list of TCP-

specific attacks that do not apply is in

2.2.3 Need for DNS Privacy

Lack of protection for query privacy is the final prob-
lem. Traditionally, privacy of Internet traffic has not
been seen as critical. However, recent trends in DNS
use, deployment and documentation of widespread eaves-
dropping increase the need for query privacy [9]. First,
end-user queries are increasingly exposed to possible
eavesdropping, through use of third-party DNS services
such as OpenDNS and Google Public DNS, and through
access on open networks such as WiFi hotspots. Second,
presence of widespread eavesdropping and misdirection
is now well documented, for government espionage |30,
censorship [2], and criminal gain [50]. Finally, ISPs
have recognized the opportunity to monetize DNS ty-
pos, redirecting non-existing domain responses (NXDO-
MAIN hijacking), a practice widespread since 2009 (for
example [51]). For both corporate or national obser-



vation or interference, we suggest that one must follow
the policies of one’s provider and obey the laws of one’s
country, but we see value in making those policies ex-
plicit by requiring interaction with the operator of the
configured recursive name server, rather than making
passive observation easy.

DNS is also important to keep private because it is
used for many services. While protecting queries for
IP addresses may seem unnecessary if the IP addresses
will then immediately appear in an open IP header,
full domain-names provide information well beyond just
the TP address. For webservices provided by shared
clouds, the domain name is critical since IP addresses
are shared across many services. DNS is also used for
many things other than translating names to IP ad-
dresses: one example is anti-spam services where DNS
maps e-mail senders to reputation, exposing some e-
mail sources via DNS [46].

Although DNS privacy issues are growing, most DNS
security concerns have focused on the integrity of DNS
replies, out of fear of reply modification. The integrity
of DNS replies has been largely solved by DNSSEC
which provides end-to-end integrity checks.

2.3 Threat Model

To understand security aspects of these problems we
next define our threat model. For fragmentation attacks
due to limited packet size, assume an off-path adversary
that can inject packets with spoofed source addresses,
following Herzberg and Schulman [31].

For DoS attacks exploiting spoofed source addresses,
our adversary can send to the 30M currently existing
open, recursive resolvers that lack ingress filtering [49)].

For query eavesdropping and attacks on privacy, we
assume an adversary with network access on the net-
work between the user and the recursive resolver. We
assume aggregation and caching at the recursive re-
solver provide effective anonymization to authoritative
servers; if not it could enable TLS.

We also assume the operator of the recursive resolver
is trusted. Although outside the scope of this paper,
this requirement can be relaxed by alternating requests
across several DNS providers, implementing a mix net-
work shuffling requests from multiple users, or padding
the request stream with fake queries. Similarly, privacy
attacks using cache timing are outside our scope, but
solved by request padding [36].

Our use of TLS provides privacy of DNS, not all traf-
fic; we assume integrity is provided by DNSSEC.

3. RELATED WORK

Our work draws on prior work in transport protocols
and more recent work in DNS security and privacy.

3.1 Siblings: DNSSEC and DANE/TLSA

DNS Security Extensions (DNSSEC) uses public-key
cryptography to ensure the integrity and origin of DNS
replies |4]. Since the 2010 signature of the root zone, it
has provided a root of trust for DNS. DNS-based Au-
thentication of Named Entities for TLS (DANE/TLSA)
allows DNS to serve as a root of trust for TLS certifi-
cates [32]. Our work complements these protocols, ad-
dressing the related area of privacy.

Although DNSSEC protects the integrity and origin
of requests, it does not address query privacy. We
propose TLS to support this privacy, complementing
DNSSEC. Although not our primary goal, TLS also
protects against some attacks such as those that exploit
fragmentation; we discuss these below.

DANE/TLSA’s trust model is unrelated to T-DNS’

goal of privacy. See |3 4.2.1] for how they interact.

3.2 DNSCrypt and DNSCurve

OpenDNS has offered elliptic-curve cryptography to
encrypt and authenticate DNS packets between stub
and recursive resolvers (DNSCrypt [57]) and recursive
resolvers and authoritative servers (DNSCurve [16]). We
first observe that these protocols address only privacy,
not denial-of-service nor limits to reply size.

These protocols address the same privacy goal as our
use of TLS. While ECC is established cryptography,
above this they use a new approach to securing the
channel and a new DNS message format. We instead
reuse existing DNS message format and standard TLS
and TCP. Although ECC is an attractive choice, we
believe TLS’ run-time negotiation of cryptographic pro-
tocol is important for long-term deployment. We also
see significant advantage in adopting existing standards
with robust libraries and optimizations (such as TLS re-
sumption) rather than designing bespoke protocols for
our new application. In addition, while TLS implemen-
tations have reported recent flaws, our view is that com-
mon libraries benefit from much greater scrutiny than
new protocols. Finally, DNSCurve’s mandate that the
server’s key be its hostname cleverly avoids one RTT
in setup, but it shifts that burden into the DNS, po-
tentially adding millions of nameserver records should
each zone require a unique key.

DNSCrypt suggests deployment with a proxy resolver
on the end-user’s computer. We also use proxies for
testing, but we have prototyped integration with exist-
ing servers, a necessity for broad deployment.

3.3 Unbound and TLS

We are not the first to suggest combining DNS and
TLS. A recent review of DNS privacy proposed TLS [9),
and NLnet Lab’s Unbound DNS server has supported
TLS since December 2011. Unbound currently supports
DNS-over-TLS only on a separate port, and doesn’t
support out-of-order processing We have pro-



totyped our proposed in-band negotiation and out-of-
order processing in our T-DNS implementation.

3.4 Reusing Other Standards: DTLS, TLS over

SCTP, HTTPS, and Tcpcrypt

Although UDP, TCP and TLS are widely used, addi-
tional transport protocols exist to provide different se-
mantics. Datagram Transport Layer Security (DTLS)
provides TLS over UDP [66], meeting our privacy re-
quirement. While DTLS strives to be lighter weight
than TCP, it must re-create parts of TCP: the TLS

handshake requires reliability and ordering, DoS-prevention

requires cookies analogous to SYN cookies in TCP’s
handshake, and it caches these, analogous to TCP fast-
open. Thus with DoS-protection, DTLS provides no
performance advantage, other than eliminating TCP’s
data ordering. (We provide a more detailed evaluation
of these in ) Applications using DTLS suf-
fer the same payload limits as UDP (actually slightly
worse because of its additional header), so it does not
address the policy constraints we observe. Since DTLS
libraries are less mature than TLS and DTLS offers few
unique benefits, we recommend T-DNS.

TLS over SCTP has been standardized [37]. SCTP is
an attractive alternative to TCP because TCP’s order-
ing guarantees are not desired for DNS, but we believe
performance is otherwise similar, as with DTLS.

Several groups have proposed some version of DNS
over HTTP. Kaminsky proposed DNS over HTTP (39
with some performance evaluation [40]; Unbound runs
the DNS protocol over TLS on port 443 (a non-standard
encoding on the HTTPS port); others have proposed
making DNS queries over XML [60] or JSON [10] and
full HTTP or HTTPS. Use of port 443 saves one RTT
for TLS negotiation, but using DNS encoding is non-

standard, and HTTP encoding is significantly more bulky.

Most of these proposals lack a complete specification

(except XML [60]) or detailed performance analysis (Kamin-

sky provides some [40]). At a protocol level, DNS over
HTTP must be strictly slower than DNS over TCP,
since HT'TP requires its own headers, and XML or JSON
encodings are bulkier. Omne semi-tuned proxy shows
60 ms per query overhead [43], but careful studies quan-
tifying overhead is future work.

Tcperypt provides encryption without authentication
at the transport layer. This subset is faster than TLS
and shifts computation to the client [8]. T-DNS’ uses
TLS for privacy (and DNSSEC for authentication), so

teperypt may be an attractive alternative to TLS. Teperypt

is relatively new and not yet standardized. Our anal-
ysis suggests that, since RTTs dominate performance,
teperypt will improve but not qualitatively change per-
formance; experimental evaluation is future work.

The very wide use of TCP and TLS-over-TCP pro-
vides a wealth of time-tested implementations and li-

braries, while DTLS and SCTP implementations have
seen less exercise. We show that TCP and TLS-over-
TCP can provide near-UDP performance with connec-
tion caching. However, these protocols deserve evalua-
tion and comparison to TCP and TLS and we hope to
explore that as future work.

3.5 Specific Attacks on DNS

As a critical protocol, DNS has been subject to tar-
geted attacks. These attacks often exploit currently
open DNS recursive name servers, and so they would be
prevented with use of TLS’ secure client-to-server chan-
nel. Injection attacks include the Kaminsky vulnerabil-
ity |38], mitigated by changes to DNS implementations;
sending of duplicate replies ahead of the legitimate re-
ply [2], mitigated by Hold-On at the client [21]; and
injection of IP fragments to circumvent DNSSEC |[31],
mitigated by implementation and operations changes.

Although specific countermeasures exist for each of
these attacks, responding to new attacks is costly and
slow. Connection-level encryption like TLS prevents
a broad class of attacks that manipulate replies. Al-
though TLS is not foolproof (for example, it can be
vulnerable to person-in-the-middle attacks), and we do
not resolve all injection attacks (such as injection of
TCP RST or TLS-close notify), we believe TLS signifi-
cantly raises the bar for these attacks.

Similarly, recent proposals add cookies to UDP-based
DNS to reduce the impact of DoS attacks [22]. While
we support cookies, a shift to TCP addresses policy
constraints as well as DNS, and enables use of TLS.

4. DESIGN AND IMPLEMENTATION
OF T-DNS

Next we describe in-band TLS negotiation (our pro-
tocol addition), and we identify implementation choices
that improve performance as measured later (§ 6).

4.1 DNS over TCP

Design of DNS support for TCP was in the original
specification [53] with later clarifications |5]. However,
implementations of DNS-over-TCP have been underde-
veloped because it is not seen today as the common
case. We consider three implementation decisions, two
required to to make TCP performance approach UDP.

Pipelining is sending multiple queries before their
responses arrive. It is essential to avoid round-trip de-
lays that would occur with the stop-and-wait alterna-
tive. Batches of queries are common: recursive resolvers
with many clients have many outstanding requests to
popular servers, such as that for |.com. End-users often
have multiple names to resolve, since most web pages
draw resources from multiple domain names. We ex-
amined 40M web pages (about 1.4% of CommonCrawl-
002 |29]) to confirm that 62% of web pages have 4 or


.com

more unique domain names, and 32% have 10 or more.

Support for receiving pipelined requests over TCP
exists in bind and unbound. However neither sends
TCP unless forced to by indication of reply truncation
in UDP; and although explicitly allowed, we know of
no widely used client that sends multiple requests over
TCP. Our custom stub resolver supports pipelining, and
we are working to bring T-DNS to the getdns resolver.

Out-of-order processing (OOOP) at recursive re-
solvers is another important optimization to avoid head-
of-line blocking. TCP imposes an order on incoming
queries; OOOP means replies can be in a different or-
der, as defined and explicitly allowed by RFC-5966 [5].
Without OOOP, queries to even a small percentage of
distant servers will stall a strictly-ordered queue, unnec-
essarily delaying all subsequent queries. (For UDP, ab-
sence of connections means all prominent DNS servers
naturally handle queries with OOOP.)

We know of no DNS server today that supports out-
of-order processing of TCP queries. Both bind and
unbound instead resolve each query for a TCP connec-
tion before considering the next. We have implemented
out-of-order processing in our DNS proxy (converting
incoming TLS queries back to UDP at the server), and
have a prototype implementation in unbound.

Finally, when possible, we wish to shift state from
server to client. Per-client state accumulates in servers
with many connections, as observed in the TIME-WAIT
state overheads due to closed TCP connections previ-
ously observed in web servers [25]. Shifting TCP state
with DNS is currently being standardized [83)].

These implementation details are important not only
to DNS; their importance has been recognized before
in HTTP [54} 25]. HTTP/1.1 supports only pipelining,
but both are possible in DNS and proposed HTTP /2 [56].

4.2 DNS over TLS

TLS for DNS builds on TCP, with new decisions
about trust, negotiation, and implementation choices.

4.2.1 Grounding Trust

TLS depends on public-key cryptography to estab-
lish session keys to secure each connection and prevent
person-in-the middle attacks [17]. DNS servers must
be given TLS certificates, available today from many
sources at little or no cost.

Client trust follows one of several current practices.
We prefer DANE/TLSA to leverage the DNSSEC chain
of trust [32], but other alternatives are the current public-
key infrastructures (PKI) or trusted Certificate Author-
ities (CAs) provided out-of-band (such as from one’s
OS vendor or company). To avoid circular dependen-
cies between T-DNS and DANE, one may bootstrap
T-DNS’ initial TLS certificate through external means
(mentioned above) or with DANE without privacy.

4.2.2 Upwards TLS Negotiation

T-DNS must negotiate the use of TLS. Earlier pro-
tocols selected TLS with separate ports, but IETF now
encourages in-protocol upgrade to TLS to reduce port
usage; this approach is the current preference for many
protocols (IMAP, POP3, SMTP, FTP, XMPP, LDAP,
and NNTP, although most of these do have legacy, TANA-
allocated, but not RFC-standardized, ports to indicate
TLS, XMPP, the most recent, being an exception). to
indicate TLS). We therefore propose a new EDNS0 ex-
tension [14] to negotiate the use of TLS. We summarize
our proposal below and have provided a formal specifi-
cation elsewhere [33].

Our negotiation mechanism uses a new “TLS OK”
(TO) bit in the extended flags of the EDNSO OPT
record. A client requests TLS by setting this bit in
a DNS query. A server that supports TLS responds
with this bit set, then both client and server carry out
a TLS handshake [17]. The TLS handshake generates
a unique session key that protects subsequent, normal
DNS queries from eavesdropping over the connection.

The DNS query made to start TLS negotiation obvi-
ously is sent without TLS encryption and so should not
disclose information. We recommend a distinguished
query with name “STARTTLS”, type TXT, class CH,
analogous to current support queries [81].

Once TLS is negotiated, the client and server should
retain the TLS-enabled TCP connection for subsequent
requests. Either can close connections after moderate
idle periods (evaluated in, or if resource-constrained.

4.2.3 Implementation Optimizations

Two implementation choices improve performance.
TLS connection resumption allows the server to give
all state needed to securely re-create a TLS connection
to the client [67]. This mechanism allows a busy server
to discard state, yet an intermittently active client can
regenerate that state more quickly than a full, fresh
TLS negotiation. A full TLS handshake requires three
round-trip exchanges (one for TCP and two for TLS);
TLS resumption reduces this cost to two RTTs, and re-
duces server computation by reusing the master secret
and ciphersuite. Experimentally we see that resump-
tion is 10x faster than a new connection .

TLS close notify allows one party to request the
other to close the connection. We use this mechanism
to shift TCP TIME-WAIT management to the client.

4.3 Implementation Status

We have several implementations of these protocols.
Our primary client implementation is a custom client
resolver that we use for performance testing. This client
implements all protocol options discussed here and uses
either the OpenSSL or GnuTLS libraries. We also have
some functionality in a version of dig.



We have three server implementations. Our primary
implementation is in a new DNS proxy server. It pro-
vides a minimally invasive approach that allows us to
test any recursive resolver. It receives queries with all
of the options described here, then sends them to the
real recursive resolver via UDP. When the proxy and
real resolver are on the same machine or same LAN we
can employ unfragmented 9 kB UDP packets, avoid size
limitations and exploiting existing OOOP for UDP. It
uses either the OpenSSL or GnuTLS libraries.

In the long run we expect to integrate our methods
into existing resolvers. We have implemented subsets
of our approach in BIND-9.9.3 and unbound-1.4.21.

4.4 Gradual Deployment

Given the huge deployed base of DNS clients and
servers and the complexity of some implementations [79],
any modifications to DNS will take effect gradually and
those who incur cost must also enjoy benefits. We dis-
cuss deployment in detail elsewhere since
the length of full discussion forces it outside the scope
of the body of this report, but we summarize here.

T-DNS deployment is technically feasible because our
changes are backwards compatible with current DNS
deployments. TLS negotiation is designed to disable it-
self when either the client or server is unware, or if a
middlebox prevents communication. (Individuals may
choose to operate without DNS privacy or not if TLS is
denied.) DNS already supports TCP, so clients and
servers can upgrade independently and will get bet-
ter performance with our implementation guidelines.
Gradual deployment does no harm; as clients and servers
upgrade, privacy becomes an option and performance
for large responses improves.

Motivation for deployment stems from T-DNS’ pri-
vacy and DoS-mitigation. Some users today want greater
privacy, making it a feature ISPs or public DNS-operators
can promote. The DoS-mitigation effects of TCP al-
lows DNS operators to reduce their amount of capacity
overprovisioning to handle DoS. T-DNS’ policy benefits
from size require widespread adoption of TCP, but the
penalty of slow adoption is primarily lower performance,
so complete deployment is not necessary.

T-DNS deployment is feasible and motivations exist
for deployment, but the need for changes to hardware
and software suggests that much deployment will likely
follow the natural hardware refresh cycle.

5. CONNECTION REUSE AND RESOURCES

Connection reuse is important for T-DNS performance
to amortize setup over multiple queries (§ 6). Reuse
poses a fundamental trade-off: with plentiful resources
and strict latency needs, clients prefer long-lived con-
nections. But servers share resources over many clients
and prefer short-lived connections.

dataset date client IPs records
DNSChanger 2011-11-15

all-to-one 15k 19M

all-to-all 692k 964M
DITL/Level 3 2012-04-18

cns4d.lax1 282k 781M

cns[1-4].]lax1 655k 2412M
DITL/B-root 2013-05-29 3118k 1182M

Table 2: Datasets used to evaluate connection reuse and
concurrent connections. Each is 24 hours long.

We next examine this trade-off, varying connection
timeout to measure the connection hit fraction, how of-
ten an existing connection can be reused without setup,
and concurrent connections, how many connections are
active on a server at any time. We relate active connec-
tions to server resource use.

5.1 Datasets

We use three different datasets for our trace
analysis, to stand in for stub clients, recursive resolvers,
and authoritative servers.

DNSChanger: DNSChanger is a malware that redi-
rects end-users’ DNS resolvers to a third party so they
could inject advertising. This dataset was collected by
the working group that, under government authority,
operated replacement recursive resolvers while owners
of infected computers were informed [50]. It includes
timing of all queries from end-user IP addresses with
this malware as observed at the working group’s recur-
sive resolvers. We use this dataset to represent stub-to-
recursive traffic, and select traffic to the busiest server
(all-to-one) in and the traffic from all sources to
all servers (all-to-all) in

DITL /Level 3: Level 3 operates DNS service for their
customers, and also as an open public resolver [65].
Their infrastructure supports 9 sites, each with around
4 front-end recursive resolvers, each load-balanced across
around 8 back-end resolvers, as verified by the opera-
tors. We use their 48-hour trace hosted by DNS-OARC [19].

We examine two subsets of this data. We first select
a random site (lax1, although we confirmed other sites
give similar results). Most client IP addresses (89%) ac-
cess only one site, so we expect to see all traffic for each
client in the dataset (cns[1-4].lax1). Many clients
(75%) only access one front-end at a site, so we select
the busiest front-end at this site (cns4.lax1) to provide
a representative smaller (but still large) subset. We use
these Level 3 traces to represent a recursive resolver.

DITL/B-Root: This dataset was collected at the
B-Root nameserver as part of DITL-2013 and is also
provided through DNS-OARC. We selected B-Root be-
cause at the time of this collection it did not use any-
cast, so this dataset captures all traffic into one root
DNS instance. (Although as one of 13 instances it is



only a fraction of total root traffic.) We use this traffic
to represent an authoritative server, since commercial
authoritative server data is not generally accessible.

Generality: These datasets cover each class of DNS
resolver and so span the range of behavior
in different parts of the DNS system and evaluate our
design. However, each dataset is unique. We do not
claim that any represents all servers of that class, and
we are aware of quirks in each dataset. In addition,
we treat each source IP address as a computer; NAT
may make our analysis optimistic, although this choice
is correct for home routers with DNS proxies.

5.2 Trace Replay and Parameterization

To evaluate connection hits for different timeout win-
dows we replay these datasets through a simple simula-
tor. We simulate an adjustable timeout window from 10
to 480 s, and track active connections to determine the
number of concurrent connections and the fraction of
connection hits. We ignore the first 10 minutes of trace
replay to avoid transient effects due to a cold cache.

We convert the number of concurrent connections to
hardware memory requirements using two estimates.
First, we measure memory experimentally idle TCP
connections by opening 10k simultaneous connections to
unbound and measuring peak heap size with valgrind.
On a 64-bit x86 computer running Fedora 18, we esti-
mate TCP connection at 260kB, and each TLS con-
nection at 264 kB; to this we estimate about 100kB
kernel memory, yielding 360kB as a very loose upper
bound. Second, Google transitioned gmail to TLS with
no additional hardware through careful optimizations,
reporting 10kB memory per connection with minimal
CPU cost due to TLS [44]. With optimizations they
have made public, we use 150kB as a straightforward
target per connection.

5.3 Concurrent Connections and Hit Fraction

Trace replay of the three datasets provides several
observations. First we consider how usage changes over
the course of the day, and we find that variation in
the number of active connections is surprisingly small.
When we measure counts over one-second intervals, con-
nections vary by +10% for Level 3, with slightly more
variation for DNSChanger and less for B-Root (graphs
omitted due to space). Connection hit fractions are
even more stable, varying by only a few percent. Given
this stability, summarizes usage with medians
and quartiles. shows raw data.)

The three servers have very different absolute num-
bers of active connections, consistent with their client
populations. (Figure 3a| DNSChanger: for this dataset,
a few thousand uncorrected users; Level 3:
many thousand customers per site and B-Root: poten-
tially any global recursive resolver).) All servers show

asymptotic hit fractions with diminishing benefits be-
yond timeouts of around 100s . The asymp-
tote varies by server: with a 120 s window, DNSChanger
is at 97-98%, Level 3 at 98-99%, and B-Root at 94-96%.
These fractions show that connection caching will be
very successful. Since much network traffic is bursty, it
is not surprising that caching is effective.

Finally, comparing the authoritative server (B-Root)
with recursive resolvers, we see the ultimate hit frac-
tion is considerably smaller (consistently several per-
cent lower for a given timeout). We believe the lower hit
fraction at B-Root is due to its diverse client population
and is relatively small zone. We expect this result will
hold for servers that provide static DNS zones. (DNS
servers providing dynamic content, such as blackhole
lists, are likely to show different trends.)

Recommendations: We propose timeouts of 60s
for recursive resolvers and 20 s for authoritative servers,
informed by with a conservative approach to
server load. We recommend that clients and servers not
preemptively close connections, but instead maintain
them for as long as they have resources. Of course,
timeouts are ultimately at the discretion of the DNS
operator who can experiment independently.

These recommendations imply server memory require-
ments. With 60s and 20s timeouts for recursive and au-
thoritative, each DNSChanger needs 0.3 GB RAM (2k
connections), Level 3 3.6 GB (24k connections), and B-
Root 7.4 GB (49k connections), based on the 75%iles in
for both user and kernel memory with some
optimization, in addition to memory for actual DNS
data. These values are well within current, commodity
server hardware. With Moore’s law, memory is grow-
ing faster than root DNS traffic (as seen in DITL [12]),
so future deployment will be even easier. Older servers
with limited memory may instead set a small timeout
and depend on clients to use TCP Fast Open and TLS
Resume to quickly restart terminated connections.

6. CLIENT-SIDE LATENCY

For clients, the primary cost of T-DNS is the addi-
tional latency due to connection setup. Using experi-
ments, we next examine stub-to-recursive and recursive-
to-authoritative query latency with TCP and TLS, high-
lighting the effects of pipelining and out-of-order pro-
cessing. Three parameters affect these results: the com-
putation time needed to execute a query, the client-
server RTT, and the workload. We show that RTTs
dominate performance, not computation. We study

RTTs for both stub-to-recursive and recursive-to-authoritative

queries, since the RTT is much larger and more variable
in the second case. We consider two workloads: stop-
and-wait, where each query is sent after the reply for the
last is received, and pipelining, where the client sends
queries as fast as possible. These experiments support
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DNSecrypt/
step OpenSSL  GnuTLS DNScurve
TCP handshake 0.15ms none
packet handling 0.12ms none
crypto handshake 25.8 ms 8.0 ms 23.2ms

key exchange 13.0 ms 6.5 ms —
CA validation 12.8 ms 1.5ms —
crypto resumption 1.2ms 1.4 ms no support
DNS resolution 0.1-0.5ms same same
crypto ~1ms 0.7-1.8 ms

Table 3: Computational costs of connection setup and
packet processing.

modeling of end-to-end latency.

6.1 Computation Costs

We next evaluate CPU consumption of TLS. Our
experiments’ client and server are 4-core x86-64 CPUs,
running Fedora 19 with Linux-3.12.8 over a 1Gb/s Eth-
ernet. We test our own client and the Apache-2.4.6 web-
server with GnuTLS and OpenSSL. We also measure
the DNSCurve client [48], and the DNSCrypt proxy [5§].

We report the median of 10 experimental trials, where
each trial is the mean of many repetitions because each
event is brief. We measure 10k TCP handshakes, each
by setting up and closing a connection. We estimate
TCP packet processing by sending 10k full-size packets
over an existing connection. We measure TLS connec-
tion establishment from 1000 connections, and isolate
key exchange from certificate validation by repeating
the experiment with CA validation disabled. We mea-
sure TLS connection resumption with 1000 trials.

compares TLS costs: TCP setup and DNS
resolution are fast (less than 1ms). TLS setup is more
expensive (8 or 26 ms), although costs of key exchange
and validation vary by implementation. We see that
TLS resumption is ten times faster than full TLS setup
for both OpenSSL and GnuTLS.

We also examine DNSCurve and DNSCrypt cost in
and find similar computation is required for
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their session key establishment. Their client and server
can cache session keys to avoid this computation, but
at the expense of keeping server state, just as T-DNS
keeps TCP and TLS state.

Finally, prior work has reported server rates of 754
uncached SSL connections per second [8]. These con-
nection rates sustain steady state for recursive DNS,
and two servers will support steady state for our root
server traces. Provisioning for peaks would require ad-
ditional capacity.

Although TLS is computationally expensive, T'LS com-
putation will not generally limit DNS. For clients, we
show that RTT dominates performance, not
computation. Most DNS servers today are bandwidth
limited and run with very light CPU loads. We expect
server memory will be a larger limit than CPU. While
our cost estimation is very promising, we are still in the
progress of carrying out full-scale experimental evalua-
tion of T-DNS under high load.

6.2 Latency: Stub-to-Recursive Resolver

We next carry out experiments to evaluate the effects
of T-DNS on DNS use between stub and both local and
public recursive resolvers.

Typical RTTs: We estimate typical stub-to-recursive
resolver RTTs in two ways. First, we measure RTTs to
the local DNS server and to three third-party DNS ser-
vices (Google, OpenDNS, and Level3) from 400 Plan-
etLab nodes. These experiments show ISP-provided re-
solvers have very low RTT, with 80% less than 3 ms and
only 5% more than 20ms. Third-party resolvers vary
more, but anycast keeps RTT moderate: median RTT
for Google Public DNS is 23 ms, but 50 ms or higher for
the “tail” of 10-25% of stubs; other services are some-
what more distant. Second, studies of home routers
show typical RTTs of 5-15ms [72].

Methodology: To estimate T-DNS performance we
experiment with a stub resolver with a nearby (1ms)
and more distant (35 ms) recursive resolver. We use our

custom DNS stub and the BIND-9.9.3 combined with
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Figure 4: Per-query response times for 140 unique
names with different protocol configurations and two
stub-to-recursive RTTs (1 ms and 35ms). Boxes show
median and quartiles. Case (f) uses a different scale.

our proxy as the recursive. For each protocol (UDP,
TCP, TLS), the stub makes 140 unique queries, ran-
domly drawn from the Alexa top-1000 sites [1] with
DNS over that protocol. We restart the recursive re-
solver before changing protocols, so each protocol test
starts with a cold cache. We then vary each combina-
tion of protocol (UDP, TCP, and TLS), use of pipelin-
ing or stop-and-wait, and in-order and out-of-order pro-
cessing. Connections are either reused, with multiple
queries per TCP/TLS connection (p-TCP/p-TLS), or
no reuse, where the connection is reopened for each
query. We repeat the experiment 10 times and report
combined results.

Performance: shows the results of these
experiments. We see that UDP, TCP, and TLS perfor-
mance is generally similar when other parameters are
held consistent (compare (a), (b), and (c), or (g), (h),
and (1)). With even 35 ms RTT, the recursive query pro-
cess still dominates protocol choice and setup costs are
moderate. The data shows that out-of-order processing
is essential when pipelining is used; case (f) shows head-
of-line blocking compared to (h). This case shows that
while current servers support TCP, our optimizations
are necessary for high performance. Finally, pipelin-
ing shows higher latency than stop-and-wait regardless
of protocol (compare (g) with (a) or (i) with (c)). This
difference is due to 140 simultaneous queries necessarily
queue at the server when the batch begins.

Finally, we see that the costs of TLS are minimal here:
comparing (c¢) with (b) and (a) or (i) with (g) and (h),
natural variation dominates performance differences.

We conclude that protocol choices make little differ-
ence between stub and recursive where RTT is small—
connection setup is dwarfed by communication time to
authoritative name servers. A more detailed discussion
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of these experiments can be found in

6.3 Latency: Recursive to Authoritative

We next consider performance between recursive re-
solvers and authoritative name servers. While recur-
sives are usually near stubs, authoritative servers are
globally distributed with larger and more diverse RTTs.

Typical RTTs: To measure typical recursive-to-
authoritative RTTs, we use both the Alexa top-1000
sites, and for diversity, a random sample of 1000 sites
from Alexa top-1M sites. We query each from four lo-
cations: our institution in Los Angeles (isi.edu), and
PlanetLab sites in China (www.pku.edu.cn|), UK (www.
cam.ac.uk), and Australia (www.monash.edu.au). We
query each domain name iteratively and report the time
fetching the last component, taking the median of 10
trials to be robust to competing traffic and name server
replication. We measure query time for the last compo-
nent to represent caching of higher layers.

The U.S. and U.K. sites are close to many authori-
tative servers, with median RTT of 45 ms, but a fairly
long tail with 35% of RTTs exceeding 100 ms. Asian and
Australian sites have generally longer RTTs, with only
30% closer than 100 ms (China), and 20% closer than
30ms (Australia), while the rest are 150 ms or more.
This jump is due to the long propagation latency for
services without sites physically in these countries. (See
for data.)

Methodology: To evaluate query latencies with larger
RTTs between client and server, we set up a DNS au-
thoritative server (BIND-9.9.3) for an experimental do-
main (example.com) and query it from a client 35ms
(8 router hops on a symmetric path) away. Since per-
formance is dominated by round trips and not compu-
tation we measure latency in units of RTT and these
results generalize to other RTTs. For each protocol, we
query this name server directly, 140 times, varying the
protocol in use. As before, we repeat this experiment
10 times and report medians of all combined experi-
ments . Variation is usually tiny, so standard
deviations are omitted except for cases (h) and (i).

Performance: shows the results of this ex-
periment. We first confirm that performance is dom-
inated by protocol exchanges: cases (a), (b) and (c)
correspond exactly to 1, 2, and 5 RTTs as predicted.
Second, we see the importance of connection reuse or
caching: cases (e) and (f) with reuse have identical per-
formance to UDP, as does TCP fast open (case (d)).

As before, pipelining for TCP shows a higher cost
because the 140 queries queue behind each other. Ex-
amination of packet traces for cases (h) and (i) shows
that about 10% of queries complete in about 1 RTT,
while additional responses arrive in batches of around
12, showing stair-stepped latency. For this special case
of more than 100 queries arriving simultaneously, a sin-
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Figure 5: Per-query response times for 140 repeated
queries with different protocols, measured in RTTs (left
axis) and ms (right). (Medians; boxes add quartiles.)

gle connection adds some latency.

We next consider the cost of adding TLS for privacy.
The community generally considers aggregation at the
recursive resolver sufficient for anonymity, but TLS may
be desired there for additional privacy or as a policy
so we consider it as an option. Without connection
reuse, a full TLS query always requires 5 RTTs (case
(¢), 175ms): the TCP handshake, the DNS-over-TLS
negotiation , two for the TLS handshake, and
the private query and response.

However, once established TLS performance is iden-
tical to UDP: cases (f) and (a) both take 1RTT. En-
cryption’s cost is tiny compared to moderate round-trip
delays when we have an established connection. We ex-
pect similar results with TLS resumption.

Finally, when we add pipelining and out-of-order pro-
cessing, we see similar behavior as with TCP, again due
to how the large, batched queries become synchronized
over a single connection.

We conclude that RTTs completely dominate recursive-
to-authoritative query latency. We show that connec-
tion reuse can eliminate connection setup RTT, and we
expect TLS resumption will be as effective as TCP fast-
open. We show that TCP is viable from recursive-to-
authoritative, and TLS is also possible. A more detailed
discussion of these experiments can be found in

6.4 Client connection-hit fractions

Connection reuse is important and found very
high reuse from the server’s perspective. We next show
that client connection-hit fractions are lower because
many clients query infrequently.

To evaluate client connection hit fractions, we replay
our three DNS traces through the simulator from[§ 5.3]
but we evaluate connection hit fractions per client. [Fig-]
[ure 7shows these results, with medians (lines) and quar-
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with quartiles.

tiles (bars, with slight offset to avoid overlap).

Among the three traces, the DNSChanger hit fraction
exceeds Level 3, which exceeds B-Root, because servers
further up the hierarchy see less traffic from any given
client. We see that the top quartile of clients have high
connection hit fractions for all traces (at 60s: 95% for
DNSChanger, 91% for Level 3, and 67% for B-Root).
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Figure 8: End-to-end-performance as a function of pro-
tocol choice and stub-to-resolver RTT
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The connection hit rate for the median client is still
fairly high for DNSChanger and Level 3 (89% and 72%),
but quite low for B-Root (28%). Since most B-Root
content can be cached, many clients only contact it in-
frequently and so fail to find an open connection.

These results suggest that clients making few requests
will need to restart connections frequently. Fortunately
TCP Fast Open and TLS Resumption allow these clients
to carry the state needed to accelerate this process.

6.5 Modeling End-to-End Latency for Clients

With this data we can now model the expected end-
to-end latency for DNS users and explore how stub,
recursive and authoritative resolvers interact with dif-
ferent protocols. Our experiments and measurements
provide parameters and focus modeling on connection
setup (both latency and CPU costs). Our model cap-
tures clients restarting connections, servers timing out
state, and the complex interaction of stub, recursive,
and authoritative resolvers. Our modeling has two lim-
itations. First, we focus on typical latency for wusers,
per-query; the modeling reflects query frequency, em-
phasizing DNS provisioning for common queries and re-
flecting queries to rare sites only in proportion to their
appearance in our traces. We do not evaluate mean
latency per-site, since that would be skewed by rarely
used and poorly provisioned sites. Second, our models
provide mean performance; they cannot directly pro-
vide a full distribution of response times and “tail” per-
formance [15]. We are interested in using trace replay
to determine a full distribution with production-quality
servers, but as significant future work.

Modeling: We model latency from client to server,
Le,, as the probability of connection reuse (PS) and
the cost of setting up a new connection (S< ) added to
the the cost of the actual query (Qc,):

Leo = (1 - ng)sgf + Qeo (1)

From [Figure 5| Q., is the same for all methods with
an open connection: about one client-server RTT, or
Reo. Setup cost for UDP (S:#4P) is 0. With the prob-
ability for TCP fast-open (TFO), PLFO TCP setup
costs:

SCCC';tcp — (1 _ P£F0)Rca

(2)

We model TLS setup (S$!*) as the probability of
TLS resumption (P2F) and its cost S1", or the cost
of setting up a completely new TLS connection Sg;”snz

S%tls — PCIE;ESCCU’HST + (1 o PCIL%TE)SCCC’;tls,,L (3)

For simplicity, we assume TCP fast open and TLS re-
sumption have the same timeout, so PEF = pTFO,
Thus, SCH5 is 2R, + S (1 each for TLS negotia-
tion and handshake) and St is 4R, + S (1 for

TCP, 1 for TLS negotiation, and 2 for TLS handshake).
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We set SiP"» at 25.8 ms and S3P“r is at 1.2ms((Table 3

with and without CA validation). We estimate PS

co?
PEE and PTFO from our timeout window and trace
analysis (Figures [6] and [7)).

To compute end-to-end latency (stub-to-authoritative,
Ls,), we combine stub-to-recursive latency (L) with
behavior at the recursive resolver. For a cache hit (prob-
ability PN) the recursive resolver can reply immedi-
ately. Otherwise it will make several (N®) queries to

authoritative resolvers (each taking L, ) to fill its cache:
Lso = Lo+ (1 —PN)NCL,, (4)

Where Lg,. and L., follow from We
model recursive with the Level 3 data and authorita-
tive as B-Root. With our recommended timeouts (60s
and 20s), we get P$ = 0.72 and P = 0.24. We as-
sume TCP fast open and TLS resumption last 2 hours
at recursive (PEF = PTFO = (.9858) and 7 h at author-
itative (PX¥ = PTFO = (.8). Prior studies of recursive
resolvers suggest P ranges from 71% to 89% [36].

We determine N¥ by observing how many queries
BIND-9.9.3 requires to process the Alexa top-1000 sites.
We repeat this experiment 10 times, starting each run
with a cold cache, which leads to N@ = 7.24 (standard
deviation 0.036, includes 0.09 due to query retries). We
round N€ to 7 in our analysis of estimated latency. Al-
though this value seems high, the data shows many in-
coming queries require multiple outgoing queries to sup-
port DNSSEC, and due to the use of content-delivery
networks that perform DNS-based redirection.

Scenarios: With this model we can quickly com-
pare long-term average performance for different scenar-
ios. compares six protocol combinations (each
group of bars) We consider Ry, = 5ms and Ry, = 20ms
suitable for a good U.S. or European ISP, but we report
stub-to-recursive RTTs from 5 to 80 ms.

For the local resolver, the analysis shows that use of
TCP and TLS to the local resolver adds moderate la-
tency: current DNS has mean of 61 ms, and TCP is
the same, and TLS is only 5.4% slower with UDP up-
stream. Second, we see that use of connections between
recursive and authoritative is more expensive: with TLS
stub-to-recursive, adding TCP to the authoritative is
19% slower and adding TLS to the authoritative more
than 180% slower. This cost follows because a single
stub-to-recursive query can lead to multiple recursive-
to-authoritative queries, at large RTTs with a lower
connection-hit fraction. However this analysis is pes-
simistic; the expected values underestimate possible lo-
cality in those queries.

For a third-party resolver (Rgs. = 20ms), the trends
are similar but the larger latency to the recursive re-
solver raises costs: TLS to recursive (with UDP to au-
thoritative), is 15.5% slower than UDP.

7. CONCLUSION



Connectionless DNS is overdue for reassessment due
to privacy limitations, security concerns, and sizes that
constrain policy and evolution. Our analysis and exper-
iments show that connection-oriented DNS addresses
these problems, and that latency and resource needs of
T-DNS are managable.
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top-1000 websites (as of 2014-01-24), and UDP response
sizes out of two root servers. (Data: 2013-10-01)

APPENDIX

A. ACKNOWLEDGMENTS

We would like to thank several that contributed data
to this effort: DNS-OARC DITL program, operators of
A, J, B root name servers, Level3 and Common Crawl.
Calvin Ardi extracted domain names from webpages
from the Common Crawl dataset. Xun Fan helped col-
lect data from PlanetLab. Christos Papadopoulos pro-
vided servers at CSU for our high-latency experiments.
John Wroclawski, Bill Manning, and prior anonymous
reviewers provided comments on the paper, many help-
ful. We also thank colleagues at Verisign and par-
ticipants at the 2014 DNS-OARC workshop for com-
ments and many though-provoking questions, particu-
larly about deployment. We thank Ted Faber and Joe
Touch for their discussions about TCP.

B. CURRENT QUERY RESPONSE SIZES

shows the size of responses from popular au-
thoritative name servers and from two root DNS servers.
This table shows resolution of full domain names for the
Alexa top-1000 websites. We show the distribution of
responses for each component as well as the maximum
seen over all components of each domain name. From
this graph we see that responses today are fairly large:
nearly 75% of top 1000 result in a response that is at
least 738 bytes (the DNSSEC-signed reply for |.com).
Resolvers today require EDNS support for large replies.

Resolution of these domain names typically requires
600-800 B replies. Many Internet paths support 1500 B
packets without fragmentation, making these sizes a
good match for today’s network. This result is not sur-
prising: of course DNS use is tailored to match current
constraints. However, transient conditions stress these
limits. Examples are the two methods of DNSSEC key
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Figure 10: CDF of number of unique hostnames per
web page. (Dataset: 40584944 page sample from
CommonCrawl-002 [29)]).

rollover: with pre-published keys, DNSKEY responses
grow, and with double-signatures all signed responses
are temporarily inflated. Both stretch reply sizes for
the transition period of hours or days, during which IP
fragmentation reduces performance of affected domains
(like |. com)) for everyone.

C. DOMAIN NAMES PER WEB PAGE

To demonstrate the need for pipelining DNS queries
for end-users , we examined about 40M web pages
(about 1.4%) from a sample of CommonCrawl-002 [29].
The sample is selected arbitrarily, so we do not expect
any bias. We count the number of unique domain names
per page.

Figure 10| shows the results: to confirm that 62% of
web pages have 4 or more unique domain names, and
32% have 10 or more.

D. ADDITIONAL DATA FOR SERVER-SIDE
LATENCY
and shows the number of connections over

the day for all three datasets, shows the hit
fraction over the day for all three datasets, expanding

on the data in
summarizes the data in by quar-

tiles.

E. DETAILED DISCUSSION OF LATENCY

This appendix provides a detailed, case-by-case dis-
cussion of latency for our experiments, expanding on

the discussion in and

E.1 Detailed Discussion of Latency: Stub-to-
Recursive Resolver
We first estimate what RTTs to expect for stub-to-
recursive, then compare protocol alternatives.

E.1.1 Typical Stub-to-Recursive RTTs
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Stubs typically talk to a few (one to three) recursive
resolvers. Recursive resolvers are usually provided as a
service by ones ISP, and so they are typically nearby
in the network. Alternatively, some users use third-
party resolvers. These may have a higher round-trip-
time (RTT) from the stub, but provide a very large
cache and user population.

We measure the RTT between stub and recursive re-
solvers across 400 PlanetLab nodes to their local (ISP-
provided) resolver, and also to three third-party DNS
services (Google, OpenDNS, and Level3). For each
case, we issue the same query 7 times, each after the
previous reply, and report the median. We expect the
first query to place the result in the cache, so the fol-
lowing query latency approximates RTT. We report the
median to suppress noise from interfering traffic.

The result confirms that the ISP-provided recursive
resolver almost always has very low latency (80% less
than 3ms). Only a few stragglers have moderate la-
tency (5% above 20ms). For third-party resolvers, we
see more variation, but most have fairly low latency due
to distributed infrastructure. Google Public DNS pro-
vides median latency of 23 ms and the others only some-
what more distant. The tail of higher latency here af-
fects more stubs, with 10-25% showing 50 ms or higher.
(See for data.)

PlanetLab nodes are primarily hosted at academic
sites and so likely have better-than-typical network con-
nectivity. These observed third-party DNS latency may
be lower than typical. However, with this sample of
more than 300 organizations, this data provide some
diversity in geography and configuration of local DNS.

E.1.2 TCP connection setup: stub-to-recursive

We next evaluate the costs of TCP connection setup
for stub-to-recursive queries.

We emulate both a close (RTT=1ms) and a far (RTT=35 msl‘glpport fo

stub to recursive resolver configurations. We use our
custom DNS stub and the BIND-9.9.3 server with our
DNS proxy. For each protocol (UDP, TCP, TLS), the
stub makes 140 unique queries, randomly drawn from
the Alexa top-1000 sites [1] with DNS over that proto-
col. We restart the recursive resolver before changing
protocols, so each protocol test starts with a cold cache.

For each protocol we also vary several policies. On
the client side we consider pipeline: send several queries
before the responses arrive and stop-and-wait: wait for
response before sending the next query. Processing on
the server, we compare in-order, where queries are pro-
cessed sequentially and out-of-order processing (OOOP),
where queries are processed concurrently. Connections
are either reused, with multiple queries per TCP/TLS
connection (p-TCP /p-TLS), or no reuse, where the con-
nection is reopened for each query.

We repeat the whole experiment 10 times and report

19

results combining all experiments.

shows the results of these experiments. We
first consider UDP compared to TCP: when queries are
sent in stop-and-wait mode, and server processes them
in-order, TCP can always achieve almost the same la-
tency as UDP (a: left) with (d: left) or without (b: left)
connection reuse, when RTT is small. When RTT be-
comes larger, TCP without (b: right) connection reuse
incurs slightly higher latency due to the handshake cost
than UDP (a: right). However, TCP with (d: right)
connection reuse still can achieve similar latency as UDP.
This experiment demonstrates that with small client-
server RTTs, TCP setup time is irrelevant; it is dwarfed
by overall cost of resolving a new name. Even with large
RTT, TCP could still get the same latency as UDP by
reusing connections.

To consider pipelining, sending multiple queries be-
fore the replies return. In the four rightmost
whiskerbars (f, g, h, i) indicate pipelining. First, we see
that per-query resolution times are actually higher with
pipelining than when done sequentially (stop-and-wait).
This delay occurs because all 140 queries arrive at the
server at nearly the same time, so they queue behind
each other as they are processed by our 4-core com-
puter. Second, with pipeline but in-order processing,
TCP (f) has horrible latency. The reason for this high
latency is that while both BIND-9 and Unbound can
process multiple queries from UDP concurrently(out-
of-order), they process queries from the same TCP con-
nection sequentially (in-order), which causes head of line
blocking: later queries get blocked by previous ones.
While correct, current resolvers are not optimized for
high-performance TCP query handling.

DNS specifications require support for out-of-order
queries and responses, even though current implemen-
tations do not process queries this way (see prior dis-
cussion in . Here we approximate native resolvers
i r out-of-order TCP queries by placing a proxy
resolver on the same computer as the real resolver. The
proxy receives queries from the stub over TCP, then
forwards them to recursive resolver over UDP. This ap-
proach leverages current native out-of-order UDP pro-
cessing and incurs no fragmentation since UDP is sent
inside the same machine (over the loopback interface).
The proxy then returns replies over TCP to the stub,
but in whatever order the recursive resolver generates
results. The light blue whiskerbar (h) in the right side
of shows the effects of this improvement: TCP
(h) and UDP (g) performance are again equivalent.

Finally, pipelining and OOOP improve aggregate through-

put, and they are essential to make batch query perfor-
mance approach that of UDP. While batch performance
appears slower than individual (compare (g) to (a)), this
difference is because we estimate times from batch start
and is independent of protocol (the cost in (i) to (c) is



similar to that of (g) to (a)).

E.1.3 TLS privacy: stub-to-recursive

Connection establishment for TLS is much more ex-
pensive than TCP, requiring additional round trips and
computation to establish a session key. We repeat our
experiments from the prior section, this time comparing
UDP with TLS. For consistency with our out-of-order
experiments, we place our proxy resolver on the same
machine as the recursive resolver.

show TLS performance as cases (c), (e) and
(i), all green bars. With sequential queries: when RTT
is small, TLS (c: left) performance is almost the same
as UDP (a: left) and TCP (b:left), because TLS hand-
shake cost (3 RTTs) is negligible relative to the cost of
the recursive-to-authoritative query (ten vs. hundreds
of ms). When RTT becomes larger, TLS without (c:
right) connection reuse incurs somewhat higher latency
than UDP (a: right), but their performance is equiva-
lent with connection reuse (e: right). With both pipelin-
ing and out-of-order processing: TLS performance (i) is
comparable with UDP (g), no matter the RTT is large
or not. In all cases, variation in timing, as shown by the
quartile boxes, is far larger than differences in medians,
although variation rises with larger RTTs.

E. 1.4 Overall Stub-to-Recursive

In summary, this section shows that when the stub
and recursive resolvers are close to each other the extra
packet exchanges add very small latency to the query,
and even the TLS connection setup cost is dwarfed by
the costs involved in making distributed DNS queries
to authoritative name servers. Second, minimizing con-

nection setup requires reusing connections, and we showed

that head-of-line blocking in the TCP processing of cur-
rent resolver implementations adds significant latency.
Current resolvers have most of the machinery to fix this
problem, and our experiments show out-of-order pro-
cessing allows DNS performance with both TCP and
TLS to be very close to that of simple UDP.

E.2 Detailed Discussion of Latency: Recursive
Resolver to Authoritative Server

We next turn to latency we expect between the re-
cursive resolvers and authoritative name servers. While
stubs query only a few, usually nearby recursive re-
solvers, authoritative servers are distributed around the
globe and so the recursive/authoritative round-trip times
are both larger and more diverse.

E.2.1 Typical Recursive-to-Authoritative RTTs

To estimate typical recursive-to-authoritative RTTs,
we again turn to the Alexa top-1000 sites. We query
each from four locations: our institution in Los Ange-
les (isi.edu)), and PlanetLab sites in China (www.pku.
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edu.cn), UK (www.cam.ac.uk)), and Australia (www.
monash.edu. au).

For each site we query each domain name. We use
dig +trace to resolve each domain component from
the root to the edge, including DNSSEC where possi-
ble. We report the median of 10 repetitions of the query
time of the last step to estimate of best-case recursive-
to-authoritative RTTs. This method represents perfor-
mance as if higher layers were already cached by the re-
cursive resolver, and median provides some robustness
to competing traffic and random selection from multiple
name servers.

We observe that the U.S. and UK sites are close to
many authoritative servers, with median RTT of 45 ms,
but it also has a fairly long tail, with 35% more than
100ms. The Chinese site has generally longer RTTs,
with only 30% responding in 100 ms. While many large
sites operate Asian mirrors, many don’t. The Aus-
tralian site shows a sharp shift with about 20% of sites
less than 30ms, while the remaining 150 ms or longer.
This jump is due to the long propagation latency for
services without sites physically in Australia. (See
for data.)

We see a similar shift when we look at less popu-
lar services. Examination of 1000 domains randomly
chosen from the Alexa top-1M sites shows that median
RTT is 20-40 ms larger than for the top-1000 sites, with
the largest shifts in China and Australia. (See[Figure 16|
for data.)

Overall, the important difference compared to stub-
to-recursive RTTs is that while a few authoritative servers
are close (RTT < 30ms), many will be much further.

E.2.2 TCP connection setup: recursive-to-authoritative

With noticeably larger RTTs to authoritative servers
compared to the stub/recursive RT'Ts, we expect to see
a much higher overhead for connection negotiation with
TCP and TLS.

To evaluate query latencies with larger RTTs between
client and server, we set up a DNS authoritative server
for an experimental domain and queried it from a client
35ms (8 router hops on a symmetric path) away. Since
performance is dominated by round trips instead of
computation, we measure latency in units of RTT and
these results generalize to other RTTs.

We operate a BIND-9.9.3 server as the authoritative
name server for an experimental domain (example.com)
at one site. For each protocol, we query this name server
directly, 140 times (query example.com), then vary the
protocol in use. As before, we repeat this experiment
10 times and report results combining all experiments.

We first compare UDP with TCP without connection
reuse , the two leftmost bars (a, b) in We see
that all queries made by TCP (b) take about 70ms,
exactly two RTTs, due to TCP’s handshake followed
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by the request and response. This overhead goes away
with TCP fast-open (d), even without connection reuse.

With connection reuse, TCP (e) also takes only 35 ms,
one RTT per query. This difference shows the impor-
tance in reusing TCP connections for multiple queries
to avoid connection setup latency, highlighting the need
for good connection hit ratios ([§ 5)).

We next consider pipelining multiple queries over a
single TCP connection and supporting out-of-order pro-
cessing. Basic UDP already supports both of these. To
match our prior experiment we implement these options
for TCP with a proxy server running on the same com-
puter as the authoritative server, and we plot these re-
sults as (h, light blue) in In this case, me-
dian TCP latency is about 2.5 RTTs. Examination
of the raw data shows that 10% of the queries com-
plete with performance similar to UDP, while the other
queries take slightly longer, in steps. We examined
packet traces and verified each step is a single TCP
packet with 12 or 13 responses. Thus the delay is due
to synchronization overhead as all 140 responses, pro-
cessed in parallel, are merged into a single TCP con-
nection in our proxy. For this special case of more than
100 queries arriving simultaneously, a single connection
can add some latency.

E.2.3 TLS privacy: recursive-to-authoritative

Next we consider the addition of TLS. Use of TLS
from recursive-to-authoritative is a policy decision; one
might consider aggregation at the recursive resolver to
provide sufficient anonymity, or one might employ TLS
on both hops as a policy matter (for example, as with
HTTPS Everywhere [24]). Here we consider the effects
on latency of full use of TLS.

In green cases (c¢), (f), and (i) show TLS
usage. Without connection reuse (c), TLS always takes
5 RTTs (175 ms). This corresponds to one RTT to setup
TCP, one to negotiate DNS-over-TLS , two for
the TLS handshake, and then the final private query
and response.

However, once established, the TLS connection can
easily be reused. If we reuse the existing TLS connec-
tion and send queries in stop-and-wait mode (f), TLS
performance is identical to UDP with a mean latency
of one RTT, except for the first TLS query. This result
shows that the expense of encryption is tiny compared
to moderate round-trip delays, when we have an estab-
lished connection.

Finally, when we add pipelining and out-of-order pro-
cessing , we see similar stair-stepped behavior as with
TCP, again due to synchronization over a single con-
nection and our unoptimized proxy. The rightmost case
(i, light-green) shows connection reuse, pipelining, and
out-of-order processing; with this combination TLS per-
formance is roughly equivalent to TCP, within measure-
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Figure 14: Measured RTTs from stub and recursive re-

solver from 400 PlanetLab nodes, for the ISP-provided
and three third-party recursive resolvers.

ment noise.

E.2.4 Overall Recursive-to-Authoritative

This section showed that round-trip latency domi-
nates performance for queries from recursive resolvers to
authoritative name servers. Latency is incurred in con-
nection setup, with TCP adding one additional RTT
and TLS three more. This latency is very expensive,
but it can be largely eliminated by connection reuse.

F. DATA TO ESTIMATE STUB-TO-RECURSIVE

AND RECURSIVE-TO-AUTHORITATIVE
RTTS

We need to know the typical stub-to-recursive and
recursive-to-authoritative RTTs in order to accurately
estimate the end-to-end query latency with our model
in We use different ways to measure stub-to-
recursive (§ E.1.1)) and recursive-to-authoritative
RTTs.

Stub-to-Recursive RTT:[Figure 14]shows the CDF
of Stub-to-Recursive RTT from 400 Planetlab nodes
to the ISP-provided and three third-party recursive re-
solvers. ISP-provided recursive resolvers are almost al-
ways close. Third-party resolvers show more variation,
but most have fairly low latency due to distributed in-
frastructure.

Recursive-to-Authoritative RTT:[Figure 15|shows
the CDF of Recursive-to-Authoritative RTT from re-
cursive resolvers at four locations to authoritative servers
of Alexa top-1000 domains. Different locations give dif-
ferent results: U.S. and UK sites are close to many
authoritative servers while China and Australia shows
longer RTTs.

To understand if top-1000 sites use better quality
DNS providers than top-1M sites, [Figure 16| shows the
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Figure 15: RTTs from recursive resolvers at four loca-
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Figure 16: RTTs from recursive resolvers at four loca-
tions to authoritative servers of 1000 domains chosen
randomly from Alexa top-1M

recursive-to-authoritative RTTs: from recursive resolvers
at four locations: Los Angeles, China, UK and Aus-
tralia to authoritative servers of 1000 domains chosen
randomly from Alexa top-1M. The data shows that top-
1000 sites use better DNS providers, with lower global
latency. The results are most strong when viewed from
China or Australia—about 20% of the top-1000 have
DNS service local to Australia, but that drops to about
8% of the top-1M.

Implications for modeling: This evaluation im-
plies that estimates of median latency based on the top-
1000 sites are better than estimates based on the top-
1M sites. However, the top-1000 sites get many queries.
Analysis of a sample (1M queries) of Level3/cns4d.lax1
shows that top-1000 sites get 20% of queries, while 80%
are sent to the non-top-1000 sites.

Our modeling is based on R,, = 40 ms, drawn from
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Since the top-1000 represent typical common
queries, this modeling is representative for what end-
users will experience for typical queries. Latency will
be larger for rarely used sites with poorer DNS infras-
tructure; our modeling underestimates the cost mea-
sured across all sites because rarely used sites are more
greatly affected. We suggest that this focus is appro-
priate, since the Internet should be designed to support
users, not site operators. It also suggests the need for
anycast support for DNS hosting to lower latency for
global users.

G. ADDITIONAL DATA FOR CLIENT-SIDE
LATENCY

shows the data that underlies

H. DETAILED EVALUATION OF DEPLOY-
MENT

Full exploration of deployment of T-DNS is compli-
cated by the large and varied installed base of DNS
resolvers and servers, the necessity of incremental de-
ployment, and the challenge of non-compliant imple-
mentations and possibly interfering middleboxes. We
discuss these issues next in the context of our three
goals: improving privacy, preventing DoS, and relaxing
policy constraints.

H.1 Overall goals and constraints

Overall, our view is that T-DNS can be deployed
gradually and incrementally. Its benefits accrue to those
who deploy it at both client and server, and until both
sides upgrade it either disabled on trial or passive and
unexercised. Since T-DNS is “hop-by-hop,” some in-
terfering middleboxes can essentially result in a down-
grade attack, causing clients to fall back to standard
DNS. Middleboxes might affect TCP and TLS dif-
ferently. Policy benefits of T-DNS require widespread
deployment; we discuss how partial deployment affects
them below.

Effective gradual deployment requires that costs and
benefits be aligned, and that costs be minimal. We show
that costs and benefits are most strongly aligned for
privacy and DoS, where users or operators are directly
affected.

We assume clients and servers use current commodity
hardware and operating systems, and DNS client and
server software with the changes we suggest. An im-
plicit cost of our work is therefore the requirement to
upgrade legacy hardware, and to deploy software with
our extensions. This requirement implies full deploy-
ment concurrent with the natural business hardware
upgrade cycle, perhaps 3 to 7 years. The client and
server software changes we describe are generally small,
and our prototypes are freely available.
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Some clients today struggle or even fail to receive
large responses. We believe these problems are due
to overly restrictive firewalls, or incorrect implemen-
tations. Netalyzr results suggest about 5% cannot do
TCP [79], but this error rate is much lower than the 8%
and 9% that cannot send or receive fragmented UDP.
More recent data suggests only 2.6% of web users are
behind resolvers that fail to retry queries over TCP [34].
A 2010 study of DNSSEC through home routers showed

mixed results, although full success when DNSSEC clients

bypass DNS proxies in home routers [18]. This data
suggests that TCP is the best current choice to handle
large responses and T-DNS is more deployable than the
alternatives (such as fragmented UDP messages), but it
will be unsuitable for a small fraction of clients (5% or
less) until home equipment is reconfigured or upgraded.

We recognize that some clients and servers are more
challenging. For clients, it may not be economical to
field-upgrade embedded clients such as home routers.
We suggest that such systems still often have an up-
grade cycle, although perhaps a longer one that is driven
by improvements to the wireless or wireline access net-
works.

Some ISPs have developed extensive and custom server
infrastructure. For example, Schomp et al. identifies the
mesh of recursive and caching servers used by Google
and similar large providers [68]. This infrastructure is
proprietary and so it is difficult to speculate on the
difficulty of their ability to supporting large responses
internally. Since the IETF standards require support
for large replies, they may already include such sup-
port, and if it employs TCP or a similar program their
cost of upgrade may be similar to T-DNS. Upgrade is
more challenging if they make assumptions that assume
a subset the specifications, such as assuming UDP is
always sufficient. However, a single provider with inter-
nal infrastructure may have upgrade paths unavailable
to the decentralized Internet, such as mandating use of
9kB UDP jumbograms.

A final complexity in resolvers are use of load bal-
ancers and anycast. We observe that the web server
community manages both of these challenges, with large-
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scale load balancers in cloud providers, although at some
cost (for example, see [63]). DNS traffic, even over TCP,
is much easier to handle than web queries, since query
response traffic is much smaller than most web traffic
and queries are stateless. A load balancer that tracks
all TCP connections will face the same state require-
ments as end servers, with 50-75k active connections in
a large authoritative server. As with servers, we allow
load balancers to shed load should they exceed capac-
ity; DNS’ anycast and replication can assist distributing
hot spots.

Anycast for DNS implies that routing changes may
redirect TCP connections to servers at other sites. Since
a new site lacks state about connections targeted else-
where, a routing change causes open connections to re-
set and clients must then restart. Fortunately, routing
changes are relatively rare and even the most frequent
changes occur many times less often than our TCP
timeout interval and so will affect relatively few con-
nections. We also observe that some commercial CDNs
(such as Edgecast [13]) provide web traffic with anycast
successfully, strongly suggesting few problems are likely
for T-DNS.

H.2 Improving privacy

Use of T-DNS to improve privacy requires updates
to both the stub and recursive resolvers, and their abil-
ity to operate without interference. Usually the stub
resolver is determined by the host operating system,
but applications can use custom stub resolvers if they
choose to. Recursive resolvers are usually controlled by
ones ISP, but millions of users opt in to third-party,
public DNS infrastructure. We anticipate deployment
for most users will occur automatically through the pro-
cess of upgrades to end-host OSes and ISP resolvers.
Upgrades to both ends do not need to be synchronized:
T-DNS will be enabled as soon as both sides are up-
graded.

Because privacy is an issue between users and their
ISPs (or their providers of public DNS service), costs
and benefits are well aligned: users interested in private
DNS can seek it out and providers may use privacy as a



differentiator. Just as HTTPS is now widely deployed
for webmail, privacy can become a feature that opera-
tors of public DNS services promote (for example [24]),
justifying the higher computational cost they incur.

Interference from middleboxes is the primary threat
to T-DNS privacy. We consider adversarial and acciden-
tal middleboxes. We offer no alternatives against an on-
path, adversarial middlebox that intentionally disables
TLS negotiation, other than to allow the client to refuse
to operate if TLS is disabled. We know of no security
protocol that can recover from an adversary that can
drop or alter arbitrary packets.

There are several flavors of accidental middleboxes
that may affect T-DNS. We expect a T-DNS-aware
middlebox to receive T-DNS queries, and make outgo-
ing TCP or TLS queries, or perhaps transparently for-
ward T-DNS that use TLS. Our T-DNS upgrade is de-
signed to be discarded by conforming middleboxes un-
aware of it, since both EDNSO extensions and CHAOS
queries are defined to be hop-by-hop and so should not
be forwarded. Thus an EDNSO-conforming transpar-
ent DNS accelerator will drop the TO-bit in T-DNS
negotiation, disabling T-DNS but not preventing regu-
lar DNS. A non-conforming middlebox that passes the
TO-bit but does not understand TLS will attempt to
interpret TLS negotiation as DNS-encoded queries. A
likely outcome is that the DNS client and server will fail
TLS negotiation; clients should be prepared to fall back
without T-DNS in this case. The middlebox will inter-
pret the TLS negotiation as malformed DNS packets;
should discard them if it is robust to fuzz testing [52],
as all protocols that interpret packets from the public
network. A less robust middlebox may crash, indicating
it is likely vulnerability to buffer overruns.

Although we cannot study all possible middleboxes,
we tested an unmodified version of dnsmasq, a DNS
forwarder that is widely used on home routers. We
confirmed that it correctly doesn’t forward our request
to upgrade to TLS, and that it does not crash but sup-
presses a “forced” TLS attempt. A T-DNS-aware im-
plementation of dnsmasq is future work.

A special case of an interfering middlebox is “hotspot

signon” interception. Public networks such as wifi hotspots

often require end-user identification via a web form be-
fore opening access to the public Internet. They redirect
all DNS and web traffic to a proxy where the user self-
identifies, allowing an opportunity for billing or access
control. Applications today must cope with this tran-
sient state where network access is limited and all traffic
is redirected. DNSSEC-trigger shows a possible work-
around: on network activation, it identifies DNSSEC
failure, alerts the user, and retries frequently waiting
for full network access [55].

We do not focus on use of TLS between recursive and
authoritative servers. Recursive resolvers that choose
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to use TLS will face similar challenges as above, and
deployment of TLS across millions of authoritative re-
solvers will be a long-term proposition. Fortunately,
aggregation at the recursive resolver provides some de-
gree of privacy to stubs, so slow deployment here has
relatively little privacy penalty.

H.3 Preventing DoS

Traditional anti-DoS methods have been challenged
by needing near-full deployment to be effective, and a
mis-alignment of costs with benefits. As a result, de-
ployment of practices like ingress filtering [26] has been
slow [6].

Two effects help align T-DNS deployments costs with
benefits of reducing DoS attacks. First, DNS oper-
ators suffer along with victims in DNS amplification
attacks—DNS operators must support the traffic of the
requests and the amplified responses. Desire to con-
strain these costs motivates deployment of solutions at
the DNS server.

Second, large DNS operators today typically deploy
a great deal of overcapacity to absorb incoming UDP-
based DoS attacks. We suggest that shifting some of
that capacity from UDP to TCP can provide robustness
to absorbing DoS attacks.

The main challenge in use of T-DNS to reduce DoS is
the necessity of backwards compatibility with a UDP-
based client population. Authoritative resolvers must
accept queries from the entire world, and UDP-based
queries must be accepted indefinitely. To manage this
transition, we support the idea of rate-limiting UDP re-
sponses, which is already available in major implemen-
tations and in use by some DNS operators [76]. A shift
to TCP would allow these rates to be greatly tightened,
encouraging large queriers to shift to TCP.

A secondary challenge is optimizing TCP and TLS
use servers so that they do not create new DoS op-
portunities. Techniques to manage TCP SYN floods
are well understood [23], and large web providers have
demonstrated infrastructure that serves TCP and TLS
in the face of large DoS attacks. We are certain that
additional work is needed to transition these practices
to TCP-based DNS operations.

H.4 Removing Policy Constraints

Global changes to address policy constraints are very
challenging—costs affect everyone and benefits accrue
only with near-full adoption. However, EDNSO shows
migration is possible (although perhaps slow), from stan-
dardization in 1999 [74] to widespread use today.

EDNSO deployment was motivated by the need of
DNSSEC to send responses larger than 512 B, and the
implications of not supporting EDNSO is reduced per-
formance. We suggest that T-DNS presents a simi-
lar use-case. Because all DNS implementations require



TCP today when UDP results in a truncated reply, de-
faulting to TCP for DNS instead of trying UDP and
failing over to TCP is largely about improving perfor-
mance (avoiding a UDP attempt and the TCP retry),
not about correctness. EDNSO suggests we might ex-
pect a transition time of at least ten years.

H.5 Comparison to deployment of alternatives

Finally, it is useful to consider the deployment costs
of T-DNS relative to alternatives.
DNS-over-HTTPS (perhaps using XML or JSON en-

codings) has been proposed as a method that gets through

middleboxes. We believe DNS-over-HTTPS has greater
protocol overheads than T-DNS: both use TCP, but use
of HT'TP adds a layer of HT'TP headers. It also requires
deployment of an completely new DNS resolution infras-
tructure in parallel with the current infrastructure. Its
main advantage is avoiding concerns about transparent
DNS middleboxes that would be confused by TLS. We
suggest that the degree to which this problem actually
occurs should be studied before “giving up” and just do-
ing HTTP. The performance analysis of T-DNS largely
applies to DNS-over-HTTPS, offering guidance about
what performance should be expected.

Use of a new port for T-DNS would avoid problems
where middleboxes misinterpret TLS-encoded commun-
ication on the DNS port. It also allows skipping TLS
negotiation, saving one RTT in setup. Other protocols
have employed STARTTLS to upgrade existing proto-
cols with TLS, but an experimental study of interfer-
ence on the DNS reserved port is future work. The DNS
ports are often permitted through firewalls today, so use
of a new port may avoid problems with DNS-inspecting
middleboxes only to create problems with firewalls re-
quiring an additional open port.

I
BY TCP

Wide use of TCP risks raising new vulnerabilities in
DNS. We address several here.

There are a set of attacks on TLS that exploit com-
pression to leak information about compressed-then-
encrypted text [41]. Versions of these attacks against

POTENTIAL VULNERABILITIES RAISED

HTTPS are known as CRIME and BREACH. For HTTPS,

these attacks depend on the attacker being able to in-
ject input that precedes the target text in the reply. For
DNS queries this condition is not met and so CRIME
does not pay.

One may be concerned that long-lived DNS TCP con-
nections can lead to exhaustion of TCP ports. This
concern is incorrect for several reasons. The main rea-
son is that the number of TCP ports is defined by the
4-tuple of (source IP, source port, destination IP, desti-
nation port). It is not defined only by destination port,
which for DNS will always be fixed at 53. The (source
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IP, source port) portion provides an effectively unlim-
ited resource because interactions with many different
servers will get many source IPs, and we expect indi-
vidual servers to keep TCP connections open and reuse
them. The worst scenario is that an attacker can spoof
65k source ports for a single victim, but even then the
DNS server will return SYN-ACKs with SYN cookies
to the victim; if such an attack becomes common vic-
tims could deploy countermeasures such as discarding
unsolicited SYN-ACKs. This analysis applies to DNS
servers, clients, and load balancers. Additional safety
comes from our approach to deal with all resource ex-
haustion: a server can always close connections to shed
resources if it detects resource contention, such as run-
ning low on free memory. Finally, the existence of large-
scale web servers demonstrates that it is clearly possible
to scale to support many concurrent TCP connections,
well within the tens of thousands of active connections
we project as being required.

Attacks on the TCP sequence number space are an-
other potential risk, with concerns that connections could
be reset [78] or even data injected. T-DNS provides
strong protection against traffic injection when TLS is
used. For TCP-only queries, risk of these attacks is
minimized with strong initial sequence numbers [28].
T-DNS clients must be prepared to resume interrupted
connections, so a successful connection reset (an ex-
pensive proposition to guess the sequence number) will
cause only a slight delay.

J.  RELATIONSHIP OF T-DNS AND TLS TO
DTLS

We have asserted that our modeling of T-DNS also
applies to DNS-over-DTLS, if one removes the RTT
for the TCP three-way-handshake, because both imple-
ment the same fundamental cryptographic protocol. In
short, our argument is that There Is No Free Lunch—
DTLS must pay nearly the same costs as TLS over TCP,
because both require ordering and sequencing in the
TLS handshake. We next review that argument in more
detail.

TLS Handshake: The DTLS handshake reproduces
the TLS handshake, including the assumption that mes-
sages are delivered reliably and in-order.

DTLS lacks the TCP three-way handshake, saving
one RTT. However to avoid DoS attacks, it adds a
cookie analogous to TCP SYN cookies. DTLS makes
cookie exchange optional as a separate step. If done sep-
arately it becomes equivalent to the TCP handshake.
If done with the first step of the TLS handshake, it
avoids an extra RTT but allows an amplification at-
tack. Cookies can be cached and replayed, analogous
to TCP fast-open.

To provide reliability and ordering of an arbitrary-
sized TLS handshake process DTLS adds a message se-



quence number and fragmentation handling to message
exchanges, recreating a subset of TCP. DTLS’s uses
timeouts based on TCP’s [61], but the implementation
is intentionally simpler (for example, omitting fast re-
transmit). It seems unlikely that DTLS retransmission
will perform better than TCP under loss, and likely that
it may perform somewhat worse.

Operation: The primary operational difference, post
handshake, is that DTLS forces use of block ciphers, not
stream ciphers, and that DTLS does not force packet or-
dering. Block ciphers expose some information hidden
in stream ciphers, where prior traffic affects subsequent
encrytpion.

DTLS requires each DTLS record fit in a single data-
gram and it strives to avoid IP fragmentation. Thus
DTLS ezacerbates the existing problems with large DN'S
replies, adding at least 12 bytes to each packet.

TCP bytestreams allow aggregation of concurrent re-
quests into a single packet. Aggregation reduces per-
packet overhead by sending more information in each
packet. We disable Nagle’s algorithm in our work to
avoid adding latency; in experiments we still see ag-
gregation when multiple requests occur in bursts. This
kind of aggregation is not possible with DNS-over-DTLS
(over UDP).

DTLS and TLS trade-offs: Because the crypto-
graphic protocols of TLS over TCP and DTLS over
UDP are so similar we see little performance differ-
ence between them. There are two semantic differences:
DTLS is advantageous because it imposes no ordering
on individual requests. Thus it gets pipelining and out-
of-order processing automatically, just as basic UDP
does; we describe how to provide those in the appli-
cation for TCP, but we still suffer from head-of-line
blocking from lost packets. TCP is advantageous be-
cause it imposes no per-packet size limits. We identify
policy constraints brought on by per-packet size limits
as a problem, so for this reason we prefer DNS-over-TLS
and TCP over DNS-over-DTLS and UDP.
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