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Abstract
Sensornets promise to extend automated monitoring and

control into industrial processes. In spite of great progress
made in sensornet design, installation and operational costs
can impede their widespread adoption—current practices of
infrequent, manual observation are often seen as sufficient
and more cost effective than automation, even for key busi-
ness processes. In this paper we present two new approaches
to reduce these costs, and we apply those approaches to
rapidly detect blockages in steam pipelines of a production
oilfield. First, we eliminate the high cost of bringing power
to the field by generating electricity from heat, exploiting
the high temperature of the very pipelines we monitor. We
demonstrate that for temperature differences of 80 °C or
more, we are able to sustain sensornet operation without grid
electricity or batteries. Second, we show that non-invasive
sensing can reduce the cost of sensing by avoiding sensors
that pierce the pipeline and have high installation cost with
interruption to production. Our system instead uses sur-
face temperature to infer full or partial blockages in steam
pipelines and full blockages in hot water pipelines. Finally,
we evaluate our “steam-powered sensing” system to monitor
potential blockages in steam pipeline chokes at a production
oilfield. We also show the generality of our algorithm by ap-
plying it to detect water pipeline blockages in our lab. To
our knowledge, this paper describes the first field-tested de-
ployment of an industrial sensornet that employs non-solar
energy harvesting.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms: Design, Algorithms, Performance, Experi-
mentation, Measurement

Keywords: thermal energy harvesting, non-invasive sens-
ing, blockage detection, industrial wireless sensor networks
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1 Introduction
Automation of monitoring and control is essential in to-

day’s industrial processes. Since the 1960s, supervisory con-
trol and data acquisition (SCADA) systems have automated
monitoring and control of industrial processes in applica-
tions including water management, power grids, chemical
processing, and oil production [12]. Today, SCADA systems
are a multi-billion-dollar-per-year industry with a growing
need for wireless and distributed sensornet techniques.

One effective use of SCADA systems can be seen in oil
industry. While a “gusher” produces oil from internal pres-
sure, this kind of primary production can only extract a frac-
tion (5–10%) of oil in the ground. Today, many older fields
depend on secondary production techniques, where water,
steam, or CO2 is injected to force out oil, extracting up to
30–60% of reserves. While such techniques are essential to
meet energy demands, their key limiting factor is cost, not
technology. Although oil companies have great technical so-
phistication, solutions as simple as monthly human observa-
tion are often seen as sufficient and more cost effective than
available forms of automation. Even with relatively inexpen-
sive hardware, installation of a new pipeline pressure sensor
can easily top US$10k when one considers the labor needed
to run power and safely install sensors inside the pipeline.

In this paper we propose an inexpensive sensornet sys-
tem to monitor steam injection in oilfields. We directly ad-
dress the cost of current approaches through two contribu-
tions. First, we demonstrate a new approach to harvest en-
ergy from temperature differential inherent to the phenomena
we are studying (§3). We exploit the Seebeck effect to gener-
ate electricity from heat inherent in a steam injection system,
eliminating any need for external power or batteries. We are
the first to use heat to power an industrial sensor network,
and to show batteryless operation—valuable approaches for
sensornets deployed where solar power is unavailable and
maintenance is difficult (for example, northern Alaska).

Our second contribution is to employ non-invasive sens-
ing techniques to detect problems in steam distribution (§4).
Current approaches to detect blocking usually measure dif-
ferential steam pressure with sensors that must pierce the
pipeline, incurring a high cost of labor, equipment, and
stopped production. Instead, we observe that external tem-
perature observation is sufficient to detect problems such as
blockage or flow constriction, provided we observe at mul-
tiple locations. We argue that pervasive industrial sensing
requires this sort of non-invasive sensing to reduce deploy-
ment cost. We also show that our approach works with mul-
tiple types of pipeline networks.

Our final contribution is to demonstrate that our approach
of non-invasive, “steam-powered” sensing works as a com-



Figure 1. Steam injection (right) and oil production (left)
in oilfield.

plete system, through both laboratory experiments and field
tests (§5). Although low-power sensing and energy harvest-
ing have been demonstrated before, we demonstrate an inte-
grated system for this new application. Our system employs
a custom thermoelectric energy harvesting/conditioning unit,
and a custom amplification board with calibrated thermocou-
ples, controlled by a standard Mica-2 mote running new de-
tection algorithms. We also show the importance of rela-
tively simple hardware and sensing to solve real-world prob-
lems: simple hardware makes operation on harvested energy
feasible, and simple, non-invasive sensing, when taken at
multiple locations can provide actionable decisions. Unlike
some papers on sensor networking, we focus on the sensing
and energy components of a complete system; we assume a
traditional field network to communicate results externally.

Although we validate our approach with a specific
steampipe oilfield deployment, laboratory tests show our
non-invasive sensing also applies to water blockages, and in
many environments waste heat (from engines or other indus-
trial processes) could support thermal energy harvesting. We
believe our two approaches are applicable to a wide range
of industrial sensing, where they can bring sensing and de-
ployment costs in line with inexpensive communications and
computation.

2 Problem Statement and System Overview
We next summarize specific sensing needs of modern oil-

fields, our target sensing problem, and our general approach.

2.1 Sensing Needs for Secondary Production
Most modern oilfields employ secondary production,

where water, steam, or CO2 is injected into the ground to re-
lease otherwise difficult to extract oil. Injection helps release
trapped oil either by pushing it out or raising temperatures
to make it flow more freely; a higher reservoir pressure also
avoids ground subsidence which can damage wells or prop-
erty. Secondary production is essential in older fields where
the natural pressure is insufficient for primary (unaided) pro-
duction, but it greatly adds to the complexity of the field.

Figure 1 shows a simple producing field with steamflood-
based secondary production. Steam is produced at a central
site (“steam co-gen” in figure) , and distributed through the
field at high temperature and pressure (250 °C and 5000 kPa
or more) [5]. Injection lines (dotted in the figure) convey
a mix of steam and water. Maintaining an exact ratio, or

steam quality, throughout the distribution network is impor-
tant to control distribution and injection. A special steam
control device maintains steam quality at branches. A choke,
a small, controlled-size hole (about 1 cm or more in diam-
eter) just before an injection well, manages pressure at the
injection well, making injection rates predictable and allow-
ing operators to control the field.

Producing wells extract oil from the ground, where au-
tomatic well testing (AWT) systems allow per-well produc-
tion measurements. The steam network is linked to the pro-
duction network to allow producing wells to be flushed with
steam to remove blockages.

This brief description shows how essential instrumenta-
tion is to an oilfield. Steam quality must be monitored in
the steam distribution network; flow rates at injection wells
and chokes must be observed; well monitoring is essential at
the production side; the ability to inject steam in production
systems means the injection and production sides are cross-
linked and must be monitored for leaks. Yet sensing must be
cost-effective, even for wells that produce only a few barrels
of oil per day, and in fields that have hundreds or thousands
of production and injection wells!

2.2 Target Problem: Blockage at the Steam
Injection Choke

In this paper we focus specifically on the problem of
blockage at the injection-well choke in a steamflood field. We
define blockage as the decreasing of the choke’s cross sec-
tion due to obstructions. Field engineers report that choke
blockage is a serious problem in field operation. Chokes
are vulnerable to blockage because of their small bore sizes.
Sources of blockage occur naturally in a steam distribution
system due to scaling and corrosion in the pipe, buildup of
any impurities or mineral content in the water, and aging of
the network and choke. Partial or total blockage at a choke is
a serious problem because it alters the steam injection rate,
throwing off field management, reducing production, and po-
tentially contributing to ground subsidence.

Our current work focuses on choke blockage for steam-
flood fields, but it applies to several related problems as well.
Other points of operational concern include steam control at
pipeline branches and automatic well-test monitoring; both
could use systems similar to ours, provided likely blockage
sites are known. We show that our sensing algorithm applies
to waterflood networks (§5.5), and we believe our energy
harvesting system can adapt to different thermal conditions.

2.3 System Overview
The goal of our sensing system is to detect blockages at

the choke of steam injection wells, and to do so at a cost
much lower than current invasive sensing. We next briefly re-
view the hardware and software we have taken into the field
to evaluate solutions to this problem.

Figure 2 shows our system as deployed in the field in
March 2010. The photograph in Figure 2(b) shows two sen-
sor nodes (each a mote with two temperature sensors, a ther-
mal energy harvester, and a wireless network connection)
and a base station to connect to the field network, while Fig-
ure 2(a) shows the logical view. We review the hardware and
software below, and discuss details of this field experiment



(a) Logical view of deployment. (b) Physical view of deployment.

Figure 2. March 2010 field deployment of our sensing system.

(a) Deployed mount, in a
pelican box with lid open.

(b) A Mica-2, a custom am-
plifier board, a Heliomote
and a hose-clamp thermo-
couple.

Figure 3. Mote system hardware.

in §5.3. By comparison, Figure 13 shows a current inva-
sive pressure sensor; we compare deployment costs of our
approach to current approaches in §5.6.

Each sensor node consists of a computing platform based
on a Mica-2 running TinyOS-1. We choose Mica-2 because
its computing power and customizability are sufficient for us
to solve the problem; because each sensing target requires
two sensors and one or two motes, we must minimize sensor
node cost. Figure 3(a) shows a mote packaged for field de-
ployment, and 3(b) individual system components and sen-
sors. The sensors themselves are NANMAC D6-60-J J-type
thermocouples with hose clamps to attach to the pipeline;
§5.2 discusses the care that must be taken to get accurate,
calibrated temperature readings. Because the voltage output
by thermocouples is quite small (less than 15 mV), we add
a custom amplification board to boost this signal 100-fold.
Each of our sensor packages is powered by a custom-built
thermo-electric generator (TEG) described in §3. Our proto-
type system is packaged for short-term use and is suitable for
use at injection wells; additional explosion-proof (Class I,
Division 1) packaging would be required if the system were
deployed near production wells.

Software on our sensor node includes our new blockage
detection algorithm (§4), We run the sensing algorithm lo-

cally on the mote; the base station can relay alerts to the field
SCADA system. In addition, we log temperature over the
radio to the base station, and locally to flash memory for de-
bugging and long-term analysis. In our field experiments we
disable logging to flash as described in §5.1.3, but in oper-
ation, we would expect local logging to serve as backup in
case of temporary network outages.

The base station bridges the sensor nodes to the field
network and SCADA system. In principle, a mote with
a wired network connection, or a multi-hop mote network
could serve this purpose. We expect a large scale deployment
would thus eliminate our base station, connecting directly to
the field network. The structure of the field network (mesh or
point-to-point, line, steam or solar powered, etc.) is outside
the scope of this paper. We do not currently have permission
to integrate with the field SCADA system, so for our exper-
iments our base station is a mote that connects directly to a
laptop that logs data to disk.

3 Steam Power: Harvesting Thermal Energy
We now describe our “steam-powered” energy generator:

the TEG, power conditioning, and its physical mount.

3.1 The Opportunity
One reason steam is injected into the oilfield is to heat

viscous oil. Surface temperature (underneath insulation) of
steamflood pipes is around 260 °C, while the ambient tem-
perature is typically 0–38 °C. Our insight is that we can con-
vert this near constant 200 °C temperature differential (∆HC)
into electricity through the Seebeck effect [37]. Seebeck ef-
fect is the thermoelectric phenomenon where the temperature
difference between two dissimilar metals in a circuit gener-
ates electric current. To our knowledge we are the first to
exploit this opportunity for industrial sensing (see §6.1 for
full review of related work).

More than energy efficiency, our goal is energy suffi-
ciency. Thus, it is more important that we provide enough
energy to operate under all conditions, even if thermoelec-
tric generation is not optimally tuned for all temperatures or
loads. This goal drives our cost-conscious design (§3.2) to
sufficiently power our sensing system (§5.1). In fact, §5.1.3
shows that we can go further to batteryless operation. We
next describe the components of our energy harvester.



3.2 Thermo-electric harvester Design
We have several system requirements for our thermo-

electric power harvesting. First, we need a thermo-electric
module that works at the 250 °C plus temperature typical of
the steam injection pipes. Secondly we want the TEG mod-
ule to harvest sufficient energy to directly power mote-class
devices. Lastly, we want the power-harvesting module to be
low-cost to engender dense deployment.

To satisfy the first two requirement we choose the 1261G-
7L31-04CQ thermal power generation module from Custom
Thermoelectric [37]. This module has a maximum tempera-
ture rating of 260 °C and is rated to generate up to 5.9 W un-
der ideal conditions. With an expected load of only 82 mW
(a mote transmitting [6]), we expect ample headroom.

Physically, the cold side of our TE-harvester mates to a
53/8× 53/8× 13/8 inches aluminum heatsink. We use inex-
pensive thermal paste on the cold side/heatsink junction, but
omit it on the hot side/harvester, since paste rated to higher
temperatures is quite expensive. We avoid active cooling for
simplicity, and discuss mounting and passive cooling below
(§3.4). We do not use energy storage such as batteries to
minimize maintenance costs, although we consider capaci-
tor buffering in §5.1.3. We later show that our TEG design
meets our application’s needs (§5.1.1).

3.3 Power Conditioning the TEG Output
We chose the Heliomote to regulate the power output of

our TEG [16]. The low-cost Heliomote provides an efficient
charging circuit that uses solar panels to provide power near
the 2.4 V to charge two NiMH batteries. We chose the He-
liomote because of its commercial availability and our ex-
pectation that it could be easily adapted to thermal power.

Although we hoped to use the Heliomote directly, differ-
ences in voltage and current from solar to thermal sources re-
quired modification. Power harvested from an energy source
depends on the source’s voltage and the load. Our TEG gen-
erates optimal power at 1.2 V (Figure 7(b)), much lower than
the 2.4 V design point for a Heliomote with solar panel. Un-
fortunately, the Heliomote cannot charge batteries at 1.2 V,
so we instead directly power the Mica-2 using Heliomote’s
power regulator. With advice from the Heliomote designers,
we made minor modifications to directly regulate the He-
liomote output voltage from the TEG to 3.0 V allowing the
direct powering of a mote, as shown in §5.1.3. This modi-
fication removes Heliomote’s support for battery backup at
low power. To gracefully handle brownout, we enable the
brown-out detection on the Atmega128 processor to proac-
tively shutdown if the voltage drops below a user-specified
threshold.

Although we adapted the Heliomote to our purposes, we
expect a TEG-specific solution could be more flexible and
are currently investigating alternatives.

3.4 Mounting Design
TEG effectiveness depends on temperature differential, so

a complete design must consider coupling to the heat source
and a heat sink to dissipate heat to the environment.

We designed a custom TEG mount to meet these goals
under several constraints. First, outside pipe diameters in
oilfields vary between 23/8 and 31/2 inches. Second, most
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(a) Design of the TEG pipe-
mounting apparatus

(b) Deployed mount, without
extender block

Figure 4. Mounting design for TEG

steam pipes are insulated to prevent heat loss. While we de-
ploy our TEG directly on the pipe, we expect it to be abutted
by insulation with thickness of 2 to 4 inches; the heat sink
must be above nearby insulation to get good airflow. Finally,
we must securely attach the TEG assembly to the steam pipe.

Our solution to the above constraints is shown in Fig-
ure 4: we use a rounded base-block with an optional exten-
sion to accommodate differing insulation heights. The base
block is curved to match the pipe diameter at our target site
(23/8 inches), and has a height of 23/4 inches to extend past
an expected 2 inches of insulation. An optional 1.3 inch ex-
tension can be added to accommodate deployment to loca-
tions with thicker insulation. Finally, the base block also has
curved grooves going through its one side allowing two hose
clamps to mate the apparatus securely to the pipe.

4 Non-invasive Sensing of Pipeline Blockages
We next describe how non-invasive, temperature-based

sensing can detect blockages using pairs of upstream and
downstream sensors. While the TEG reduces costs to power
our application (§3), non-invasive sensing reduces costs of
sensing. Below we briefly review the physical effects our
sensing exploits, then describe our basic algorithm and ex-
tensions to avoid false positives.

4.1 Background: pipeline physics
Our hypothesis is that pipe surface temperature can indi-

cate internal choke blockages. In this section we summarize
the physics of fluid flow in the pipe to show how a block-
age decreases downstream pressure, which in turn decreas-
ing surface temperature, a phenomenon we can detect.

To understand what happens in the pipe, we must un-
derstand what happens when supersaturated steam passes
through the choke (see [27] and [9] for general background).
The choke has a narrow opening in the pipe (called the choke
bean) designed to keep steam at critical flow, where the
fluid reaches sonic velocity to isolate pressure upstream and
downstream of the choke [9]. This isolation is essential for
oilfield operation, since downhole conditions (downstream)
change, and also for our algorithm, since we detect blockage
by observing temperature differences upstream and down-
stream of the choke (Tu and Td).

As described in §2.2, scaling inside the pipe, steam im-
purities, and device wear can all cause blockages, changing
cross-sectional size (A) of the choke, written as:

A′ < A (1)

where A′ indicates the value after a blockage occurs.



The volume of steam passing in a unit time (ṁ, the
mass flow-rate) is determined by the choke aperture size,
so a partial blockage reduces steam volume. The Thornhill-
Craver choke rate equation shows mass flow for straight-bore
chokes [8]:

ṁ = 73YA

(

1− 0.00625L√
A

)

√

ρPu (2)

The mass flow-rate depends on gas expansion factor (Y ),
aperture size (A), choke length (L), upstream pressure (Pu)
and steam density (ρ), calculated by vapor-phase and liquid-
phase specific volumes. Field operations keep ρ constant
during normal operation. Choked flow is by definition flow
at a fixed pressure, so Pu is constant as well.

From Equation 2, we see that a partial blockage (A′ < A)
reduces flow rate:

ṁ′ < ṁ (3)

Since steam is compressible, a decrease in mass flow de-
creases pressure [27]:

P′d < Pd (4)

A lower downstream pressure reduces internal steam tem-
perature (Td,i) and therefore pipe surface temperature. Ex-
perimental data shows this relationship with internal temper-
ature [11], as shown by the the following empirical equation
provided by field engineering:

Td,i =
7006.3

9.48654− ln Pd
144.9

−382.55 (5)

We know that surface temperatures follow internal (Td ∝
Td,i), and a drop in pressure implies a drop in temperature:

T ′d < Td (6)

and upstream temperature and pressure are not changed
(T ′u ≈ Tu, because it is choked flow), so we can therefore de-
tect blockage by looking for relative temperature differences:

T ′u−T ′d > Tu−Td (7)

The above reasoning suggests why choke blockage is visi-
ble in our system. However, oilfields are complex, and choke
blockage is not the only possible cause of pipe temperature
changes. Weather changes on the surface, and downhole
pressure changes are both potential sources of noise. Our
detection algorithm (§4.2) triggers on sudden and relative
temperature differences, so it should not trigger on surface
changes that affect both sensors (such as weather, since the
relative differences between the sensors are unchanged), or
gradual downhole changes (such as reservoir changes, since
they take place over days or weeks).

In this section we summarize how blockage eventually
reduces downstream pipe skin temperature and we provide
theoretical and empirical equations to prove that. Griston
and Abate observe similar phenomenon that smaller choke
bean size does not affect upstream temperature much while
significantly reduces downstream temperature in their exper-
iments [11]. These results are consistent to our hypothesis
that we can use temperature to detect choke blockage re-
motely. This background is used in our algorithm design to
provide good detection accuracy (§5.4).
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Figure 5. Up- and downstream temperatures (top lines
and left scale) and ∆ud in several controlled blockages. A
valve emulates the following blockage levels: F: full, NF:
for nearly full, P: partial, and O: open (no blockage).

4.2 Design of the base algorithm
We next apply our observation of pipe temperature to

detect choke blockage (§2.2). Since blockages represent
changes in flow behavior, the principle of our algorithm is to
look for changes in temperature upstream and downstream
of a possible point of blockage, then look for short-term
changes in temperature. Our algorithm adaptively learns typ-
ical pipe temperatures from long-term averages.

We study two kinds of blockages, each with its own infer-
ence derived from §4.1: For a partial blockage, upstream
pressure is unchanged while downstream pressure drops as
the orifice size is reduced. For total blockage, upstream
pressure drops as flow stagnates, and downstream pressure
drops to ambient, in-pipeline pressure. In both cases, we
measure temperature to infer pressure, detecting blockage
because of a sudden drop in downstream temperature rela-
tive to upstream.

We next show experimental results to illustrate this hy-
pothesis. We present a detailed description and discussion
of our field experiments in §5.3. Letters (F, NF, O, P) in
Figure 5 indicate the degree of emulated blockage, and ver-
tical dotted lines in the figure show points when we change
blockage level. We see that upstream temperature (the dot-
ted line) is relatively stable, although it dips slightly upon full
and nearly full blockage. The downstream temperature (the
solid blue line) is much more sensitive to pipe status, and the
temperature differential (∆ud , the wide red line) shows ten
distinct peaks corresponding to ten controlled full or partial
blockages. Full analysis of this experiment is §5.3.

Our algorithm (pseudocode in Algorithm 1, with notation
in Table 1) works in two steps. We first compute the short-
(s(∆ud)) and long-term (l(∆ud)) history of the difference be-
tween upstream (Tu) and downstream (Td) temperature via
exponential weighted moving average. We choose EWMA
because it is light weight and easy to implement on our 8-bit
mote platform; short- and long-term EWMAs may use sep-
arate gains (αs and αℓ). Whenever the difference (δsℓ) be-
tween two history exceed pre-defined threshold (th block),
the system declares pipe blockage.

After a blockage is detected, we expect responders to in-
vestigate the problem and reset the algorithm after it is cor-



Table 1. Notation used in the description and analysis of
blockage detection algorithms.

Tu,Td Temperature at Up- and downstream
∆ud Up- and downstream temperature difference

s(∆ud), l(∆ud) Short- and long-term ∆ud history
th norm normal state threshold
th block blockage state threshold
th maint upstream maintenance state threshold

αs,αℓ Short- and long-term EWMA gain
δsℓ Short- and long-term history disparity
s pipe status

rected. By far our system does not transmit alarms back to
field surveillance room, which is out of scope of this work.
Since in our field tests (§5.3) we artificially induce block-
ages rapidly (in tens of minutes), we employ two addition
rules specifically to aid testing. First, after blockage de-
tected, when two history series converge (δsℓ = 0), we au-
tomatically reset pipe state in order to precede to follow-up
tests. Second, we stop updating the long-term history when
the pipe is in any non-normal state. While these rules were
designed to allow our short-term tests to mimic long-term
operation, they do not negatively affect normal operation.

Our algorithm successfully detects pipe blockage, as
shown experimentally in §5.3. Our basic algorithm detects
problems using two sensors on either side of the blockage
site. These sensors could be network-connected, or directly
connected to a common controller (as in our implementa-
tion). Although this algorithm is correct, upstream mainte-
nance can cause false alarms when pressure for the entire
steam system drops. The next section shows how we can
employ networked sensors to avoid these false alarms.

Algorithm 1 Blockage detection algorithm.

Require: Tu,Td , th block, th maint, th norm,αs and αℓ.
Ensure: Pipe state s.

1: s← NORMAL
2: while system on do

3: ∆ud ← Tu−Td
4: s(∆ud)← s(∆ud)+αs× (s(∆ud)−∆ud)
5: l(∆ud)← l(∆ud)+αℓ× (l(∆ud)−∆ud)
6: δsℓ← s(∆ud)− l(∆ud)
7: if (δsℓ ≥ th block)∧ (s = NORMAL) then
8: s← BLOCKAGE
9: print “Pipe blocked”

{*** below are extensions from §4.3.}
10: else if (δsℓ ≤ th maint)∧ (s = NORMAL) then
11: s←MAINTENANCE
12: else if (δsℓ ≥ th norm)∧ (s = MAINTENANCE) then
13: s← STABILIZATION
14: start timer
15: else if (timer fired) ∧(s = STABILIZATION) then
16: s← NORMAL
17: end if

18: end while

4.3 Avoiding false positives
The above algorithm detects blockages around the target,

but regular steam distribution maintenance also changes sys-
tem pressure and temperature. Our base algorithm is un-
able to distinguish maintenance from choke blockage, thus
incurring false positives. We avoid false positives by em-
ploying networked sensor readings from more distant parts
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Figure 6. A cause of false positives and our solution. n, u
or smeans the pipe is in normal, upstreammaintenance or
stabilization state respectively. A b/ shows a false blockage
detection suppressed.

of the steam distribution system. While we could, in prin-
ciple, record scheduled maintenance events and explicitly
disable blockage detection during those times, we strongly
prefer a sensor-based solution. If we can infer maintenance
at the sensors, we avoid dependencies on manually logged
events and the system integration and additional error con-
ditions that such coupling entails. We can also adapt to en-
vironmental changes such as seasonal temperature drift. We
next describe how we extend our base detection algorithm to
distinguish system-wide changes from local blockages.

The lower plot of Figure 6 shows the detail from the sec-
ond trial of Figure 5 to illustrate how our extension solves a
potential false alarm. We distinguish upstream maintenance
from blockage by detecting both the start and completion of a
maintenance period. We decide maintenance starts if δsℓ < 0
because of the inertia at the choke making the upstream tem-
perature drop before the downstream (solid vertical line in
the upper plot at 3800 s). Likewise, we detect the stop at
the next δsℓ > 0 since the same inertia causes a reverse pro-
cess (time ≈ 4700 s). Our extended algorithm then gives the
pipe stabilization time, depicted in the upper plot as dotted
shading area, suppressing any following potential δsℓ peaks
that would otherwise be misinterpreted as blockage (for ex-
ample, the crosses at 4710 s). We detect blockage by any δsℓ
that larger than th block but falls out of the stabilization pe-
riod (i.e. not preceded by a sign of maintenance start). Lines
10 to 17 in Algorithm 1 implement this process.

This kind of false alarm also shows why we require mul-
tiple sensors. Our downstream sensor alone can not distin-
guish the temperature drop incurred by blockage and mainte-
nance. A pair of sensors, on the other hand, can distinguish
these events, and also can adapt to environmental changes.
In §5.4 we show that this false-positive elimination algo-
rithm successfully distinguishes upstream maintenance from
blockage.

4.4 Tuning for different environments
Our algorithm has several parameters that require tuning.

We next discuss the parameters and how we can tune them
to support not only steam blockages, but also blockages in
hot-water distribution networks. In §5.5 we show that, with
proper parameters, our work generalizes to blockage detec-



tion in other types of pipeline networks. Currently we con-
figure our system manually; automatic configuration is an
area of future work.

The detection thresholds (th block, th maint and th norm)
are critical to trade between accuracy, responsiveness and
reliability. We assume ∆ud follows a normal distribution
N(µ,σ2). Usually th block is set higher than 3σ, accord-
ing to 3-sigma rule [40]. The water in PVC pipe has lower
temperature and hence we observe less significant ∆ud vari-
ance upon anomaly. To make accurate detection, we set both
th block and th maint closer to 0. The th norm parameter
should be set to a small enough value to ensure hysteresis in
our algorithm; we set it by default to 0.

Short and long-term gains (αs and αℓ) determine how our
algorithm reacts to noise and blockage. Long-term history
should be relatively stable while short-term agile. Pipe ma-
terial (metal or PVC), fluid type (steam or water), and the
ambient environment all affect how quick the temperature re-
acts to changes in pipe status. With PVC and water, the pipe
has better heat insulation than metal, and hence we want to
keep long-term history more stable because of the sluggish
short-term change. We therefore we propose 1/2 for short-

term EWMA gain, and 1/64 for long-term in steam blockage

detection, while 1/4096 for water pipelines.
Finally, the stabilization time period helps avoid false pos-

itives. We find that a 360 s timer suppresses most noise due
to upstream maintenance. The reason is that it takes δsℓ about
950 s to subside, and with αℓ of 1/64 and peak usually occurs
within the first half of the period. For water pipelines, with
a smaller αℓ and non-metallic pipe, we set a longer timer
because it takes accordingly longer to stabilize.

5 Evaluation
We next evaluate our key claims: that steam-power can

support our application, even without batteries; that our sen-
sors are accurate; and the effectiveness of our basic and ex-
tended algorithms in the lab, with lower-temperature water
pipelines, and in the field. Finally, we show that our system
has lower cost than today’s systems. Although long-term de-
ployments and full integration with field network are future
work, we believe our laboratory testing and field experiments
prove our approach is effective.

5.1 Long-term energy harvesting and con-
sumption

To evaluate self-sufficient energy harvesting, we first
evaluate the capability of the TEG to generate energy com-
pared to the power consumption of our sensing system, con-
cluding that batteryless operation is possible.

5.1.1 Energy Production
In the lab: To measure the energy production of our TEG

sandwich, we built a prototype TEG with a flat surface that
is placed on a laboratory hotplate (Thermolyne 900, rated
to 260 °C). We place the TEG on a small aluminum block
about 3.8 cm above the hotplate and use a small external fan
to maintain a constant airflow over the heatsink.

To measure power generation we vary the load offered to
TEG using a high-wattage resistor network. We then mea-
sure the output voltage and current sourced by the TEG as
we vary both the load and hotplate temperature (Figure 7(a)).

(a) TEG power mea-
surement harness
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(b) TEG power curves at different tem-
perature differentials.

Figure 7. Power measurement of the TEG: With op-
timal loads, but depending on temperature differential,
our TEG can provide between 0.3 to 0.8 W.

(We cannot directly measure current because measurement is
difficult with its large dynamic range, from 3 to 800 mA.)

Figure 7(b) shows power characteristics of our prototype
TEG in the lab. First, we observe that under most operational
conditions (temperature and load), our prototype provides
more than the the 82 mW needed to power mote-class de-
vices [6]. Even after a blockage when pipeline temperature
falls, the 180 °C temperature (Figure 5) provides sufficient
power. Second, we verify that TEG delivers 0.3–0.8 W at
the optimal load corresponding to 1.2 V. However, since our
actual system does not necessarily operate at optimal load
for a thermal harvesting source, we next confirm system op-
eration with in-field experiments.

In the field: We perform in-field tests to confirm that
our fielded TEG mount (§3.4) reproduces laboratory experi-
ments, and to evaluate real oilfield conditions, where ambient
temperature can reach 50 °C in summer.

Our sensing platform was under development when we
carried out our initial harvesting experiments (Dec. 2009), so
we log the open-circuit voltage of our TEG and spot-measure
temperature. We find a nearly constant temperature differen-
tial of 100 °C and open circuit voltage of 3.8 V. This obser-
vation verifies that our pipe-mount TEG can harvest energy
comparable or even more than the lab prototype, prompting
full system tests described next.

5.1.2 Energy Consumption of Sensing

With our understanding of energy generation, we next
turn to energy consumption. Our steam-sensing systems em-
ploys a Mica-2 mote with an additional hardware for power
conditioning (Heliomote) and thermocouple signal amplifi-
cation. We therefore measure the power draw of our sys-
tem running the blockage detection algorithm. Our results
show that the average power draw is 70 mW, similar to pre-
vious measurements of motes that include radio transmission
(82 mW [6]). These values suggest that our TEG can easily
cover long-term energy requirements and power our system.
Given the large headroom of harvested power, one possible
future work is to reduce the size of harvesting unit and hence
the total cost of our system. We next evaluate the instan-
taneous power requirements of our system to understand if
batteryless operation is feasible.



(a) Logging to flash (erase-
write) causes two load spikes.

(b) At temperature differentials
below 80 °C, spikes cause the
mote to fail and reboot.

Figure 8. Instantaneous load can cause failure.

Table 2. Energy buffering test at TEG ∆HC = 83.1 °C
capacitor System operation status

none sensing and radio fine,
but always reboots upon flash logging

1000 µF sensing and radio fine,
but reboots after 2 packets flash logging

3300 µF sensing and radio fine,
but reboots after 12 packets flash logging

4300 µF sensing, radio, and flash logging always correct
9900 µF sensing, radio, and flash logging always correct

5.1.3 Batteryless operation?
We have shown that the TEG should provide sufficient

energy for long-term operation (§5.1.1). Given the large
amount of headroom shown there, we expected that battery-
less operation would be straightforward. In fact, we have
confirmed that our system can successfully sense and com-
municate batteryless, both in the lab and in the field.

However, we found that some debugging modes of our
system require high short-term power that cannot be pro-
vided by harvested energy alone. Specifically, writing to
flash has peak current draws that starve the CPU (peak power
of 260 mW, as shown in Figure 8(a)), causing the mote to
reboot. TEG power is a function of ∆HC and the absolute
temperature; we observe power shortages only for smaller
∆HC and at lower absolute temperatures. We found brown-
outs occur at ∆HC around 80 °C (dynamic temperatures are
difficult to measure, we estimate measurement accuracy at
around ±5 °C). Thus we conclude that short-term, power-
intensive operations like flash require significantly additional
energy generation headroom for batteryless operation.

Adding minimal energy buffering: A small energy re-
serve can bridge brief peak power requirements. We there-
fore evaluate traditional capacitors (1000 to 9000 µF) to sup-
port flash logging, while avoiding the maintenance problems
of batteries and the cost of supercapacitors. We can use the
capacitor both to tolerate flash logging in the field, and pro-
vide sensing-and-transmit operation at lower, in both cases
operating at smaller ∆HC.

We first add a 1000 µF capacitor and lower ∆HC until the
mote stops. Without a capacitor our system reboots at around
80 °C ∆HC, and the mote will not boot at all at 50 °C ∆HC.
With the capacitor we are able to sense-and-transmit as low
as 60 °C ∆HC. Thus a small capacitor supports operation at
about a 20% lower temperature differential.

We next vary the capacitor size to see how much energy
buffering is required at around 83 °C. Table 2 shows the cor-
relation between capacitor and system robustness. The scan

interval is 10 s, the same as that of our field deployment and
we do one radio transmitting and flash logging at the end of
every cycle. We find that larger capacitors support power-
intensive flash logging, with a 4300 µF capacitor sufficient
to support continuous operation at this ∆HC. (There is ample
time for the capacitor recharge between 10 s cycles, much
larger than the sub-second capacitor recharge time.)

We conclude that while batteryless operation is possible,
a small energy buffer is important to support peak loads.

5.2 Sensor and system calibration
Our non-invasive sensing uses custom thermocouples

with a custom amplification board. We therefore must cal-
ibrate these sensors, as read by the mote, to understand their
accuracy over their range of operation (from 0 to 100 °C). We
tested each step of the process (temperature to thermocouple
output voltage, output to amplified voltage, and voltage to
measured ADC values) in both the field and laboratory. We
omit validation details here due to space (full details are in
our technical report [43]), but report the two key conclusions.
First, although there are small non-linearities in each step,
our system is linear enough over the target range of operation
that we can treat ADC measurements directly as scaled tem-
perature without correction. Second, if we wish to measure
absolute temperature, we can apply post-facto calibration.

In addition to sensor calibration, we collected preliminary
data in the field in December 2009 to understand operational
conditions. These initial measurements at the production oil-
field allowed us to confirm thermocouple and TEG operation
in the field. They also provided data to parameterize our al-
gorithm and adjust the range and precision of our thermo-
couple amplification boards.

5.3 Does our detection algorithm work?
In §4, we described our blockage detection algorithm us-

ing low-cost, non-invasive sensing, and Figure 5 showed pre-
liminary experimental evidence that it works. We next re-
view the methodology behind that experiment and present
additional data to show that our algorithm accurately detects
full, nearly full, and partial blockages.

We conducted field experiments to evaluate our algorithm
with the deployment shown in Figure 2. Since it is difficult to
non-invasively induce controlled blocks in a real choke, and
such actions might interfere with production, field engineers
manually control a valve to emulate blockages. We believe
this emulation models a small orifice restricting steam flow,
the key similar physical property, and so we expect our re-
sults here to apply to real choke blockages.

We emulate four blockages levels: full (flow rate ṁ = 0),
open (ṁ = 100%), nearly full blocked (ṁ≈ 10%), open, par-
tially blocked (ṁ ≈ 50%) and open again; the blockage ap-
proximate are best estimates by the field engineers. We re-
peat the procedure three times and then slowly but contin-
uously shut off the pipe over 9 minutes to observe a grad-
ual blockage. These events are shown by letters and vertical
lines in the lower plot of Figure 9.

We collect data with one mote controlling two thermo-
couples straddling the valve to measure Tu and Td , as indi-
cated in Figure 2(a) and seen in the top left of Figure 2(b).
We also deploy a second mote and pair of thermocouples
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Figure 9. Similar base and extended algorithm results
on the thermocouple-pair straddling the valve. The bot-
tom plot shows the raw up- and downstream tempera-
tures with pipe status mapping.

around the actual choke for use in our extended algorithm.
A nearby laptop with a mote receiver archives transmissions
from both motes. For ground truth, we use a Campbell
Scientific CR1k datalogger with eight NANMAC D60-60-J
hose-clamp thermocouples, each thermocouple placed adja-
cent to a mote thermocouple. We operated our system from
12:30pm March 4 to 8:30am March 5, 2010, collecting data
for the first twelve hours as described next.

Our field experiment is not problem-free. Our experiment
ran for 20 hours, however we collected data for only the first
12 hours. At this time our sensors did not have capacitor
assist, so we disabled on-mote flash logging and depended
on transmission and logging at the central laptop. Unfortu-
nately, external power for the laptop failed overnight, so we
lack data for the last 8 hours. Our stored data includes all
controlled experiments and is sufficient to validate our algo-
rithms. Also, analysis of timestamps the next morning con-
firms our batteryless prototype operated continuously. Fi-
nally, although we ran our algorithms live, an electrical cou-
pling error between the thermocouples at the valve spoiled
our live run of the algorithm. Fortunately, our ground-truth
temperature sensors in the same location recorded the com-
plete data. We therefore replay this data post-facto for the
analysis presented in this section. Our sensor testing and
calibration (§5.2) suggests that this substitution does not al-
ter our conclusions. Due to the limited field experiment time,
we use the same setup for training and evaluation. However,
our evaluation is reliable because our water experiment uses
a different setup and reports consistent result (§5.5).

Figure 9 repeats the raw data from Figure 5, but separates
δsℓ and shows where it crosses the thresholds to indicate de-
tections (th block = 15, th maint = −16, αs = 1/2 and αℓ =
1/64). It shows that our algorithm correctly detects all three
levels of the blockages, capturing all nine δsℓ peaks. It cor-
rectly detects the final gradual blockage as well.

We draw four further observations from the bottom plot.
First, consistent to our hypothesis, the upstream temperature
is relatively constant while the downstream one is sensitive
to pipe status. Second, surprisingly, nearly-full blockages

yield the larger downstream temperature drops, even more
than full blockage, while partial blockage has the smallest
difference. We believe this behavior is because a nearly
closed valve starts choking flow, reducing downstream pres-
sure, but a full blockage completely isolate downstream pipe
from the upstream steam network, leaving it occupied by
back pressure from reservoir through wellbore. Field engi-
neers confirm this intuition. Third, our algorithm is highly
responsive. For example, it takes averagely around 6 sam-
ples (60 s) to correctly detect problems when th block = 15.
Finally, carelessly configured parameters would trigger false
alarms. An over-aggressive th block value (≤ 5 °C) would
confuse normal temperature fluctuation for pipe anomaly. In
principle, one could measure typical temperature variation,
for example by making sure that the threshold well outside
typical variance.

In all, we conclude that our base algorithm is capable
of detecting three different degrees of blockage, detecting
nearly-full and full-blockage most easily, with the same
threshold setting. According to field engineers, partial block-
age is exceptionally rare in real field. However, when we
run our algorithm over the thermocouple pair straddling the
choke (data omitted due to space), our base algorithm trig-
gers false alarms as we discussed in §4.3. The same block-
age threshold captures seven out of ten positive a δsℓ peaks
in Figure 10. We next evaluate how our extended algorithm
can avoid the choke false positives.

5.4 Evaluating avoidance of false positives
In §5.3, we show that our base algorithm has good ac-

curacy on emulated blockages. However, application of our
basic algorithm to readings of our second sensor-pair (T 2

d

and T 3
d around the choke in Figure 2(a); downstream of the

sensor-pair Tu and T 1
d around the valve) shows a number of

false alarms, even though there were no blockages at that lo-
cation. In effect, our experiments at the sensor-pair around
the valve emulate maintenance on the steamflood network,
changing the pressure for all downstream sensors.

We next re-analyze the data from both sensor pairs sensor
to show that our extended algorithm in §4.3 prevents these
false alarms. We expect the extension works at both loca-
tions, successfully detecting target blockage at the valve and
suppressing our the maintenance-like effects at the choke.

The extended algorithm yields exactly the same result as
the base one over the valve-straddling pair with the same
configuration. This proves that the extension does not im-
pair our algorithm performance.

Figure 10 shows how the extended version avoids false
positives at the choke-straddling sensor pair (T 2

d and T 3
d ).

The base algorithm with the same threshold as before
(th block = 15) captures seven out of ten positive δsℓ peaks
upon upstream valve operation because of the asynchronous
temperature drop on both sides (§4.3). However, the ex-
tended version triggers no false alarms any more (seven
b/ tags). With th maint, the system detects all ten upstream
maintenance events (tagged as “u”). The stabilization pe-
riod (dotted stripes shading tagged as “s” in the upper plot)
successfully suppresses all positive δsℓ peaks following up-
stream maintenance and δsℓ rises back above 0.
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Figure 10. Extended algorithm result on the sensor pair
straddling the choke with th block = 15, th maint = −16,
αs =

1/2 and αℓ =
1/64. The bottom plot shows the raw up-

and downstream temperature with pipe status mapping.

(a) Logical view of
the prototype.

(b) Physical view of the prototype.

Figure 11. In-lab, water-based pipeline prototype.

Our field tests carefully evaluate our extended algorithm
in two different scenarios—an emulated blockage, and an
emulated, upstream maintenance event. These experiments
demonstrate that our extended algorithm yields good accu-
racy and triggers minimum false alarms.

5.5 Generalizing to water pipelines
We have shown our algorithm detects blockages in steam-

flood pipelines. Our algorithm and the concept of detect-
ing sudden temperature drops is not specific to steam net-
works, but can apply to other kinds of fluid flow such as
water pipelines. However, water has very different physi-
cal properties than steam—it is incompressible and at oper-
ates at much lower pressure and temperature. These differ-
ences require re-tuning our algorithm and make detection of
partial blockages difficult. We next show that, after adjust-
ing parameters, our algorithm can detect full blockages in a
hot-water distribution system, and therefore can generalize
to applications in other domains and industries.

To evaluate a second network, we constructed a simple
hot water network. Shown in Figure 11, our small testbed
consists of a tankless water heater with a recirculation pump;
a plastic, lidless tank; and a small network of PVC pipes and
valves. This experiment precedes our mote implementation,
so it uses the same algorithms but running on a PC, with
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Figure 12. Blockage detection in a water pipeline: raw
up- and downstream temperatures (bottom), with em-
ulated blockage shown by annotations (vertical lines):
100%: full blockage, X%: partial blockage by turning
Va X% off, and O: open (no blockage).

data from Go!Temp, USB-based temperature sensors [38].
As in the steamflood pipeline, we emulate blockages by con-
trolling valves (Va in Figure 11). While our steam experi-
ments use fieldable hardware in an industrial pipeline net-
work, our hot water experiments are laboratory-based with
experimental hardware and a simple pipeline. However, they
demonstrate the generality of our algorithms in a very differ-
ent medium, showing our approach can apply to other cases
where blockage points can be anticipated.

The lower plot of Figure 12 shows raw up- and down-
stream pipe temperatures change during a full blockage be-
tween 82 and 168 minutes. Vertical lines in the figure indi-
cate when we change the emulated blockage to the approxi-
mate percentage shown. The upper plot in Figure 12 shows
that our algorithm, with parameter (th block = 3), captures
both δsℓ peaks (minutes 93 and 400) caused by full and 90%
blockages. We show one representative example of three
consistent experimental runs.

From this experiment, we see that our algorithm success-
fully detects full and nearly full blockage in this very dif-
ferent water network. The downstream temperature drops
significantly, converging to ambient temperature after full
blockage, from 44 °C to 39 °C in about 25 minutes, while
upstream temperature remains constant.

Second, we observe that it is difficult to detect partial
blockage in this water pipeline, unlike the steam network.
The temperature change upon partial blockage (minutes 34–
82 and 247–389) is insignificant, except for nearly full (90%)
blockage at the end of the experiment. We believe partial
blockages are difficult to detect in water networks because
water is incompressible and hence partial blockage has lit-
tle affect on fluid pressure. Another reason is that PVC
pipes in our testbed have a much lower thermal conductivity
(0.19 W/mK) than copper pipes do (401 W/mK), and there-
fore this network shows much greater hysteresis.



Figure 13. Invasive flow sensing with solar panel for
power.

5.6 System cost
Our goal is to reduce cost, so we next show the savings

from small, non-invasive sensors with a thermal energy har-
vesting. We consider capital and operational costs of sensor
system installation. Many industrial sites, including our test
site, have existing field wireless networks, so we do not con-
sider costs to deploy the field network (such network hard-
ware is typically US$200 or less per node).

Currently deployed systems: The circular pipe fitting
with two large protruding taps on the left of Figure 13 is a
typical invasive pressure sensor currently in use. This sys-
tem requires installation of pressure sensor taps between ad-
joining pipelines and a data acquisition unit tethered to a
large solar panel and battery. Cost of data acquisition is high
enough that measurement units are transported from site to
site by field technicians to manually collect limited samples
of data. Installation costs of differential pressure sensing taps
and power to the sensor can be as high as US$20,000 per site,
with mechanical costs from $8,000 to $16,000 and calibra-
tion an additional $3,000 to $4,000. Cost of the hardware
itself, including pressure sensors, a datalogger, a solar panel,
and battery packs can range from $13,000 to $20,000.

Given such high costs, a great deal of oilfield monitor-
ing today is manual. For example, many surface oilfields
contain hundreds or thousands of oil producing wells, and
steamflood secondary production may employ half as many
injection wells. However, not all the steam injection sites
are equipped with the monitoring points due to high cost of
installation. In addition, only a limited number of sites can
be monitored at any time, since expensive instrumentation
is shared over many wellheads rather than permanently in-
stalled. Today it is typical for a field technician to visit each
site monthly, attaching a sensor and datalogger to the sens-
ing points to collect data for several minutes. The technician
uploads the data on return to the office, or via the field wire-
less network. With travel time, one data collection requires
multiple person-hours per site.

Human-driven sensing reduces capital costs, with the
sensing points installed when the line is built and the cost
of the pressure sensor is amortized over many measurement
points. However, human-in-the-loop makes the operational
costs quite high: easily hundreds of dollars per measurement.

Table 3. Pipe temperature variation along time.
Tu (°C) T 1

d (°C) ambient (°C)

time (s) µ σ µ σ µ σ
Noon 258 2.7 261 2.1 19 1.4
Evening 261 0.8 262 1.0 17 0.7
Midnight 258 1.0 263 1.0 10 0.23

This high cost for each measurement discourages frequent
measurements and so prevents easy detection of problems
before they occur. In addition, recurring costs will rise with
upward trends in future labor costs.

Our sensor-network-based system: By comparison, the
capital cost of our system is quite modest. Our prototype
unit consists of a Mica-2 (US$100) for control, a modified
Heliomote ($125) for power conditioning, a custom ampli-
fier board ($50) and two thermocouple sensors ($70 in total)
for sensing, the TEG ($50) and a custom heatsink and mount
assembly ($200). Despite the system being a research pro-
totype and so not benefiting from economies of scale, com-
ponent costs are less than $600. Volume would reduce these
costs, although technical support would add to them.

More importantly, our approach can dramatically lower
deployment and operational cost. Deployment can be done
by a technician in an hour or two (deployment time for our
field experiment was two hours, and we expect future de-
ployments to be half that). Since deployment is non-invasive,
steam flow need not to be interrupted and new plumbing is
not required; since it is self-powered, electrical expertise is
not required. The primary technical skills are SCADA inte-
gration and standard oilfield and steamflood safety training.
We estimate deployment cost at around $300. Besides, we
see no recurring operational costs for sensing.

We believe these significant reductions in both acquisition
and operation will allow much greater deployment of sensing
with systems such as ours than are possible today.

5.7 System robustness
Although we showed our system works in the lab and

for short-term field deployments, a long-term, real-world de-
ployment raises a number of questions about system robust-
ness. We next look at three questions related to system relia-
bility under different conditions. Do environmental changes
or sensor location affect our algorithm accuracy? Is our radio
communication reliable enough?

We first look at our system to evaluate if environmental
temperature changes affect TEG and sensing performance.
During our overnight field deployment the TEG-powered
motes operated continuously, even while ambient tempera-
ture ranged from 9 to 22 °C. This observation confirms di-
urnal temperature changes are small compared the potential
energy in the steam network.

We also see no diurnal affects on sensed pipe temperature.
Table 3 records that pipe temperature remains relatively con-
stant in spite of changes in ambient temperature. In fact,
upstream co-generation power cycle or distribution branch
configuration is likely to have more impact. In all, both our
algorithm and hardware platform should work independently
from diurnal amplitude.

Second, the sensor location can effect system operation
because of choked fluid flow (§4.1). Figure 14 compares
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Figure 14. Aggregated all three downstream tempera-
ture.
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Figure 15. Mote radio packet loss distribution. Each
marker represents one sample missing from data set.

temperature fluctuation at different downstream spots (after
the valve) upon blockage. Letter labels and vertical lines are
defined in Figure 5. Here we show running 50-sample means
to smooth short-term variation. We see distinct temperature
changes at all three locations for all levels of blockage, but
the temperature change varies depending on proximity to the
choke. However, contrary to T 1

d and T 3
d , T 2

d shows that tem-
perature upon full blockage is lower than that of nearly full
blockage. The reason is that T 2

d is farther downstream than

T 1
d to the valve but still before the actual choke, experiencing

a smaller transient due to choked flow. This analysis suggests
that sensor placement can affect results. Since our system
can adapt to both steam and water pipelines, we are confident
parameter adjustments can accommodate such variation, but
automating the process is future work.

Finally, we want to verify that the communication be-
tween our system and the base station is reliable. Since
we hide the mote antenna inside the pelican box to pre-
vent potential environmental hazard to our device, we expect
packet loss, despite a short base-to-sensor distance of 4 m
with build-in B-MAC [28]. In general, the total packet loss
rate is low, 0.63% (31 losses in 4914 transmissions) at the
valve mote and 0.67% (33 losses in 4914) at choke mote.
Figure 15 shows loss is generally uniform and uncorrelated
across motes, if slightly burst in time. If we consider the low
data rate of the system – one tens-of-byte data packet per 10 s
for current deployment and occasional blockage alarm pack-
ets for full system, we conclude our wireless communication
channel is adequate and robust enough.

6 Related Work
Our work builds on prior research results in energy har-

vesting, change-point detection algorithms, and sensor net-
works for industrial monitoring.

6.1 Energy Harvesting Systems
Energy harvesting for sensor network has been an active

area of research. Systems have considered sources of en-
ergy including light, wind, vibration, heat, magnetic, and ra-
dio [7]. Several efforts have focused on sustainably power-
ing low-power sensor nodes by scavenging ambient energy
from both traditional sources such as sunlight, vibration, and
mechanical [29, 41, 25], and more exotic methods as body
heat, radio fields, and multiple energy sources [21, 30, 32].
Our work builds on these approaches, but is the first, to
our knowledge, sensornet system that sustains itself entirely
from the very phenomena it senses (industrial heat).

Solar is a good source of energy, and several projects ex-
plore solar-powered sensornets [17, 39]. Heliomote was the
first system to integrated solar-power and power condition-
ing to drive mote-class hardware [29]. We use a modified
Heliomote in our work to condition the output of our TEG.

Other work considers battery alternatives. Prometheus
replaces rechargeable batteries with supercapacitors to re-
duce conversion loss [14]. The AmbiMax platform fur-
ther increases efficiency by matching source- and load-
impedance with maximum-power-point tracking, and added
multi-modal energy harvesting with solar and wind [26].
These platforms employ battery or supercapacitor to iso-
late energy harvesting from consumption. We show that this
buffer can be eliminated or replaced with a standard capaci-
tor.

Several systems explored large-scale thermal energy har-
vesting. Researchers have considered radioisotope thermal
generators (10–300 W for spacecraft), waste heat in cen-
tral heating systems (25 W, [31]), to exploiting automo-
bile waste-heat (4 W, [22]), and even micro-generators for
the soil-to-air thermal gradient (0.35 W, [20]). Our work
provides a cost-efficient and energy-sufficient solution for
powering an embedded system. Other researchers have in-
vestigated harvesting thermal energy for storage in energy
buffers. Mateu et al. harvest about 5 mW using the ther-
mal gradient between human body and ambient temperature
and store it in an NiMH battery [21]. Sodano et al. ar-
gue that TEG modules can generate more power and charge
more quickly than piezo-electric system under typical condi-
tions [34]. Our work explores batteryless or standard capac-
itor energy buffering, and integrates thermal harvesting with
sensing to provide energy sufficiency for a specific applica-
tion.

In lower-power thermal energy harvesting, the Micropelt
TE-node is most closely related to our work. The Micropelt
platform low-power (sub-10 mW) sensor node [23] with an
internal 100 µF capacitor for energy storage, with harvest-
ing from a custom thermo-electrical generator [4, 3]. Our
work differs in that we use a general purpose sensor plat-
form, evaluating the potential and trade-offs for batteryless
operation. We also explore a general purpose platform (run-
ning TinyOS), allowing exploration of a variety of sensor
fusion algorithms, and we demonstrate that our application
can be energy-sufficient.

6.2 Algorithms for Change-point Detection
Many real-time monitoring systems use abrupt detec-

tion [2] or change-point detection [1] to detect problems in



observed data. Several change-point detection algorithms
exist. In our work we focus on exponential-weighted moving
average (EWMA) for change-point detection because it ad-
mits very lightweight implementations, making it well suited
to mote-class platforms. Our detection algorithms are in-
spired by several prior systems built on EWMA [13, 36, 18].

Several sensornets build on the simple EWMA algorithm
from TCP [13]. Trifa et al. develop an adaptive alarm call
detection system for yellow-bellied marmots, using EWMA
to estimate environment noise [36]. Our work uses similar
concepts to detect significant change in pipe skin tempera-
ture using EWMA. Kim and Noble propose EWMA-based
algorithms to optimize streaming estimation of network ca-
pacity [18]. One of their algorithm, called flip-flop filter,
keeps both agile and stable EWMA and switches between
the two to find the best baseline. Although our algorithm
also maintains two EWMAs, we directly compare these two
traces to detect sudden changes in pipeline temperature.

6.3 Pipeline monitoring systems

SCADA systems have long been used for pipeline moni-
toring. Traditional SCADA systems use simple in-situ sen-
sors and centralized decision making [24, 10], while our ap-
proach instead shifts detection algorithms into intelligent,
communicating sensor nodes.

Prior work in sensornet pipeline monitoring usually as-
sumes low-temperature, incompressible fluid [35, 19, 15,
33]; our work instead focuses on high-temperature, high
pressure, compressible steam. This change in fluid allows
us to use temperature, instead of vibration or acoustic sens-
ing. PIPNET prototypes an urban sewage monitoring sys-
tem based on wireless sensor and demonstrates that they can
detect water leakage by vibration frequency analysis [35].
NAWMS instead focusing on personal water usage [19].
Their hardware is similar to ours, but we differ in sens-
ing modality and use of EWMA instead of their linear-
programming-based algorithm. Jin and Eydgahi [15] and
Sinha [33] both explore acoustic pipeline monitoring. Jin
and Eydgahi focus on a general sensor network platform
while Sinha’s work is mainly about instrumentation and cal-
ibration; we instead focus on blockage detection.

Zhu’s work is closet to ours, showing the feasibility of
temperature monitoring for blockage detection of pulverized
coal injection system [44]. He uses temperature observation
from thermometers mounted on branch pipes in his detection
algorithms. Similar to our approach, his algorithm differen-
tiates pipe skin temperature and compares the resulting ∆ud

against pre-configured thresholds. Unlike his work, we use
EWMA and multiple sensors to adapt to changes, avoiding
most hard-coded thresholds. Finally, we use inexpensive and
portable hardware (less than US$600), while his system is
centralized and likely to be much more expensive.

We have previously explored the potential of sensor net-
works in oilfield production systems [42]. While that work
suggests the potential, this paper demonstrates a field-tested
system, evaluates specific sensing algorithms, and demon-
strates that the whole system can operate on steam-power.

7 Conclusions

We have described a system for steam-powered sensing
to detect pipeline blockages. Our system is designed to dra-
matically reduce deployment costs, allowing instrumenta-
tion of industrial processes that are today considered cost-
prohibitive. We developed two novel approaches to reduce
cost: “steam-powered” thermal energy harvesting, where the
sensornet is powered by the phenomena being sensed and
can operate batteryless or with a standard capacitor. Second,
we developed an algorithm to detect problems in pipelines
using non-invasive sensing. We have demonstrated the ef-
fectiveness of this system and its components through lab-
oratory tests and field experiments. Although we have de-
veloped this system to match the needs of sensing blockage
in steam distribution networks, the principles of thermal en-
ergy harvesting and non-invasive sensing apply to a range of
industrial sensing applications.
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