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Abstract
Energy is a critical resource in sensor networks. MAC

protocols such as S-MAC and T-MAC coordinate sleep
schedules to reduce energy consumption. Recently, low-
power listening (LPL) approaches such as WiseMAC and
B-MAC exploit very brief polling of channel activity com-
bined with long preambles before each transmission, saving
energy particularly during low network utilization. Synchro-
nization cost, either explicitly in scheduling, or implicitly in
long preambles, limits all these protocols to duty cycles of
1–2%. We demonstrate that ultra-low duty cycles of 0.1%
and below are possible with a new MAC protocol called
scheduled channel polling (SCP). This work prompts three
new contributions: First, we establish optimal configurations
for both LPL and SCP under fixed conditions, developing a
lower bound of energy consumption. Under these conditions,
SCP can extend lifetime of a network by a factor of 3–6 times
over LPL. Second, SCP is designed to adapt well to variable
traffic. LPL is optimized for known, periodic traffic, and
long preambles become very costly when traffic varies. In
one experiment, SCP reduces energy consumption by a fac-
tor of 10 under bursty traffic. We also show how SCP adapts
to heavy traffic and streams data in multi-hop networks, re-
ducing latency by 85% and energy by 95% at 9 hops. Finally,
we show that SCP can operate effectively on recent hardware
such as 802.15.4 radios. In fact, power consumption of SCP
decreases with faster radios, but that of LPL increases.
Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols; C.4 [Per-
formance of Systems]: Performance Attributes
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1 Introduction

Energy is a critical resource in battery-powered sensor
networks. Current applications such as habitat monitoring
target sensor deployments of months or years [1, 15]. With
small sensor nodes like Berkeley Motes the radio is a ma-
jor source of energy consumption [7, 11]. On Mica2 motes
the radio draws 22mW when idle or receiving and more
when transmitting [9], which is similar to the CPU power
consumption and much larger than other components. On
MicaZ motes, the IEEE 802.15.4 radio draws even more
power when active (56mW in receiving). Thus it is not sur-
prising that developing protocols to optimize radio energy
consumption has been a major research topic.

Major sources of energy waste are idle listening, collision,
overhearing and control overhead [26]. Among them, idle
listening is a dominant factor in most sensor network appli-
cations. The central approach to reducing energy lost to idle
listening is to lower the radio duty cycle by turning the ra-
dio off part of the time. More formally, we define duty cycle
as the ratio between listen time and a full listen/sleep inter-
val. To keep the abstraction of a fully connected network1,
networks use duty cycling. Three approaches are generally
used: TDMA, scheduled contention, or low-power listening.
We do not consider TDMA here because of difficulties that
arise in networks of peers (as in sensor networks) that lack
centralized or cluster-based control, and at very low duty cy-
cles.

One important approach is to schedule coordinated trans-
mission and listen periods, as seen in S-MAC [26, 27], T-
MAC [24], and TRAMA [19]. The schedule determines
when a node should listen and when it should sleep. In S-
MAC and T-MAC nodes adopt common schedules (possibly
with help in [13]), synchronizing with periodic control mes-
sages (SYNC packets). A receiver only listens to brief con-
tention periods, while senders contend during these periods.
Only nodes participating in data transfer remain awake after
contention periods, while others can then sleep.

1A complementary alternative is to break the abstraction of con-
nectivity, leading to topology control protocols, outside the scope of
this paper.



Scheduling reduces energy cost by ensuring that listen-
ers and transmitters have a regular, short period in which to
rendezvous and can sleep at other times. Overhead is due
to schedule maintenance and listening during contention in-
tervals if there is nothing to send. For networks with low
utilization the sleep interval can be extended, but poten-
tially reducing throughput when busy. (Optimizations such
as FRTS [24] and adaptive listening [27] reduce this cost.)

Another technique is low-power listening (LPL), pre-
sented in WiseMAC [3] and B-MAC [17]. In LPL, nodes
wake up very briefly to check channel activity without actu-
ally receiving data. We call this action channel polling2. If
the channel is idle, the node immediately goes back to sleep.
Otherwise it stays awake to receive data. Although nodes
regularly poll the channel with a pre-defined polling period,
their polling times are not explicitly synchronized. To ren-
dezvous with receivers, senders send a long preamble before
each message (longer than the polling period), which is guar-
anteed to intersect with a polling.

Since channel polling is about 10 times less expensive
than listening for full contention period, LPL protocols con-
sume much less energy than existing scheduled protocols
in lightly loaded networks. Unfortunately, current LPL-
based protocols have three major problems. First, receiver
and polling efficiency is gained at the much greater cost of
senders. In fact, the duty cycle is limited to 1–2% because
the polling frequency needs to balance the cost on send-
ing preambles and polling the channel. (Both WiseMAC
and B-MAC can avoid long preambles in certain situa-
tions [3, 17, 18, 4], but not generally. We discuss details in
Section 6.) Second, this balance between sender and receiver
costs makes LPL-based protocols very sensitive to tuning for
an expected neighborhood size and traffic rate. When the ac-
tual neighborhood or traffic does not match the ideal model,
its performance is significantly reduced, particularly when
traffic rates vary greatly. Finally, it is challenging to adapt
LPL directly to newer radios like 802.15.4, since the specifi-
cation limits the preamble size.

This paper introduces a new MAC protocol based on
scheduled channel polling (SCP). By synchronizing the
channel polling times of all neighbors, SCP-MAC eliminates
long preambles in LPL for all transmissions, and is able to
operate at ultra-low duty cycles when traffic is light. The key
contributions of this paper are to address each of these chal-
lenges: understanding the optimal behavior of both schedul-
ing and channel polling separately and together, to place
a lower bound on energy costs; developing a protocol that
adapts to dynamically changing traffic patterns efficiently;
and understanding how these techniques apply both to exist-
ing (CC1000) and new (802.15.4, CC2420) generations of
radios for sensor networks.

First, we discover optimal configurations for both LPL
and SCP and their lower bounds of energy consumption with
periodic traffic. These configurations allow us to answer the

2The term “polling” is also sometimes used to indicate a base-
station interrogating each client to see if it has data to send. All
nodes in our system are peers of each other; in this paper polling
refers only to each node sampling the channel to check for activity.

fundamental question about the relative benefits of sched-
uled access compared to asynchronous polling. While prior
work showed optimal lifetime for LPL as a function of probe
time and neighborhood size [17], we extend that work to pro-
vide a closed-form solution for optimal configurations (Sec-
tion 3.2). More importantly, we present optimal configura-
tions for synchronized channel polling to achieve its best per-
formance (Section 3.3). We validate this analysis experimen-
tally (Section 5.1). We show that optimal SCP can typically
extend lifetime of a network by a factor of 3–6 times com-
pared to optimal LPL. The end result of this analysis is to
demonstrate that SCP-MAC can achieve ultra-low duty cy-
cles of 0.1% or less, an order of magnitude or more better
than current approaches.

Second, we design SCP-MAC to adapt well to variable
traffic. While some applications, such as habitat monitor-
ing [1, 15] have periodic traffic, many applications have
varying or unpredictable traffic rates. For example, in event-
triggered sensor detection, the network is quiescent for long
periods when nothing is detected, then quite busy after de-
tection, during tracking. LPL is optimized for known, pe-
riodic traffic, and long preambles become very costly when
traffic varies. We demonstrate the energy benefits of SCP
over LPL for both broadcast and unicast traffic under bursty
rates. SCP is able to reduces energy consumption by a factor
of 10 for broadcast traffic (Section 5.2) and by a factor of
20 for unicast with overhearing avoidance (Section 5.3). To
cope with latency in multi-hop networks, we develop adap-
tive channel polling that allows the network to stream data
under heavy traffic by dynamically adding high-frequency
polling on nodes (Section 2.2). This approach reduces la-
tency by 85% in a 9-hop network (Section 5.2).

Finally, we show that SCP can operate effectively on new
radios such as those supporting IEEE 802.15.4. Such ra-
dios have been perceived to work poorly with LPL because
of limitations on control of preamble length. Although our
implementation is very preliminary, we present early results
showing that energy conservation is feasible with 802.15.4
radios, even without base-stations or asymmetric operation.
Our analysis and initial experiments show that power con-
sumption of SCP decreases with faster radios, while that of
LPL-based approaches increases.

2 Design of SCP-MAC
SCP-MAC is designed with two main goals: first, to push

the duty cycle an order of magnitude lower than is practical
with current MAC protocols, and second, to adapt to variable
traffic loads common in many sensor network applications.

We adopt several approaches to meet these goals. We
begin by combining scheduling with channel polling in an
optimal way that the energy cost can be minimized with pe-
riodic traffic. We derive and employ optimal intervals for
schedule synchronization based on worst-case clock drift.
This approach gains the benefits of brief channel polling,
and replaces the penalty of long LPL preambles with a much
smaller cost of synchronizing schedules. Finally, we develop
a new algorithm to dynamically adjust duty cycles in the face
of busy networks and streaming traffic, reducing the latency
in multi-hop networks.



���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

Sender

Receiver

Preamble

Data

(a) Low-power listening (LPL)
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(b) Synchronized channel polling (SCP)
Figure 1. Sender and receiver synchronization schemes.

2.1 Synchronized Channel Polling
Channel polling reduces the cost of discovering traffic,

since checking for the presence or absence of network ac-
tivity is much cheaper than knowing what the activity is.
In low-power listening (LPL), nodes poll channel asyn-
chronously to test for possible traffic. To send a packet, the
sender adds a preamble before the packet. This preamble is
effectively a wake-up signal, informing other nodes a data
packet is about to be transmitted. The preamble must be at
least as long as the channel polling period to ensure all re-
ceivers will detect it (see Figure 1(a)). The performance of
LPL is sensitive to the channel polling period, since longer
periods reduce receiver costs but increase sender costs. Se-
lecting an optimal value requires knowledge of network size
and completely periodic traffic [17].

SCP-MAC adopts channel polling from LPL approaches.
However, unlike LPL, SCP-MAC synchronizes the polling
times (schedules) of all neighboring nodes. The primary ad-
vantage of scheduled polling is that only a short wake-up
tone is required for senders to guarantee rendezvous. As an
example, compare the wakeup tone duration in SCP (Fig-
ure 1(b)) with LPL (Figure 1(a)). In addition, synchroniza-
tion reduces the cost of overhearing, since on average all
nodes will hear half the preamble before waking up, even
for packets addressed to other receivers. Moreover, with
synchronization SCP works efficiently for both unicast and
broadcast traffic, while some existing optimizations to im-
prove LPL work only for unicast. Finally, as we will show
later experimentally (Section 5.2), short wakeup tones make
SCP-MAC more robust to varying traffic load.

The penalty of scheduled polling is the cost of maintain-
ing schedule synchronization, and potentially the require-
ment of maintaining multiple schedules. SCP-MAC dis-
tributes schedules much as developed by S-MAC [26]: each
node broadcasts its schedule in a SYNC packet to its neigh-
bors every synchronization period. One of the major contri-
butions of this paper is to discover the optimal synchroniza-
tion period and wakeup tone length that minimize the overall
energy consumption. The details of this analysis in Section 3
show that this control overhead is negligible, typically one
packet every 10–60 minutes. In addition, SCP will piggy-
back schedule information on any data packets that happen
to be sent. When the data rate is higher than the synchroniza-
tion period, piggybacking can completely suppress explicit
SYNC packets. When there is no opportunity to piggyback,
a periodic timer forces transmission of SYNC packets as de-
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Figure 2. Adaptive channel polling and multi-hop
streaming.

scribed in Section 4.3. Finally, we also expect to use prior
work to allow all nodes to adopt a single schedule [13], thus
avoiding unnecessary additional synchronization points.
2.2 Adaptive Channel Polling and Multi-hop

Streaming
While traffic in some classes of sensor network applica-

tions is completely periodic, a much larger set of applications
mix periodic and bursty traffic or consist of unpredictable
traffic mixes. Object tracking is a worst-case application,
since there is no traffic to send most of the time, but bursts of
activity when a target is detected. Such a network does not
have a single good operating point, since it must run at a low
duty cycle to match long idle periods, but then is penalized
with long preambles and expensive transmission costs during
busy cycles. Furthermore, collisions are frequent during the
busy period, and since each collision wastes the packet trans-
mission, long preambles also increase the collision penalty.
Previous work has described how LPL can shift to fully ac-
tive mode after one node wakes up the network with a long-
preamble packet [18]. Such an approach may pay a heavy
listen price while nodes listen for potential follow-on traffic.

SCP-MAC eliminates long preambles, so its energy per-
formance is not sensitive to varying traffic loads. Continu-
ing the example of a target tracking application, we would
configure SCP to run at a very low duty cycle to match
the dominant time spent mostly idle. However, at times of
heavy traffic, each hop in a scheduled MAC potentially adds
additional latency and reduces throughput [13]. To reduce
such multi-hop latency, we next develop adaptive channel
polling. The basic idea is to detect bursty traffic and dynam-
ically add additional, high-frequency polling slots to nodes
on the path, allowing them to steam packets quickly over
multiple hops. Unlike prior approaches (adaptive listen [27]
and FRTS [24]), our approach works over every hop on the
path. Unlike B-MAC optimizations [17] and fast-path [13],
this approach requires no explicit signaling.

We describe adaptive channel polling with an example
shown in Figure 2 where nodes transfer data over several
hops. For the first part of the algorithm, consider that node
A sends to node B. When B receives a packet during the first
regular polling, it adds n high-frequency polls in the same
frame, immediately following its regular poll. (We define
n below.) If A has more packets to send, it sends them in
these adaptive polling times. Spacing of adaptive slots is de-
termined by the longest packet length that the physical layer
supports.

If B finds none of its additional polls useful (such as if A
had no additional data to send) it transitions back to its reg-
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Figure 3. Two-phase contention in SCP-MAC.

ular, low-duty cycle polling period. If any of B’s additional
slots were successfully used, B extends the adaptive polling
with n slots, allowing A to continue transmission. It also
automatically plans an additional n in the next frame. If the
duration of the traffic burst is shorter than one regular polling
period, such process repeats at each hop, and the whole data
can be transferred over N hops using N polling periods.

However, in many cases the burst of traffic lasts much
longer than one regular polling period. We want to quickly
bring all nodes on the path into the high-rate polling mode,
and keep them in this mode until the burst ends. In this way,
data can be quickly streamed from the source to the sink.
We continue with the above example to illustrate the details.
Due to the long burst, node A keeps sending to node B with
frequent polling until the end of the first regular polling pe-
riod. So far, the next-hop node C is not aware that A and
B have begun adaptive transmission and polling, and C still
follows the regular polling schedule. In order to shift node
C quickly to adaptive polling, node A intentionally gives up
the transmission opportunity in the second regular polling
slot, allowing B to send to C without contention from A (as
shown in Figure 2). When node C receives this packet, it too
will shift to adaptive polling. In the following adaptive slots,
both A and B contend to send. The same procedure repeats,
and node D will start adaptive polling after the third regular
polling slot. Eventually all nodes on the path will operate in
the adaptive polling mode, and data can stream to the sink
quickly using all-adaptive slots.

Finally, we consider what n should be—how many polls
should be added. In a multi-hop network, each node contents
with its previous- and next-hop nodes if they all have data to
send. Thus, at full occupancy, each of the three nodes needs a
slot to send, so that packets can quickly proceed downstream.
We therefore set the number of adaptive polling slots n to 3.

In summary, adaptive polling slots are dynamically added
and extended as driven by traffic. Regular polling slots are
always reserved for new nodes to enter the high-rate polling
and transmission quickly, reducing channel capturing by any
single node. Multi-hop streaming reduces latency as well as
buffer requirement at each node by quickly moving data over
multiple hops.
2.3 Other Optimizations

On top of the basic scheme of scheduled and adaptive
channel polling, SCP-MAC includes several other optimiza-
tions to improve its performance in handling collisions and
overhearing.
2.3.1 Two-Phase Contention

Transmitting a packet in SCP-MAC involves two steps.
First, the sender transmits a short wakeup tone timed to inter-
sect with the receiver’s channel polling. After waking up the
receiver, the sender transmits the actual data packet. These
two steps allow a two-phase contention procedure as shown

in Figure 3. Before sending the tone, a node performs carrier
sense by randomly select a slot within the first contention
window (CW1). An idle channel allows the node to proceed,
sending the wakeup tone that covers the rest of the contention
window until the end of the receiver’s polling time. If the
node detects a busy channel (due to another node sending
a tone first), it aborts transmission until the next frame and
instead waits to receive the incoming packet. Only nodes
that successfully send wakeup tones will enter the second
contention window (CW2 in Figure 3). If such a node still
detects channel idle in the second contention phase, it starts
sending data.

The two-phase contention lowers the collision probability
compared to a single contention period of equal duration, as
only nodes that succeed in the first phase will enter into the
second phase. Suppose we have m slots in a single contention
window, the collision probability is roughly proportional to
1/m. If we split the window into two separate periods, each
with m/2 slots, the collision probability probability will be-
come proportional to 4/m2. Therefore when m > 4, two-
phased contention has lower probability of collision than a
single period. (Alternatively, we can use fewer total con-
tention slots to save energy and achieve the same collision
performance.)

The reason that we can split the contention with fewer
slots is that SCP tolerates collisions on tone transmissions—
the wakeup tone only indicates network activity, not actual
data. Thus, we can use a very small contention window for
phase one. After phase one, only surviving nodes contend in
the second phase. With fewer competing nodes, the collision
probability on data transmission can be largely reduced. Our
current implementation defaults to use 8 and 16 slots for tone
and data contention windows, respectively.

2.3.2 Overhearing Avoidance Based on Headers
Unnecessary overhearing (receiving and then discarding

packets addressed to other nodes) can be a large energy cost
in high-density networks. In previous work, overhearing
avoidance has been handled with a separate control chan-
nel [22] or RTS/CTS packets [26]. The use of RTS/CTS
in SCP-MAC is optional and user configurable. When
RTS/CTS is enabled, overhearing avoidance is performed
the same way as that in S-MAC [26]. When RTS/CTS is
disabled, SCP-MAC performs overhearing avoidance from
MAC headers alone. To do this, a receiver examines the des-
tination address of a packet immediately after receiving its
MAC header, before completely receiving the packet. If it
is a unicast packet destined to another node, it immediately
stops the reception and places the radio to sleep.

We do not put checksums in the header, so the destination
address can be corrupted when we read it. If it has no error,
a correct decision can be made. If it is corrupted, the packet
will be discarded anyway, so it is even more helpful to stop
receiving the packet early.

It should be noted that overhearing avoidance has limited
benefit for LPL, since there a decision can only be made after
receiving the LPL preamble and the header. On average half
the preamble must be received before making a decision, and
the LPL preamble is much longer than the real packet.



3 Lower Bound of Energy Performance with
Periodic Traffic

This section analyzes the energy performance of LPL and
SCP. Our analysis is based on a single-hop network model
where each node periodically generates packets at a fixed in-
terval. Although somewhat artificial, the model roughly rep-
resents an environmental monitoring application where sen-
sors are periodically sampled. Based on the model, we derive
the lower bounds of energy consumption for both LPL and
SCP. As a result, we also find the optimal operating parame-
ters for these protocols to achieve their best performance.
3.1 Models and Metrics

Consider a network of n + 1 nodes, where all nodes can
hear each other directly, so each node has n neighbors. Each
node generates one data packet at a regular interval Tdata.
Here we consider broadcast traffic (SCP performance is bet-
ter with unicast traffic where overhearing avoidance is pos-
sible, as shown experimentally in Figure 12). Our analysis
focuses on the energy consumption by the radio, and we do
not model other components, such as the CPU or sensors.
There are four stable radio states: transmitting, receiving,
listening, and sleeping; each draws the power (energy per
unit time) of Ptx, Prx, Plisten and Psleep respectively. Channel
polling is different than normal listening, as it includes the
time that the radio transitions from sleep to listen (typically
around 2ms) and the brief sampling time to detect channel
activity. We denote polling duration as tp1, and its average
power consumption as Ppoll. We ignore radio transition costs
for other states, assuming the on periods for data transfer are
long enough to render transition costs negligible.

Both LPL and SCP are contention-based MACs, so trans-
mission happens after carrier sense. To simplify the analysis,
this section assumes that there is only one contention phase
in SCP, and its contention window size is the same as that of
the LPL. (This assumption favors LPL for reasons given in
Section 2.3.1.) We denote the average time in carrier sense as
tcs. After carrier sense, a node first sends a wake-up tone and
then the real packet. Each packet has a short, fixed pream-
ble and a start symbol to synchronize the transmitter and re-
ceiver, and we included them in the packet length Ldata for
simplicity. The energy consumption of the radio is deter-
mined by how much time it spends in transmitting, receiving,
listening, polling and sleeping, denoted as ttx, trx, tlisten, tpoll
and tsleep respectively. In our analysis, all these time values
are normalized to one second. They represent the fractions
of time in one second the node in different states. We refer
to them as expected time.

Table 1 summarizes all of our terms and gives typical val-
ues for the Mica2 radio (Chipcon CC1000 [9]) and an IEEE
802.15.4 radio (Chipcon CC2420 [10]). For both LPL and
SCP, the expected energy consumption, per node, is the sum
of the expected energy spent in each state:

E = Ecs +Etx +Erx +Epoll +Esleep
= Plistentcs +Ptxttx +Prxtrx

+Ppolltpoll +Psleeptsleep (1)

We next derive the expected energy consumption for both
asynchronous and scheduled channel polling schemes.

Symbol Meaning CC1000 CC2420
Ptx Power in transmitting 31.2mW 52.2mW
Prx Power in receiving 22.2mW 56.4mW
Plisten Power in listening 22.2mW 56.4mW
Psleep Power in sleeping 3µW 3µW
Ppoll Power in channel polling 7.4mW 12.3mW
tp1 Avg. time to poll channel 3ms 2.5ms
tcs1 Avg. carrier sense time 7ms 2ms
tB Time to Tx/Rx a byte 416µs 32µs
Tp Channel polling period Varying Varying
Tdata Data packet period Varying Varying
rdata Data packet rate (1/Tdata) Varying Varying
Ldata Data packet length 50B 50B
n Number of neighbors 10 10

Table 1. Symbols used in radio energy analysis, and typi-
cal values for the Mica2 radio (CC1000) and an 802.15.4
radio (CC2420)

3.2 Asynchronous Channel Polling: LPL
In LPL, nodes wake up asynchronously. A sender wakes

up a receiver by sending a long preamble before each packet.
The duration of the preamble is at least the same as the
polling interval Tp, and thus the preamble length is

Lpreamble = Tp/tB (2)
where, tB is the time needed to transmit or receive a byte.

Before sending each packet, a node performs carrier
sense. Recall that the average carrier sense time is tcs1. The
expected time a node spends in carrier sense is

tcs = tcs1/Tdata = tcs1rdata (3)
where rdata is the rate of sending data packets on each node.
The expected time that a node is in transmitting state is

ttx = (Lpreamble +Ldata)tBrdata
= (Tp +LdatatB)rdata (4)

The second line in the above equation is due to (2).
As each node periodically generates packets at the same

rate of rdata, a node will periodically receive n packets from
its n neighbors. The average length of the received preamble
for each packet is Tp/2 due to the asynchronous polling. The
expected time in receiving state is

trx = n(Tp/2+LdatatB)rdata (5)
The expected polling time is

tpoll = tp1/Tp (6)
The expected time with the radio asleep is simply the in-

active time:
tsleep = 1− tcs − ttx − trx − tpoll (7)

Substituting Equations (3)–(7) into (1) and using Equa-
tion (2), we obtain the energy consumption with asyn-
chronous channel polling as
Er = (Plistentcs1 +Ptx(Tp + tpkt)+nPrx(Tp/2+ tpkt))rdata

+Ppolltp1/Tp
+Psleep(1− (tcs1 +(n/2+1)Tp +(n+1)tpkt)rdata
−tp1/Tp) (8)
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Symbol Meaning Value
Tsync SYNC packet period Varying
rsync SYNC packet rate (1/Tsync) Varying
Lsync SYNC packet length 18B
LsB SYNC bytes piggybacked to data 2B
tmtone Minimum duration of wake-up tone 2ms
Table 2. Additional parameters in SCP-MAC

where tpkt is the packet transmission time, and tpkt = LdatatB.
Assuming the packet length is fixed, we can see from

Equation (8) that the energy consumption of a node changes
with its neighborhood size n, data rate rdata, and channel
polling period Tp. The tradeoff here is: reducing Tp reduces
the cost of channel polling, but increases the energy spent in
transmitting and receiving. This prompts the question: what
is the optimal value of Tp to minimize the energy consump-
tion, given a fixed n and rdata? We can obtain the answer by
solving the following equation.

dEr
dTp

= 0 (9)

Substituting Equation (8) into (9), we find the optimal
preamble length Tp for LPL is:

T ∗
p,r =

√

(Ppoll −Psleep)tp1
rdata(Ptx +nPrx/2− (n/2+1)Psleep)

(10)

In Figure 4, we show T ∗
p,r as a function of data rate by the

dashed line using the parameters of the CC1000 radio listed
in Table 1.

The optimal energy consumption with asynchronous
channel polling is expressed by Equation (8) when Tp = T ∗

p,r.
We will show a numerical result in Section 3.3.3.
3.3 Scheduled Channel Polling: SCP

Next we turn to energy consumption for scheduled chan-
nel polling (SCP). In SCP, nodes synchronize their polling
times with their neighbors, allowing shorter wake-up tones.
However, SCP faces the additional cost of synchronization.
Table 2 shows additional parameters in SCP (beyond those
from Table 1).

Equation (1) still applies to SCP if we add the cost of
maintaining synchronization. We explore this additional cost

below, both with and without the ability to piggyback syn-
chronization on data traffic. Before evaluating overall en-
ergy, we first investigate the tradeoff of wakeup tone length
and synchronization frequency.
3.3.1 Synchronization Requirement and Tradeoffs

Several factors affect how we choose the wakeup tone
length and the synchronization period, but the most impor-
tant is the clock drift rate. Current CMOS crystal oscillators,
such as those on the Berkeley motes, drift at a rate of 30–
50 parts per million (ppm) [11]. To accommodate potential
clock drift we extend the wake-up tone by a guard time.

Denote the synchronization period as Tsync (a configura-
tion parameter) and the clock drift rate as rclk. The maximum
clock difference between two nodes is

tdiff = 2Tsyncrclk (11)
where the factor of two reflects the worst case when each
node’s clock drifts in the opposite direction.

Since a sender does not know which direction its clock
drifts with regard to a receiver, it needs to put the guard
time in both directions, making the total guard time be 2tdiff .
If a node has n neighbors, each of them will send SYNC
packets at the period of Tsync. Since every SYNC packet re-
synchronizes all nodes in the neighborhood, (n + 1) nodes
effectively reduce the clock drift by (n + 1) times. Thus the
guard time becomes

tguard = 4Tsyncrclk/(n+1) (12)
The duration of the wake-up tone is the guard time plus a

short, fixed time
ttone = 4Tsyncrclk/(n+1)+ tmtone (13)

where tmtone is the minimum time required to detect the tone.
Since the time needed for the receiver to sample the channel
(not including the radio transition time) and determine chan-
nel activity is around 0.5–2ms, depending on the radio speed,
carrier-sense algorithm, and channel condition, we simply
set tmtone = 2ms for easy analysis.

There is a trade-off in determining Tsync: increasing Tsync
reduces the energy cost of sending SYNC packets, but in-
creases the cost on guard time and hence the wakeup tone
length.
3.3.2 Best Case: Perfect Piggybacking

Given the fact that many types of data transmissions in
sensor networks are periodic, synchronization information
can be easily piggybacked on data. For example, all syn-
chronization information can be piggybacked if rdata ≥ rsync.
Here we investigate energy consumption for this case, as-
suming rdata = rsync.

Since the data rate does not change, the expected carrier
sense time is still expressed by Equation (3). The transmis-
sion time now is

ttx = (ttone +LsBtB +LdatatB)rdata (14)
Similarly, the reception time is

trx = n(ttone +LsBtB +LdatatB)rdata (15)



The channel polling time and the sleep time can still be rep-
resented by Equations (6) and (7).

Substituting Equations (3), (14), (15), (6) and (7) into (1),
we obtain the energy consumption of the scheduled channel
polling with piggybacked synchronization as

Esp = Plistentcs1rdata
+ (Ptx +nPrx)(ttone +LsBtB +LdatatB)rdata
+ Ppolltp1/Tp
+ Psleep[1− tcs1rdata

− (n+1)(ttone +LsBtB +LdatatB)rdata
− tp1/Tp] (16)

Ideally, with the periodic traffic from all neighbors, a node
should only poll the channel when there is a transmission
from a neighbor. Thus the optimal polling period Tp for
scheduled polling is

T ∗
p,sp =

1
n(rdata)

(17)

The optimal energy consumption can be obtained by sub-
stituting Equation (13) into (16) and letting Tp = T ∗

p,sp and
Tsync = 1/rdata. It is only a function of rdata. A numerical
result will be shown in Section 3.3.3.
3.3.3 Worst Case: All Explicit Synchronization

Next we consider the worst case, assuming no piggyback-
ing is possible and so all synchronization must be done with
messages dedicated for that purpose. In effect, this increases
the packet transmission rate by the value of SYNC packet
rate, rsync.

Since SYNC packets also require carrier sense, the ex-
pected time in carrier sense is

tcs = tcs1(rdata + rsync) (18)
where rdata is the data packet rate, and rsync is the SYNC
packet rate.

After carrier sense, a node first sends a wake-up tone to
wake up the receiver and then sends the packet. The expected
time in transmitting state is

ttx = (ttone +LdatatB)rdata +(ttone +LsynctB)rsync (19)
Compared with Equation (4), the long preamble is replaced
with a short tone, but the packet rate is increased by rsync.

Assuming all the data packets are broadcast (the worst
case), the expected time in receiving is:

trx = n(ttone +LdatatB)rdata +n(ttone +LdatatB)rsync (20)
The expected time that a node polls the channel and sleep

can still be expressed by Equations (6) and (7), respectively.
But the values of tcs, ttx and trx in (7) are replaced by Equa-
tions (18)–(20).

Substituting Equations (18)–(20) and (6)–(7) into (1), we
have the energy consumption in scheduled channel polling
with independent SYNC packets as

Esnp = Plistentcs1(rdata + rsync)

+ (Ptx +nPrx)(ttone +LdatatB)rdata
+ (Ptx +nPrx)(ttone +LsynctB)rsync
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Figure 5. Optimal SYNC period for SCP-MAC.

+ Ppolltp1/Tp
+ Psleep[1− tcs1(rdata + rsync)

− (n+1)(ttone +LdatatB)rdata
− (n+1)(ttone +LsynctB)rsync
− tp1/Tp] (21)

If we ignore the energy consumption in sleep state, the
energy consumption with scheduled channel polling changes
monotonically with the polling period Tp. The larger the Tp,
the smaller the Esnp. This is different than the asynchronous
channel polling as shown in Equation (8), since here the cost
of sending and receiving a packet does not change with Tp.
Ideally, with the periodic traffic from all neighbors, a node
should only poll the channel when there is a transmission
from a neighbor. Thus the optimal polling period for sched-
uled polling with independent SYNC packets is

T ∗
p,snp =

1
n(rdata + rsync)

(22)

Now we go back to the question “what is the optimal syn-
chronization period Tsync that minimizes Esnp?” To answer
the question, we substitute Equations (13) and (22) into (21),
and solve the following equation

dEsnp
dTsync

= 0 (23)

Thus the optimal Tsync is obtained as

T ∗
sync =

√

n(n+1)(El +Pttt +Ep)

2rdatarclkPt
(24)

where

El = Plistentcs1,

Pt = Ptx +nPrx − (n+1)Psleep,

tt = tmtone +LsynctB,

Ep = n(Ppoll −Psleep)tp1.

Once T ∗
sync is known, we can obtain the optimal tone duration

by substituting Equation (24) into (13), which is

t∗tone =
4T ∗

syncrclk
n+1 + tmtone (25)
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Figure 6. Analysis of optimal energy consumption for
LPL and SCP with and without piggyback for CC1000
(solid lines) and CC2420 (dashed).

Figures 5 shows the optimal synchronization period. The
optimal wake-up tone length is shown as the solid line in
Figure 4.

From these results we can make several observations
about how the parameters of a scheduled MAC compare to
an unscheduled one. First, Figure 5 suggests that the clock
synchronization can be quite rare, about 7× data transmis-
sion frequency during light loads (Tdata = 300s) to 16×Tdata
during heavier loads (Tdata = 50s). This observation sug-
gests that synchronization overhead can be low. Second,
clock synchronization and scheduled polling allows much
shorter preambles than are possible with asynchronous me-
dia access. Finally, when piggybacking is used, synchroniza-
tion happens “for free” on top of data, allowing much shorter
tone lengths because of careful clock synchronization. The
cost of piggybacking is also quite low, only 2 bytes per mes-
sage.

The optimal energy consumption in scheduled channel
polling with independent SYNC packets can be obtained by
substituting Equations (22)–(25) into (21).

Figure 6 compares the optimal per-node energy consump-
tion for the three cases we analyze (LPL, SCP with pig-
gybacking of synchronization, and SCP without piggyback-
ing). We consider two radio parameters: the CC1000 and
the newer CC2420 implementing 802.15.4. We first observe
that LPL consumes about 3–6 times more energy than SCP
on the CC1000 radio. This cost is due to the expense of
long preambles. We can also examine the benefits of pig-
gybacking: it reduces the energy by about half when data is
sent very rarely; the benefits are minimal when data is sent
frequently because the cost of data packets then overwhelm
control costs.

Finally, it is helpful to compare how these trends shift for
newer generations of radios such as 802.15.4. The energy
cost of SCP falls, because it takes shorter time to send data
and perform carrier sense on the high-speed radio. However,
the cost of LPL increases, because the preamble length still
must be at least the length of the polling period, regardless
of the radio speed. Since the higher-speed radio uses more
power in transmit and receive, the overall energy usage in
LPL increases. On CC2420, LPL consumes 8–15 times more
energy than SCP.

The relative improvements for LPL and SCP are in-
structive, though. As an example, consider the 100 sec-
ond interval between data packets. There SCP consumes
16% less energy (from 0.108mW to 0.091mW) than with a
CC1000, while LPL consumes 59% more (from 0.413mW
to 0.655mW). The reason for this is that 802.15.4 uses less
energy per byte, but more energy per time. SCP sends its
data quickly and is done, but LPL requires a long pream-
ble for synchronization—this duration is only determined by
the polling period, and cannot be reduced by newer, faster
radios.
4 Protocol Implementation

We have implemented SCP-MAC in TinyOS [8] over the
Mica2 motes [11] with the CC1000 radio. To provide a clean
comparison of LPL and scheduling, we implement SCP as
a layer over basic LPL. Here we describe this architecture,
how it integrates with TinyOS, and details about piggyback-
ing synchronization information. We also describe our pre-
liminary port to MicaZ motes with the CC2420 radio sup-
porting IEEE 802.15.4.
4.1 Software Architecture

We first describe the software architecture of SCP-MAC
in TinyOS. Our implementation breaks MAC functionality
into four layers (separate TinyOS components): the physi-
cal layer (PHY), a basic CSMA layer, the LPL layer, and
the SCP layer. In addition to these modules, several param-
eters and options are configurable at compile time, includ-
ing RTS/CTS handling, overhearing avoidance, and adaptive
channel polling.

The PHY is at the bottom of the stack. It handles the radio
states (sending, listening, receiving, sleeping, and warming
up). It interacts directly with the radio, sending byte-by-byte
with the Mica2, or packet-by-packet with the MicaZ. On re-
ception, if necessary, it buffers all bytes from a packet and
and passes the entire packet to the MAC when complete.
It also implements and exports interfaces for physical car-
rier sense, transmission of the wakeup tone, CRC check, and
time-stamping on transmitting and receiving of packets (to
support time synchronization). To measure performance it
can also record time spent in each radio state. The PHY mod-
ule is designed to be MAC-independent and able to support
contention-based or TDMA protocols, so it leaves backoff
and similar functions to higher layers.

Above the PHY, we first implemented a basic CSMA pro-
tocol, providing a common service to both LPL and SCP. It
includes preamble length as a parameter to packet transmis-
sion, allowing support for LPL. The CSMA layer is respon-
sible for performing carrier sense and random backoff. For
unicast traffic, it supports full RTS/CTS/DATA/ACK or sim-
ply DATA/ACK exchanges as a compile-time option. It also
includes optional retransmission and overhearing avoidance.

LPL is implemented on top of the CSMA component. Its
major purpose is to periodically poll the channel and send
the radio to sleep when there is no activity. It adjusts pream-
ble lengths on transmitted packets to ensure they intersect
with polling frequency, and coordinates concurrent polling
and transmission. To support SCP, LPL exports interfaces to
query and adjust channel polling times.



Figure 7. Channel polling process implemented in SCP-
MAC.

Scheduling is implemented above the LPL module in the
SCP module. It uses basic LPL to bootstrap schedules with
SYNC packets. Once it has synchronized polling times
with neighbor nodes, it switches to minimum preambles and
wake-up tone transmission. It coordinates packet transmis-
sion timing to ensure short-duration wake-up tones are sent
when neighbors are listening. It also implements the ran-
domized contention window before wake-up tone transmis-
sion, which combines with CSMA-level contention for the
data transmission to provide two independent contention pe-
riods. Finally, it includes a number of compile-time options,
including SYNC piggybacking on broadcast data packets.
(As future work we expect to also piggyback SYNC infor-
mation in unicast exchanges.)

All three MAC components, CSMA, LPL and SCP, export
the same interface for message transmission and reception.
An application can easily switch MAC protocols by chang-
ing its component wiring. Such implementation promotes
component reuse. This architecture also provides a common
foundation for our performance evaluation in Section 5.

4.2 Interaction with TinyOS
Although we control radio activity, we depend on TinyOS

for CPU power management. Our PHY layer coordinates
with TinyOS to allow the CPU to sleep when the radio is
not needed. Based on these components and the implemen-
tation from B-MAC we implemented the low-power channel
polling. Figure 7 shows the current draw for channel polling
captured by an oscilloscope (each x-axis tick is 1ms, each
y-axis tick is 4mA). Our implementation provides similar re-
sults as the B-MAC implementation ([17], Figure 3).

We implemented a new timer in TinyOS to add support
for dynamically adjusting timer values and asynchronous,
low-jitter triggers. The synchronized channel polling in
SCP-MAC requires to receive the timer firing events with
very low jitter to minimize synchronization errors. Our timer
implementation is based on the 8-bit hardware counter on
Mica2. This timer runs independently from the CPU, allow-
ing the CPU to sleep when no other activity is present. Be-
cause this timer uses an 8-bit counter running at 1024Hz, the
timer overflows and must wake-up the CPU four times per
second. We measured the energy cost of this event via an os-
cilloscope to confirm that its overhead is minimal compared
to the cost of polling the radio (each timer event is about
0.4% the cost of a channel poll).

4.3 Efficient Piggybacking of Synchronization
Information

To minimize the cost of synchronization we wish to avoid
explicit SYNC packets. One SCP-MAC optimization is to
piggyback synchronization information in broadcast packets.
We are able to do so with no additional to packet length. Our
normal MAC header includes 3 fields: packet type, source
address and destination address. For broadcast data packets
the destination address is normally set as the common broad-
cast address (0xFFFF) in TinyOS. However, the packet type
field also redundantly indicates that the packet is a broadcast
packet. We therefore use the type field to indicate broadcast
packets and reuse the address field to piggyback schedule in-
formation.

On the receiver side, when SCP receives a broadcast data
packet, it extracts piggybacked schedule information from
the destination field, and performs schedule synchronization.
It then replaces the destination field with the broadcast ad-
dress before it passes the packet to its upper layer. Our ap-
proach piggybacks synchronization information onto broad-
cast packets for free, and it does not affect the operation of
upper layers.

4.4 Port to IEEE 802.15.4 Radio
We have adapted SCP-MAC to run on the 802.15.4 ra-

dios found on the MicaZ hardware, in addition to it’s original
Mica2 platform with CC1000 radios. This port posed several
interesting implementation challenges. To our knowledge,
SCP-MAC is one of the first published energy-conserving
MAC protocols for this radio. (Although B-MAC works on
this radio, it currently operates without using LPL.)

There are a few important differences of the 802.15.4 ra-
dio (CC2420) to the CC1000, and some of them put signifi-
cant challenges to implement LPL and SCP. First, CC2420 is
a packet-level radio, and the microcontroller cannot get byte-
level access. This potentially affects the accuracy of time
synchronization. On the sender side, it must put a times-
tamp on the outgoing packet before it passes the packet to
the radio. On the receiver side, the earliest time to take a
timestamp is when the start symbol is detected. Such a delay
is about 0.5ms as we have measured on the oscilloscope. It
needs to be compensated for accurate synchronization.

Second, the radio automatically generates a preamble for
each packet to comply with the 802.15.4 standard. CC2420
limits the preamble length to 16 bytes with a default length
of 4 bytes. This is a strong challenge to implement the long
LPL preambles, and also forces SCP to use a normal packet
as the wakeup tone. A related problem is that the radio is
much faster (250kb/s) than the CC1000 (19.2kb/s). At this
speed, the longest packet (128B) consumes only about 4ms
of airtime. Since our timer resolution is only 1024Hz, it re-
quires some care to ensure that channel probes intersect this
very short wakeup tone. To implement long preambles in
LPL, we sequentially send multiple wakeup packets back to
back. The major issue is to ensure that a receiver does not
miss the “preamble” even if its channel polling time falls in
a gap between the wakeup packets. To reduce these gaps,
we pre-load the wakeup packet into the radio buffer before
carrier sense, then resend the same packet from the buffer
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Figure 8. Mean energy consumption (J) for each node as
traffic rate varies (assuming optimal configuration and
periodic traffic).

multiple times to make up a long preamble. This approach
eliminates the buffer loading time of each wakeup packet,
and effectively reduces the gap between two wakeup packets
to about 30µs. Since the radio generates RSSI samples by
averaging over a few recent symbols (128µs), the gap will
not cause the radio to miss the preamble directly. In addi-
tion, our carrier sense algorithm automatically extends sam-
ples in case the first sample fails to give a clear answer. Our
approach effectively allows arbitrarily long “preambles” and
wakeup tones for LPL and SCP.

Our MicaZ implementation is still very preliminary. Al-
though all layers of the stack work (PHY, CSMA, LPL, and
SCP from Section 4.1), additional work is needed to make
all layers fully functional. The LPL and SCP layers are suf-
ficient to demonstrate the concepts and collect initial data,
but significant work remains to tune the implementation and
improve robustness.
5 Experimental Evaluation

The main contributions of this paper are to highlight the
relative benefits of LPL and scheduling in energy conserva-
tion, and to propose a new MAC protocol, SCP-MAC, that
optimally combines their strengths. We have implemented
SCP-MAC to validate these contributions.

All actual MAC implementations have hundreds of spe-
cific design choices, many of which have effects on perfor-
mance. Those details could distract us from the main ques-
tion of comparing the advantages of scheduling on top of
LPL. To control these details in comparing LPL and SCP,
we use our own implementations of these protocols. This
approach ensures that both LPL and SCP use the same ba-
sic components such as CSMA, physical-layer carrier sense,
back-off, and other important parameters. In addition, it
gives us the flexibility to compare SCP and LPL at a range
of duty cycles and on both Mica2 and MicaZ hardware. (The
current B-MAC implementation, as of March 31, 2006, does
not support LPL on MicaZ.) We did validate that our ba-
sic channel polling is comparable to that in B-MAC (Sec-
tion 4.2). Detailed comparison to complete implementations
of other MACs such as B-MAC and WiseMAC is an area of
future work. We do not compare to pure schedule-based pro-
tocols, such as S-MAC and T-MAC, since prior work [17]
has shown that B-MAC outperforms these protocols.
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5.1 Optimal Setup with Periodic Traffic
We first compare the energy performance of SCP and

LPL under optimal configuration with completely periodic,
known traffic. With static traffic loads we can optimize each
for maximum energy conservation. We use our implementa-
tion to validate the analysis leading to Figure 6. To focus on
this goal, we disabled advanced features in SCP-MAC, such
as adaptive channel polling and overhearing avoidance.

MAC parameters vary based on network size and data
rate. For this test we place 10 nodes in a single hop net-
work. Each node periodically generates a 40B message (not
including preamble) and broadcasts it to the network. For
this test we consider very light traffic loads typical for very
long-lived sensor networks: we vary each node’s message
generation interval from 50–300s. (Thus the aggregate data
rate in the network is 1 message every 5–30s.)

For each static traffic load, we find out the optimal polling
period of LPL and SCP from Equations (10) and (17). We
run each experiment for 5 message periods, generating 50
total messages over each experiment. We report mean values
of energy consumption per node. In this section we do not
report standard deviations because they were small.

A control node begins and ends the experiment by broad-
casting control packets to all nodes. We measure the energy
consumption at each node by recording (in software) the time
spent by the radio at different states. (We do not explicitly
model CPU energy, but when the radio is off, the CPU is also
in sleep mode except for timer maintenance, and we previ-
ously demonstrated that timer costs are negligible.) At the
end of the experiment we collect this information from all
nodes to a central measurement point and compute energy
consumed by the radio.

Figure 8 shows the mean energy consumption of each
node to send and receive all the messages. The energy con-
sumption for SCP is almost constant at all rates, as the cost of
sending each packet is about same. With broadcast traffic, all
explicit SYNC packets are suppressed due to piggybacking.
For LPL, the energy consumption increases at slower rates,
since the optimal polling interval is longer (see Figure 4),
therefore the cost on longer preambles is larger. In addition,
the absolute cost of SCP is much lower than LPL: we can see
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Figure 10. Energy consumptions on heavy traffic load
with very low duty cycle configurations.

that LPL requires 3–6 times more energy than SCP to send
the same amount of data. This savings is because scheduling
allows a much shorter wakeup tone on each data message.

We can also express the energy in terms of rate: Joules per
second or Watts, as shown in Figure 9. (Figure 8 considered
absolute energy required to send a fixed amount of data, per
experiment, while Figure 9 normalizes this by experiment
duration.) We expect slower traffic rates correspond to lower
rates of energy consumption. Our experimental results indi-
cate that LPL requires 3–6 times more power than SCP when
both systems are optimized for periodic traffic. In addition,
Figure 9 also shows our analytic results from Section 3.3.2,
to compare analysis with experiment. We can see that both
SCP and LPL experimental results very closely match their
analytical results.

Figure 9 also shows preliminary experimental results for
the MicaZ radio (CC2420). These values show means of
only 3 runs for LPL and 5 for SCP. Again, the trends match
analysis. More importantly, comparing the CC1000 costs to
the CC2420 costs, the experimental results confirm that the
energy consumption of LPL increases on the faster radio,
while that of SCP decreases.

5.2 Performance with Unanticipated Traffic
In the prior section we consider optimal conditions for

LPL and SCP with a completely known, periodic load. In
many applications the traffic load is less predictable. For
example, in tracking or monitoring applications such as fire
detection in forests, there are long stretches of operation with
no events, but then a detection causes a flurry of activity and
very bursty traffic. Such a network must be optimized for the
common case when nothing happens, yet it must also be able
to handle bursty traffic when it occurs.

To evaluate these scenarios we next consider MAC per-
formance when operating outside its optimal regime. We
tune LPL and SCP for a 0.3% duty cycle, polling every sec-
ond. Since the polling interval is the same for both MACs,
energy draw without traffic is almost identical. (SCP re-
quires slightly higher energy for schedule synchronization,
but as discussed in Section 3.3.1, that cost is only 2% over
polling.) Again, we have disabled adaptive polling and over-
hearing avoidance in SCP-MAC. All other parameters match
our prior experiment.
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Figure 11. Throughput on heavy traffic load with very
low duty cycle configurations.

To simulate the detection of a common event by multi-
ple sensors, we trigger all nodes to enter “busy” mode at
the same time. When busy, each node generates 20 100B-
long messages, which are all broadcast messages. It sends as
rapidly as possible, starting to send the next as soon as the
prior message is transmitted. This burst of traffic exercises
the network at an operating point different from its optimal.

To vary the degree of offered load, we vary the number
of nodes in the network that start sending from 1 to 10. This
traffic causes severe contention as the number of transmit-
ting nodes increases in the network. Figure 10 shows the
average energy consumption of each node as the number of
transmitting nodes increases. We can see that at this heavy
traffic, LPL consumes about 8 times more energy than SCP
to transmit an equal amount of data. The main reason is the
high cost of LPL preambles. When optimized for low duty
cycle with a 1s polling interval, each packet sent by LPL in-
cludes a 1s preamble. SCP avoids this overhead.

Of course, one could extend LPL to shifting to shorter
preambles for busy periods (as evaluated in [17] Section 6.3).
However such a shift must be done conservatively to ensure
all nodes agree to the transition—effectively a form of syn-
chronization. B-MAC suggests that applications explicitly
implement this optimization when appropriate, but in prac-
tice such optimization seems rarely used. While memory is
dear in embedded processors, as they become more capable
(while the expertise of programmers remains dear), provid-
ing greater capability in the basic protocol seems increas-
ingly important.

With the same experiment, we have also quantified the
benefits of two-phase contention in SCP-MAC by comparing
its throughput with LPL. As described in Section 2, SCP uses
two contention windows, one for the wakeup tone and the
second for the data. Only nodes who successfully send tones
will enter the second contention phase for sending data. LPL
uses a single contention window of 32 slots here. To keep the
total time spent contending identical, we divide the 32 slots
into two 16-slot windows in SCP-MAC, rather than its usual
8 and 16-slot default contention window sizes.

As the offered load increases the contention algorithms
of each protocol is stressed. With 10 transmitters, there is
roughly a one-third chance of two nodes selecting the same
slot and therefore colliding.
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Figure 12. Mean energy consumption per node for multi-
hop experiments (20 packets over 9 hops).

The two-phase contention window reduces overall colli-
sions because even though there is a 10/16 (62%) chance
of collision during the wakeup tone, collisions there do not
matter since even multiple concurrent tones succeed in in-
dicating the presence of traffic. Only nodes that succeed in
the wakeup contention window will compete in the data con-
tention period, thus it has only a 10/162 (4%) effective col-
lision rate.

We see the result of the more effective two-phase con-
tention in Figure 11 as minimal reductions in SCP through-
put as the number of transmitting nodes (and hence con-
tention) increases. By comparison, LPL shows significantly
lower throughput.
5.3 Performance in a Multi-hop Network

In this section, we evaluate the energy and latency per-
formance of SCP-MAC in a multi-hop network. Here we
consider varying traffic loads. In this case, there is no single
best operating point for the MACs. Users often configure the
MAC according to application requirements, perhaps based
on how much latency the application can tolerate, or on the
target operational lifetime. Here we configure the channel
polling period to 1s for both LPL and SCP, providing a duty
cycle of about 0.3%.

In this test we use a 9-hop linear network with 10 nodes.
Since this is a multi-hop network we test SCP both with and
without adaptive channel polling. Adaptive channel polling
is designed to reduce latency with bursty traffic by adapting
to streaming over multiple hops.

Data is sent from one edge of the network to the other.
The source generates data with an inter-packet interval vary-
ing from 0–10s. Each test includes 20 packets sent at this
rate, each 50B long. Nodes forward data long the line, with
the most distant node receiving the packets. All packets
are sent as unicast without RTS/CTS. We enable acknowl-
edgments with up to three retries. Both LPL and SCP use
header-based overhearing avoidance (Section 2.3.2), imple-
mented in the CSMA module.

Figure 12 shows the mean energy consumption on each
node for the entire experiment (sending 20 packets from the
source to the sink). SCP without adaptive polling is labeled
as SCP-basic, and SCP with adaptive polling is referred to as
SCP-full. The results show that LPL consumes 20–40 times
more energy than the full SCP-MAC. This difference is due
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Figure 13. Mean packet latency over 9 hops at the heavi-
est load.

to LPL’s long preambles, both on reception of packets at each
hop, and also due to reception by overhearers. Recall that,
to decide that a packet is not relevant to a receiver, it must
receive at least the header, including the preamble. Thus the
cost of long preambles must be paid by not only intended
recipients, but also all nodes within radio range.

A second cost of both SCP and LPL is false wakeups.
When probing the channel, activity multiple hops away may
be sufficient to positively indicate an active channel, even
though the packet is not strong enough to be correctly re-
ceived. While this cost must be paid by any MAC using
channel polling, longer transmission times (due to pream-
bles) in LPL mean that false wakeups occur more often in
LPL relative to SCP. In addition, when a false wakeup hap-
pens, a node has to stay awake to receive the whole preamble
and the erroneous packet. Therefore, LPL has a higher cost
on each false wakeup than SCP.

Now we look at the latency of LPL and SCP over the
9-hop network. When traffic is light, we can expect that
LPL and SCP have similar latency, as a packet can only go
through one hop during one polling interval. We are more
interested in verifying the performance of adaptive channel
polling in the full SCP when heavy traffic occurs.

Figure 13 show the mean latency on each packet when
the source generates the 20 packets at its fastest rate, sending
the next immediately after the previous is done. The results
show that the basic SCP and LPL have comparable latency.
Essentially, there is a delay of 1s or more at each hop due
to the fixed polling interval. In contrast, SCP with adaptive
channel polling has a much lower latency—it is more than 7
times faster than LPL and the basic SCP in this test. Adap-
tive polling not only enables adjacent nodes to send multi-
ple packets in one polling interval, it also enables multi-hop
streaming. Essentially all nodes switch to high duty cycle
polling after the first packet traverses the path.

Note that a similar result would be possible in LPL, pro-
vided the application was aware of this problem and took
specific steps to control the preamble length (as described
in [17] Section 6.3) and the latency. While in some cases the
application designers may be able to do so, in many cases
they may prefer to leave this detail to be done once in the
MAC and selected automatically. In fact, Polastre et al. ar-
gue for modular system-level optimizations with SP [18].



6 Related Work
Energy-efficient MAC protocols have been a very active

research area in wireless sensor networks. Existing work
mainly focuses on two directions: TDMA and contention-
based protocols. Two classes of contention-based protocols
are those that add schedules and those that employ channel
sampling. All protocols control radio duty cycle to avoid en-
ergy waste in idle listening; some also take approaches to
avoid overhearing or add other optimizations.

Scheduled, contention-based protocols coordinate con-
tention periods by synchronizing the wakeup schedules of
nodes. The power-save mode in IEEE 802.11 [16] synchro-
nizes wakeup times of nodes in a single-hop network. S-
MAC [26, 27] developed a fully distributed algorithm to syn-
chronize the wakeup schedules of nodes in a multi-hop net-
work, and enables nodes to run at duty cycles of 1–10%.
T-MAC [24] improves S-MAC by reducing the wakeup du-
ration controlled by an adaptive timer. IEEE 802.15.4 pro-
poses several power-saving techniques for when centralized
controllers are present, but identifies synchronization in peer
networks as out of scope of the standard. Polastre et al. pro-
posed a simple synchronization scheme for 802.15.4 but did
not attempt to optimize its performance [18].

The major advantage of scheduling is that a sender knows
a receiver’s wakeup time and thus transmits efficiently. How-
ever, the cost of listening for an entire contention interval is
about ten times the cost of polling a channel for activity, thus
the overhead in lightly used networks is higher than LPL-
based approaches [17]. Moreover, the long listen interval
limits these protocols to duty cycles of a few percent or more.
Another potential drawback is the need to maintain sched-
ules. This paper derives optimal parameters for scheduling
under fixed traffic load, and that schedule coordination can
be much less frequent than that is done currently.

Low-power listening is an approach where the channel is
sampled very briefly for presence of activity rather than for
specific data. Existing LPL protocols sample the channel
in an uncoordinated fashion. STEM [21] explored the idea
with a separate low-power paging channel. Hill [7] and El-
Hoiydi [2] independently developed the approach of sending
the wakeup signal by simply adding preambles in front of
each transmitted packet. B-MAC [17] implemented LPL in
TinyOS with a well-defined interface for applications to per-
form fine-grained control over the MAC. It also developed a
new algorithm for clear channel assessment.

The major advantage of LPL is that it minimizes the over-
head of listening time when there is no traffic. Since the
channel polling cost is one-tenth the cost of listening for a
contention interval in current scheduled protocols, LPL sig-
nificantly reduces energy costs at light traffic loads. In ad-
dition, lacking the need to synchronize simplifies the LPL
implementation and reduces code and memory size. How-
ever, there are a few major drawbacks of the above LPL al-
gorithms. First, long preambles significantly increases the
burden on transmitters. Such cost prevents the MAC from
running at duty cycles less than a few percent, since at ultra-
low duty cycles the send cost becomes prohibitive. Second,
while LPL can be optimized for known, periodic traffic, its
performance may significantly degrade at bursty and varying

traffic loads. Finally, the simplicity of these approaches may
be offset by additional complexity in applications to control
their parameters.

Several groups have improved specific aspects of LPL.
WiseMAC [3] can reduce the preamble length after an ini-
tial unicast packet with a long preamble. The receiver pig-
gybacks its next polling time in the ACK packet, allowing
the sender to send the next packet with a short preamble.
This improvement has a few limitations. When a node sends
broadcast packets, it has to use long preambles, even if it
knows the polling times of all its neighbors. The reason is
that nodes asynchronously poll the channel, and only long
preambles ensure that all nodes can capture the packets. Due
to clock drift, a node can only send the second packet with
a short preamble if it closely follows the first one. A similar
optimization is possible in B-MAC [17] for messages con-
sisting of a sequence of packets, with similar limitations.

SP proposes a scheme for a node to piggyback its polling
schedule when it sends a data packet with the long LPL
preamble [18]. This allows neighbors to send back packets
with short preambles at the node’s next polling time. This
idea is similar to WiseMAC, and has the same advantages
and disadvantages as WiseMAC.

Uncertainty-driven B-MAC (UBMAC) [4] further re-
duces the long preambles in B-MAC by precisely estimat-
ing the clock drift between packet transmissions. Unfortu-
nately, UBMAC’s use of fine-grain time synchronization re-
quires high-resolution timers, limiting the ability of the CPU
to sleep and trading radio savings for CPU cost. In addi-
tion, since neighbors are not synchronized, broadcast still
requires long preambles. We instead demonstrate that rela-
tively coarse grain timers are sufficient, and provide a lower
bound on energy consumption and optimal parameters based
on traffic load and neighborhood size.

Halkes et al. studied the benefit of directly utilizing LPL
in the listen intervals of S-MAC and T-MAC [5]. While this
work demonstrated such benefits with simulation, it did not
consider an optimal way to combine scheduling and LPL,
and did not evaluate its scheme with real systems.

Our work differs from each of the above schemes to im-
prove LPL in that we formally synchronize and maintain
schedules, so that long preambles can be eliminated for all
transmissions. In addition, we have several components that
are completely novel, including quantifying the optimal per-
formance analytically and evaluation of a working system
with different traffic models. Our work quantitatively an-
swers the fundamental question: how much benefit can be
achieved when scheduling is added on top of LPL?

In addition to energy conservation, there has been work
on reducing multi-hop latency. S-MAC uses RTS/CTS to
inform the next-hop node of possible transmission. Theoret-
ically it only reduces latency at every two hops, since CTS
only reaches the next hop during the normal listen interval.
T-MAC explores the similar idea with future-RTS packets.
Other algorithms tries to explicitly stagger the wakeup time
along a transmission path, such as D-MAC [14] and the fast
path algorithm [13]. These protocols requires the help from
the routing layer to obtain path information, so that they can
precisely skew the wakeup times of nodes on the path. In



comparison, the adaptive channel polling in this paper en-
ables multi-hop streaming at every hop, and it does not re-
quire any explicit signaling.

The second class of MAC protocols are based on TDMA.
Traditional TDMA protocols often requires centralized con-
trol. For example, in LEACH [6] and BMA [12], nodes form
clusters and cluster heads schedule transmissions. To ex-
tend the flexibility of TDMA, some distributed slot assign-
ment schemes have been proposed, such as LMAC [25] and
TRAMA [19]. Sohrabi and Pottie also proposed a proto-
col for distributed assignment of TDMA schedules [23]. Z-
MAC [20] proposed a hybrid protocol to combine TDMA
with CSMA. Z-MAC assigns each node a slot, but other
nodes can borrow the slot (with contention) if its owner
has no data to send. Z-MAC can significantly improves the
throughput of B-MAC. However, its improvement on energy
conservation is rather limited.
7 Conclusions

This paper proposes a new MAC protocol based on sched-
uled channel polling. By optimally combining scheduling
and channel polling, it is able to operate sensor networks at
duty cycles of 0.1% and lower. Through theoretical analysis
we have derived a lower bound on energy consumption with
periodic traffic, and found the best operating points for LPL
and SCP. SCP-MAC can robustly handle bursty and vary-
ing traffic loads, and adaptive channel polling significantly
reduces latency by enabling multi-hop streaming.

We have implemented SCP-MAC in TinyOS over both
Mica2 and MicaZ motes. Our preliminary experiments show
that SCP is able to achieve better energy performance than
LPL by a factor of 3–6 with periodic traffic and more than 10
when traffic is bursty or varying. The relative performance
of SCP improves on newer, faster radios like the CC2420,
while that of LPL degrades.

Potential future work includes more thorough evalua-
tion of SCP-MAC performance with different applications.
Specifically, we plan to evaluate its scalability to networks
size and density, its robustness under various network and
traffic conditions, and to provide more complete compar-
isons with other MAC protocols. An additional potential
benefit of scheduling to explore is how it can improve spatial
reuse.
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