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Abstract—This paper develops parametric methods to detect
network anomalies using only aggregate traffic statistics, in
contrast to other works requiring flow separation, even when
the anomaly is a small fraction of the total traffic. By adopting
simple statistical models for anomalous and background traffic
in the time-domain, one can estimate model parameters in real-
time, thus obviating the need for a long training phase or manual
parameter tuning. The proposed bivariate Parametric Detection
Mechanism (bPDM) uses a sequential probability ratio test,
allowing for control over the false positive rate while examining
the trade-off between detection time and the strength of an
anomaly. Additionally, it uses both traffic-rate and packet-size
statistics, yielding a bivariate model that eliminates most false
positives. The method is analyzed using the bitrate SNR metric,
which is shown to be an effective metric for anomaly detection.
The performance of the bPDM is evaluated in three ways:
first, synthetically-generated traffic provides for a controlled
comparison of detection time as a function of the anomalous level
of traffic. Second, the approach is shown to be able to detect
controlled artificial attacks over the USC campus network in
varying real traffic mixes. Third, the proposed algorithm achieves
rapid detection of real denial-of-service attacks as determined by
the replay of previously captured network traces. The method
developed in this paper is able to detect all attacks in these
scenarios in a few seconds or less.

Index Terms—Distributed denial of service (DDoS), anomaly
detection, aggregate traffic, parametric models

|. INTRODUCTION

Security in computer networks is an extremely active and
broad area of research, as networks of al sizes are targeted
daily by attackers seeking to disrupt or disable network
traffic. A successful denial-of-service attack degrades network
performance, resulting in losses of several millions of dol-
lars [14]. Development of methods to counter these and other
threats is thus of high interest. Current countermeasures under
development focus on detection of anomalies and intrusions,
their prevention, or a combination of both.

In this paper, we present an anomaly detection method that
profiles normal traffic; a traffic-rate shift and a change in
the distribution of packet sizes from the nominal condition
is flagged as an anomaly. Our anomaly detection problem is
posed as a statistical hypothesis test. We develop parametric
statistical models for typical and anomalous traffic. Our de-
tection method does not need, or attempt, to model the full
traffic patterns, instead it captures key, gross features of the
traffic to enable informed decisions about changes in traffic.
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We underscore that our model does not capture all aspects of
genera Internet traffic. However, we show that, in spite of this
known mismatch, our model effectively captures changes in
the traffic which are associated with network anomalies. Our
god is to see whether these simple, approximate statistical
models can yield detection methods of high performance by
modeling sufficient, salient features of the traffic.

Our approach has three key features. First, our model for
anomaly detection operates on aggregate traffic, without flow-
separation or deep-packet inspection. Both of these charac-
teristics are essential for a practical and deployable anomaly
detection system. Flow separation, per-flow anomaly detection,
and deep-packet inspection are difficult or impossible for most
backbone routers, which have tens to hundreds of thousands of
active flows per minute [8]. Since our approach only considers
packet headers and timing information, it is robust to traffic
concealment via encryption or tunneling. While it is true that
the source and destination |P addresses of each packet are
always available at the routers, port numbers are not available
without flow-separation. Some prior work [24], [21] uses
features related to the source and destination port numbers
and so will not be able to detect anomalies in aggregate or
VPN tunneled traffic. Note that operating on aggregate traffic
is sufficient to detect anomalies, we assume that responses
such as filtering can involve heavier weight, per-flow analysis.

Second, unlike prior anomaly detection approaches, our
method automates training and does not require hand-tuned
or hard-coded parameters. Instead, key algorithmic parameters
are automatically calculated based on the underlying model
parameters, or estimates thereof, which evolve as a function
of network traffic. For instance, the update window size,
an agorithmic parameter which is described in Section 1V,
is computed based on the average sample number (ASN)
function. The latter is a function of the underlying model
parameters, and is derived in Appendix B. Our automation
significantly eases deployment and operation in networks
where traffic and anomalies inevitably evolve over time.

Third, we employ both the packet rate and the sample
entropy of the packet-size distribution statistics to ensure
robustness against false positives, thus overcoming one of the
traditional drawbacks of anomaly detection methods. Combin-
ing both these features ensures that the detection of an anomaly
is declared only when an increase in the traffic volume is
accompanied by a change in the packet-size distribution. Thus,
an increase in the background traffic alone will usually not be
misidentified as an anomaly. We show that our proposed detec-
tion method successfully detects attacks with these features.
Several real-world network phenomena have these features:
al rate-based denial-of-service (DoS) attacks, including TCP
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SYN attacks, ping attacks, and service request attacks that
use fixed-sized requests and act upon DNS or web servers.
Since an adversary may try to conceal fixed-size requests, we
show that attacks from a smart attacker that attempts to vary
reguest size (Section V-E) are also successfully detected by the
bPDM. Finally, since the bPDM ignores packet addresses and
contents, it can detect attacks with spoofed source addresses,
and attacks in virtual private networks or with encrypted traffic
in the common case that encryption does not systematically
ater packet sizes.

The contribution of our paper is to develop the bivariate
Parametric Detection Mechanism (bPDM), which is com-
pletely passive, incurs no additional network overhead, and op-
erates on aggregate traffic. Furthermore, this work suggests it
is feasible to detect anomalies and attacks based on aggregate
traffic at network edges, and not just near attack victims. Our
detection method employs the sequential probability ratio test
(SPRT) [39], a time-adaptive detection technique, for the two
aggregate traffic features we consider: packet rate and packet
size. Combining the SPRTs for these two features ensures the
bPDM is robust against false positives, yet maintains rapid
detection capabilities. We validate the bPDM and quantify the
method's effectiveness on controlled synthetic traces, emul ated
Iperf attacks, and real network attacks. We introduce the
bitrate SNR, which is found to be an effective metric for
evaluation and superior to the previously proposed packet SNR
metric [17]. Our agorithm aso performs comparably to or
better than a selected set of existing detection schemes, while
mitigating key drawbacks via the features described above.

Il. RELATED WORK

In this section, we review the prior art in anomaly and attack
detection relevant to our work. The methods described can
be broadly classified as techniques requiring flow-separation,
spectral or frequency-domain methods, and non-parametric
change-point methods.

Methods requiring flow-separation: The techniques
in [13], [15], [19], [24], [25], [27], [29], [31], [38] and [40]
use certain flow-separated traffic parameters, e.g. source and
destination | P addresses and port numbers, to detect an attack.
Flow-separated parameters are also employed for fast portscan
detection [21], which uses an SPRT to develop an online
detection agorithm.

These methods use header information and flow-separated
features to detect anomalies and attacks, and in comparison
to methods that classify outliers based only on traffic vol-
ume [33], [34], are more far more accurate while also yielding
a lower probability of false positives. On the other hand,
the main disadvantages of flow-separation are its inherent
complexity at the router and its inability to process encrypted
traffic. Our work operates on aggregate traffic, using the traffic
volume (specifically, the packet rate) to detect attacks, with
the improvement that incorporation of the entropy of the
packet size, which does not require flow-separation, reduces
the probability of false positives and allows us to discriminate
between true attacks and non-malicious changes in traffic.

Non-parametric methods: This class of methods does not
assume an underlying model, but rather tailors its detection

mechanism to the data. A variety of non-parametric methods
employ CUSUM to implement change-point detection. The
CUSUM algorithm [7] involves the calculation of a cumulative
sum of the weighted observations. When this sum exceeds
a certain threshold value, a change in value is declared.
Prior work has focused on detecting SYN attacks using both
aggregate traffic [33] and flow-separated traffic [40]. The
work of [36] focuses on anomaly detection using features and
statistics of the IP layer. Kalman filtering to detect anomalies
using IP address filtered traffic is considered in [30]. A key
drawback of the CUSUM agorithm is that the intensity of the
anomaly needs to be known a priori; in most cases, the solu-
tion to this problem requires empirically-designed thresholds
that necessitate significant human effort before the scheme
is initially deployed. In contrast, our detection mechanism
automatically calculates key algorithmic parameters based on
the underlying model.

Spectral methods: Spectral techniques have been widely
used in many other fields to distinguish hidden patterns and
trends from a noisy background. In the past few years,
researchers have begun to apply these methods to analyze net-
work traffic. Spectrum-based approaches have been used to de-
tect features with near-periodic signatures, such as bottlenecks
in the link layer, the effects of the TCP windowing mechanism
and DoS attacks [17], and traffic anomalies [6]. They have also
been employed for attack fingerprinting [18]. The work in [9]
used the energy spectrum to distinguish between reduction-
of-quality flows and legitimate TCP flows in a distributed
setting, and using the sequential SPRT framework. However,
the detection accuracy of spectra methods degrades as the
periodicitiesin the attack weaken, and most methods are more
computationally expensive than corresponding time-domain
techniques, especially when high speed aggregate traffic must
be analyzed.

Our previous work [34] developed the parametric Modeled
Attack Detector (MAD), which employed Poisson and shifted
Poisson models that could rapidly detect low-rate attacks but
required a dedicated training phase to learn the background
traffic parameters, and which was susceptible to a few false
positives. Furthermore, the one-parameter Poisson model did
not alow for continuous updating of the background param-
eters, and suffered from overdispersion and underdispersion,
given rea network data. The bPDM discussed in this paper
employs richer models that circumvent the need for a training
phase. Combining the packet-rate and packet-size distributions
nearly eliminates false positives. We present the bPDM in Sec-
tion 1V, but first provide an overview of sequential detection,
which is the underlying framework of our anomaly detection
method.

I1l. BACKGROUND IN SEQUENTIAL DETECTION METHODS

Hypothesis testing exploits prior knowledge of statistical
descriptions of data in order to decide among a set of can-
didate populations [23]. In our problem setup, we have two
hypotheses:

Hy - No anomaly,
and Hj: Presence of an anomaly in traffic.
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Fig. 1. Depiction of the sequential probability ratio test (SPRT).

The conditional probability density when hypothesis H; istrue
is denoted p(z|H;) for i = 0, 1. We assume independent and
identically distributed observations {z,k = 1,2,...} which
are drawn from one of the two probability distributions.

Given the two hypotheses and thus two decision choices,
there are four possible scenarios, of which we focus on two.
A false positive (FP), or false alarm, is declared when the
algorithm selects H; when Hy is in fact true; choosing Hy
even though H, is true is termed a false negative (FN). The
probabilities of these two scenarios,

PriHi|Ho] and S = Pen = PriHolH1], (1)

are used to specify the performance criterion of the sequential
detection test. The bPDM employs the sequential probability
ratio test (SPRT) [39] in order to quickly detect an attack.
The likelihood ratio is used to implement the SPRT. Given
N independent and identically distributed observations x =

a=Pp=

{z1,...,xn}, the likelihood ratio L (x) is defined as
p(ak|Hy) p(ak|Hy)
Iy a(z1,. . zN1),
H p(wx|Ho) p(ax|Ho) N o o)
2

where the second equality illustrates that the likelihood ratio
can be easily updated given a new observation.

Given anew observation, the likelihood ratio is compared to
two thresholds A and B which correspond to choosing H or
Hy, respectively. Figure 1 depicts a redization of the SPRT
wherein if A < Ly(z1,...,2y) < B, the sequentia test
continues, and an additional observation x 1 is taken as is
the case with L, in Figure 1. But if Ly (z1,...,2x) > B or
Ly(z1,...,2n) < A, then the test terminates and we choose
hypothesis H; if the former, or hypothesis Hy, if the latter, is
true. In Figure 1, we see that L3 < A, and thus H, is chosen;
then, the sequential test and likelihood ratio are reset since an
anomaly was not detected, and the SPRT continues. When the
likelihood ratio crosses either threshold, at say sample m, the
sequential test is reset by computing the updated likelihood
ratio as L(xm,41) instead of L(x1,...,Zm, Tms1). We then
seethat Lg > B, so H; is chosen, indicating that an anomaly
has been detected. We can either stop the test now (as shown

in Figure 1), or reset the SPRT and see whether the likelihood
ratio crosses threshold B again, potentialy confirming the
presence of an anomaly. This latter methodology is employed
in the design of our detection mechanism, detailed in Section
V.

Ideally, the boundaries A and B are selected to minimize
the probability of error for al possible values of V; however
this formulation of the problem is generally intractable and
thus we use Wald's approximations [39] to approximate

B=(1-p)/a and A=p/(1-a) )

which are functions of the required detection performance
parameters from (1). We observe that the approximate values
of A and B are independent of p(xz|H;). The number of
samples required for a particular test to make a decision is
a random number. Thus, we examine the average value of this
random number, referred to as the average sample number
(ASN) function, to measure the efficacy of the SPRT. For the
binary hypothesis test, the ASN function is denoted E; (V) for
hypothesis H;, and is derived for our models in Appendix B.

IV. THE PARAMETRIC MODEL

In this section, we derive the SPRTs for the packet-rate
and packet-size features that are the primary components of
the bivariate Parametric Detection Mechanism (bPDM). The
bPDM operates on a unidirectional sampled time-series of
aggregate network traffic. The parametric models employed
to derive the bPDM are not representative of general Internet
traffic, but rather are chosen to differentiate between the
presence-of-anomaly and background-only hypotheses.

A classical SPRT assumes known and constant model
parameters. In reality, such parameter values are not aways
available, and thus we consider a generalized likelihood ratio
test (GLRT) [37], defined as

N ~
i1 P(xr, ©o|Ho)

where we use the notation p(zy, (:)Z-|HZ-) to denote replacing
the true values of the model parameters ©; of the conditional
probability density p(zx|H;) with their maximum likelihood
(ML) estimates ©,. To form the generalized SPRT, the esti-
mated parameters are substituted into the test form as previ-
ously described. In particular, we continue taking observations
if A < Gn(x) < B, and make a decision, choosing H
or Hy if Gy(x) < A or Gy(x) > B, respectively. When
implementing the GLRT, the model parameters associated
with either or both densities may be estimated. We adopt the
notation 0; = 6| H; to denote the estimate 6 of the parameter ¢
when H; istrue. Herein, for both the presence-of-anomaly and
background-only hypotheses, the respective model parameters
are estimated using the observations in the SPRTs for both our
features.

In particular, the model parameters are updated using non-
overlapping windows. We initially use fixed-size windows
for both hypotheses; a 1-second sliding window ensures that
enough data is being collected to derive good estimates of the
background and attack parameters, denoted M ;i = Ninit =

Gn(x) = (4)



1 second. The offset window employed to estimate the H
parameters uses more recent samples, and thus the change in
the model parameters can be detected as evidenced in Section
V. Whenever the SPRT crosses the lower threshold, confirming
the absence of an attack, the ASN function (see Appendix B)
is computed under hypothesis H, and the update window size
is reset to

M = min {EO (N)7 Minit} . (5)

Similarly, when an attack is detected by the bPDM, the length
of the update window for the H, parameters is reset to

N =min {El (N)7 Ninit} s (6)

where the first argument of the min functionsin (5) and (6) are
the ASN functions under hypotheses H and H, respectively,
and have been derived in Appendix B. We now derive the
SPRTSs for both the packet-rate and packet-size features, and
then describe the bPDM algorithm.

A. The SPRT for the Packet-Rate

The null hypothesis Hg, which represents only background
traffic, is modeled using the generalized Poisson distribution
(GPD), whose probability density function (pdf) is given by

p(z|Ho) = 0(0 + \x)*Le 0777/, 7

where x € {0,1,...} is the number of packet arrivals in a
fixed time interval and {0, A} are the parameters of the GPD.
We model an anomaly or attack stream as a constant-rate
source with deterministic, unknown rate . Our work focuses
on detecting a set of commonly-occurring attacks, that is a
class of attacks such as DoS attacks which use fixed-si ze attack
packets [14]. Since DoS attacks are also characterized by the
attacker flooding the network, this set of attacks corresponds
to the constant-rate attack traffic assumption made above.
However, as evidenced in Section V-E, the bPDM can aso
quickly and accurately detect smart attacks, which employ
varying packet sizes. A random variable Y drawn from the
anomalous distribution is specified as

Y=r+X, (8)

where X is drawn from the GPD distribution that models the
background only hypothesis. For the anomaly hypothesis, we
assume that the constant-rate anomaly follows the pdf of the
shifted GPD (SGPD)? given by

plalHy) = 00 + Mz — )" e 2 ) — )t (9)

where z € {r,r +1,...} is the number of packet arrivals in
a fixed time interval and {0, \,r} are the parameters of the
sGPD. Note that in the case where an anomaly is present,
r is the minimum number of packet arrivals in a fixed time
interval. For the packet-rate SPRT, under both the GPD and
SGPD, z; is thus the number of packet arrivals in the interval
[i i“), given the sampling rate p.

P’ p

1In our previous work [34], we modeled the presence of an anomaly using
the simpler shifted Poisson distribution. The richer, generalized Poisson model
is employed herein to circumvent the need for a dedicated training phase, and
to alow all the model parameters to be estimated online.

The SPRT, in the case of the packet-rate feature, requires
us to compare the generalized likelihood ratio

GN(X) _ ﬂ p(xka 913 )\}’ f'|H1)
i1 Pk, 00, Ao|Ho)
to the threshold given in (3). Note that the densities specified
in (10) are the GPD (7) and sGPD (9) with parameter estimates
used in lieu of known parameter values. We now derive the
estimator structures for the parameters of the GPD and sGPD
for the background-only and presence-of-anomaly hypotheses,
respectively.
The mean and variance of the GPD are given as [10]

p=01—-X""1 ad o?=06(1-))"3, (11)

and are used to derive the moment estimators of the parameters
# and X\ under the H, hypothesis, which are given as [10]

_3 -
€T IS | T
5—2 and )\0:1— 8—2,

where T and s2 are the sample mean and sample variance,
respectively, of an M -sample window. We note that the sample
mean and sample variance are computed using their unbiased

estimators? given by
1 —\2

M
E:M;xz and %= 2

respectively. Although both moment and ML estimators are
available (see [10] for the ML estimators) in the case of
the null hypothesis, we use the former since they are more
computationally efficient than the latter.

For the sGPD, the moment estimators of the three model pa-
rameters (61, A1, ) require computing third- and fourth-order
moments which we observed to required an order of magnitude
greater number of samples to compute than the average time
to detection. Thus, we present an aternative, computationally
lightweight, estimation procedure for the model parameters
under the H, hypothesis.

From the construction of our anomaly model in (8), we
would expect that an unbiased estimate of » can be obtained
by simply using the difference in the average traffic levels in
the anomal ous and background-only cases. Furthermore, since
we are deriving moment estimators in a SPRT framework, we
employ the estimator

max{t—éo/(l — Xo) +7),

(10)

0o = (12)

M

(13)

f' pr—
min{azl, ey My T M 415 - - ,:C]\,1+N}} (14)

where , and )\, are as defined in (12). The estimate 7 is
computed using both the N-sample sliding window and the
M-sample growing window. Since Y — r is a generalized-
Poisson-distributed random variable, the other two sGPD
model parameters are estimated using the GPD estimator
structures in (12) and are given as

A [z —7)3 A T—7
0 = 7(1: 27’) and A\ =1-— (E 27“
S S

2An estimator is defined as unbiased if the estimator’'s expected value is
equal to the true value of the parameter being estimated, i.e. E{} = 6 [23].

(15



where # is the estimate given in (14), and 7 and s? are
computed via (13) using the N-sample sliding window. Note
that the min{-} function in (14) is a constraint due to the fact
that the support of the sGPD is over {r,r + 1,7 + 2,...}.
We further note that the derived estimators (6, A;, #) provide
accurate estimates of the sGPD parameters, and are consistent®
(refer to Appendix D of [35]).

Employing the GPD/sGPD hypothesis test lets us detect a
change in the mean of the traffic, but an increase in the mean
does not always occur due to a malicious anomaly or attack.
Flash crowds, which might occur due to the Digg or SlashDot
effect, are not malicious traffic [20], but would be tagged as
anomalous.

B. Incorporating the Packet-Sze SPRT

The packet-size distribution of normal Internet traffic has
been characterized in [28] as mostly bimodal at 40 bytes
and 1500 bytes (with 40% and 20% of packets, respectively).
An examination of our background trace data, which include
Ethernet and VLAN headers, validates this model but with
differing means. The background traffic in our traces can also
be characterized as mostly bimodal, with means at 68 bytes
and 1518 bytes, which represent approximately 40% and 20%
of the total packets, respectively. We note, however, that no
specific distribution is ascertained for the remaining 40% of
the packets.

We expect packet-size distribution information to be effec-
tive in attack detection, since a broad class of attacks use a
single packet-size; e.g. DNS reflector attacks use the maximum
packet-size and TCP SYN attacks use the minimum packet
size. Thus, the influx of attack packets, in the case of attacks
that employ a single attack packet size, will ater the relative
number of a specific packet-size with respect to the packet-size
distribution of normal traffic. As such, the sample entropy of
the packet-size distribution can be used to distinguish between
the background-only and presence-of-anomaly hypotheses.

In the bPDM framework, recall that z; represents the
number of packet arrivals in the interval |7, “51). Let S;
denotethe set of distinct packet sizesthat arrivein thisinterval,
and ¢; denote the proportion of packets of size j to the total
number of packets in the same interval. Thus, the sample
entropy y; is computed as

yi=—Y gjlogg; .
JES;

(16)

The sample entropy is modeled using the Gaussian distribution
given by

p(y|Hi) = ﬁ exp [—Tig(y - M1)2:| (17)

for both the background ( = 0) and attack (i = 1) hypotheses.
Thus, the log-likelihood ratio (LLR), given N observations, is

SA sequence of estimators for a parameter 6 is said to be consistent (or
asymptotically consistent) if the sequence converges in probability to 6. In
our case, the estimator is a function of the sample sizes M and N. Thus, as
M and N tend to infinity, the estimator converges in probability to the true
value of the parameter, and the mean-squared error tends to zero [12].

specified as
N N
log L(y) = a2 Yyl +a1 Y _ v + ao, (18)
i=1 =1
where ay = 2%—2% a; = 4 — 2 and qp =
2 , o5 o o7 o5
Lo, K 4 ]og (22 ) |. Asin the case of the GPD/SGPD
2(70 20 o1

hypothesis test, the model parameters in the case of the
sample entropy are estimated in real time using the sliding and
growing update windows. Since the sample entropy is modeled
using the Gaussian distribution, the parameter estimators for
and o2 for each of the hypotheses are the sample mean 7 and
sample variance s2, given in (13), using the respective update
windows. The resulting SPRT requires that we continue to take
more observations if

log(A) < log G(y) < log(B), (19)

where G(y) is the generalized likelihood ratio associated with
the packet-size SPRT. log G(y) is of the form in (18), but the
constants as,a; and aq are defined in terms of the parameter
estimates {fio, 62} and {ji1, 53} instead of the true parameter
values.

Given two features, ideally we would compute a joint
density to determine a single bivariate SPRT. However, given
the mixed nature of the two features (discrete packet arrivals
and continuous entropies) computing this joint density appears
to be intractable. Instead, we now describe our bPDM algo-
rithm, which effectively combines the two SPRTSs to yield an
anomaly detection mechanism that has a low probability of
false positives.

C. The bPDM Algorithm

The bPDM combines the SPRTs of the packet-rate and
packet-size features. Before we present the bPDM imple-
mentation details, we first consider a pedagogical example
that shows that a fixed-size DoS attack can be successfully
detected by the bPDM, which combines both the packet-rate
and packet-size features. Given the bimodal characterization of
packet sizes [28], assume that normal background-only traffic
has a packet-size distribution given by:

40% 68-byte packets
20% 1518-byte packets
40% other packets

We further assume that the DoS attack, which uses 1518-
byte packets, increases the percentage of 1518-byte packets
from 20% to 40%. Assuming that the background-only traffic
consists of 100 packets, we can calculate that the attack
consists of 33 packets, which result in the increased proportion
of 1518-byte packets. We can now compute the post-attack
distribution of packet sizes as:

30% 68-byte packets
40% 1518-byte packets
30% other packets

Thus, we see that volume-based, fixed-size DoS attacks can
be successfully detected by the bPDM since the attack alters
both the packet-rate and packet-size distributions.



For the implementation of the bPDM, we first recall that
the bPDM must be initially deployed in the absence of
an anomaly. Once the initial parameter estimates have been
computed, subsequent observations are used to update the
parameter estimates for both hypotheses and compute the
likelihood ratios. For each of the SPRTS, the likelihood ratio is
updated given each new observation as described in (2). The
continuous updating of the likelihood ratio and the H, and
H, parameters, estimated using a fixed number of samples,
obviates the necessity of a priori knowledge of the background
or baseline parameters.

During the operation of the bPDM, if only one of the SPRTs
(packet-rate or packet-size) crosses the upper threshold B,
then we declare an initiad warning and continue computing
the likelihood ratio after resetting the corresponding SPRT. For
example, an increase in the packet rate without a significant
change in the sample entropy of the packet-size distribution
may be due to anormal non-maliciousincrease in traffic. Thus,
an attack is declared only if an initial warning is followed
by the other SPRT crossing the upper threshold; i.e., we
declare an attack only if both the packet-rate and packet-size
SPRTs “coincidentally” cross the upper threshold. Requiring
the SPRTs to cross the upper threshold at the same sample is
too restrictive, being the equivalent of millisecond accuracy;
thus, we define the “hold time,” 7 = 0.1 second, and require
that the SPRTs cross the upper threshold within 75 p samples
of each other. Consequently, a false positive is said to have
occurred when both SPRTs coincidentally cross the upper
threshold and there is no anomaly present in the traffic. The
salient features of bPDM operation are highlighted in Figure 2,
and pseudocode for the a gorithm can be found in our technical
report [35]. In contrast to the bPDM operation described, the
packet rate could also be used individually to detect anomalies.
However, this would result in a significant number of false
positives being declared since most legitimate increases in
traffic would be flagged as attacks.

D. An Example and Generalization

In order to highlight the facets of the bPDM, we consider
the detection of a simulated Iperf attack with bitrate SNR*
0.056 using our detection mechanism. Figure 3 shows the
SPRT outputs that result from detecting this Iperf attack. We
declare the presence of an attack 695 msec after the start of
the attack, although the packet-size SPRT crosses the upper
threshold before this point in time. The delay is due to the
fact that the bPDM requires that both SPRTs coincidentally
cross the upper threshold. Although it is the case that the time
to detection could have been reduced had we used only the
packet-rate SPRT in the case of Figure 3, it would have yielded
a false positive in the case of Figure 4. Therein, we find that
the crossing of the upper threshold before the start of the attack
is flagged as a warning, but an attack is not declared. Thus, the
bPDM reduces false positives by leveraging both the packet-
rate and packet-size features of aggregate traffic.

4The bitrate SNR, defined in (20), is an SNR measure — a metric that is
used to compare the relative strengths of two attacks.
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Fig. 2. Flowchart highlighting the salient features of the operation of the
bivariate Parametric Detection Mechanism (bPDM).

An advantage of anomaly detection based on aggregate
packet rates and sizes, instead of contents, is that it is robust
to encryption. A DoS attack with encrypted traffic will show
the same rate of change in packet sizes as during a DoS
attack. These results assume that encryption is packet-length
preserving (as is typical for nearly all network encryption
schemes). While our extensions that consider packet size
would be ineffective for encryption that performed traffic
obfuscation and bundling, our rate-based methods apply even
there.

V. PERFORMANCE EVALUATION AND ANALYSIS

In the following sections, we employ three sets of synthetic
traces, six real and proxy-real network attacks, and 67 emu-
lated Iperf attacks in varying traffic mixes to investigate the
effects of background and attack traffic levels on the time
to detection. We show that the performance of the bPDM
is comparable to or better than selected alternate detection
schemes (Section V-C), and that time to detection is influenced
by bitrate SNR. We define bitrate SNR in Section V-A, and
show how it is affected by attack rate and hopcounts in
Sections V-B and V-H, respectively. We also compare it to the
previously-used packet SNR metric (Section V-F). Finaly, we
validate our synthetic attacks (Section V-G), and demonstrate



Packet rate LLR

5.85 59 5.95 6 6.05 6.1 6.15 6.2
Time (msec) 4

Packet size LLR

5.85 59 5.95 6 6.05 6.1 6.15 6.2
Time (msec) 4
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Fig. 4. SPRTsfor the packet-rate and packet-size features for a synthetic TCP
SYN attack with bitrate SNR 0.005. Non-coincidental crossings are simply
flagged as warnings.

that the bPDM works with minimal training (Section V-D), is
robust to countermeasures (Section V-E), and has a control-
lable probability of false positives (Section V-I).

A. Evaluation of the bPDM

The basic principles of detection theory teach that the time
to detection for a signal in noise is related to the signal-to-
noise ratio (SNR) [37]. However, for anomaly detection, there
is no clear notion of what an appropriate SNR measure would
be. We present the bitrate SNR metric, which is defined as

Anomalous traffic level > gcs, MsS
Background traffic level > s, MS?’ )
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where S4 is the set of attack packet-sizes, Sg is the set of
background packet-sizes, and M g is the number of packets of
size S hits.

In this section, we evaluate the bPDM using a set of
synthetic traces and emulated Iperf attacks, and find that as
the bitrate SNR increases, the time to detection decreases. This
trend is aso shown to be true for the underlying theoretical
model of the bPDM.

bitrate SNR =
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Fig. 5. Comparing detection time for the emulated Iperf attacks and the
synthetic TCP SYN attacks, with the Iperf attacks grouped by similar bitrate
SNR values. Theoretical detection times also plotted for comparison.

1) Evaluation using simulated synthetic traces. The bPDM
is first evaluated using a set of synthetic attacks [5] that
alow us to control the attack rate and methodically evaluate
the bPDM. The attack traces use 196 megabits per second
(Mbps) background traffic taken from our network. After 6-8
seconds of background traffic, we add in constant-rate attacks
at various rates using Stream Merger [22]. Focusing on low-
rate attacks, our traces employ attacks that range from 1 Mbps
to 120 Mbps, in addition to the 196 Mbps background traffic.
The artificial attacks model TCP SYN attacks that use a fixed-
size attack packet of 68 bytes [8].

Figure 5 plots the bPDM times to detection for the set of
synthetic TCP SYN attacks as a function of the bitrate SNR,
in addition to the detection times for emulated attacks and the
theoretical model discussed in following sections.

The bPDM was run on 8 distinct synthetic traces of a
specific bitrate SNR, and the mean values of the detection
times are plotted in Figure 5 aong with error bars that
represent the standard deviation associated with the mean
detection time. We see that as the bitrate SNR increases, the
bPDM time to detection for the synthetic attacks decreases.

2) Evaluation using emulated Iperf traces: We next con-
sider a more realistic scenario wherein controlled attacks in
varying traffic mixes are detected by our agorithm. Specif-
icaly, we employ 80-second Iperf attacks that use 345-byte
fixed-size packets sent from Colorado State University (CSU)
to the University of Southern California (USC); their genera-
tion is detailed in Appendix A. As before, as the bitrate SNR
increases, the time to detection for these emulated I perf attacks
decreases.

The detection times for the 67 individua Iperf attacks are
plotted as open symbols in Figure 5. The individua attacks
are grouped by bitrate SNR to alow us to investigate the
relationship between detection time and bitrate SNR. The data
is partitioned in 0.015 bin increments, so that ten bins span
the bitrate SNR range from 0.035 to 0.185. Each bin is plotted
using a different symbol in Figure 5, i.e. data points that have
bitrate SNR values between 0.035 and 0.05 are represented
using red circles, data with bitrate SNR values between 0.05
and 0.065 by cyan x’s, and so on. The aggregated Iperf line
in Figure 5 plots the mean of each bin, and the error bars give



the standard deviation for each bin. We find that the time to
detection decreases as the bitrate SNR increases for these | perf
attacks, as it did for the synthetic attacks. The large error bars
of the aggregated I perf plot prevent further statistical analysis.

As shown in Figure 5, there are no detection times that
correspond to a bitrate SNR of less than 0.02 for both the
emulated Iperf attacks, as well as the synthetic TCP SYN
attacks considered previously. This constitutes a lower limit
on the performance of the bPDM, in that if the attack rate is
lower than 0.02, then the estimate of the » parameter of the
shifted Generalized Poisson distribution in (14) is zero, and
thus the attack is undetectable by the bPDM.

3) Comparing simulated and emulated traces to theory:
We have found that the bPDM time to detection decreases as
the bitrate SNR increases in the case of both the simulated
and emulated attacks. In this section, we show that the time
to detection for the underlying theoretical model follows the
same general trend. We recall that the sequential probability
ratio test (SPRT), described in Section Il1, is employed by
the bPDM for both the packet-rate and packet-size features.
For the packet-rate SPRT, which is based on the generalized
Poisson distribution (GPD) model as in (7) and (9), the theo-
retical time to detection is the average sample number (ASN)
function under hypothesis H,, and is derived in Appendix B.
The ASN under H; is afunction of the shifted GPD (sGPD)
model parameters {6, \,r}.

The same set of sGPD parameters is used to derive the
bitrate SNR, as defined in (20). The mean of the GPD isf/(1—
A) (see (11)), which corresponds to the number of packets
in the background traffic. Similarly, the attack parameter r
corresponds to the number of attack packets. Furthermore, we
assume that the attack uses constant 544-bit packets, and adopt
a simplified model for the background traffic wherein 66.6%
of packets are 480-hit, and 33.3% packets are 12000-hit. Thus,
the bitrate SNR is computed as

r- 544
bitrate SNR =
bpoM  (2/3-480 + 1/3-12000)0/(1 — A)’

(21)
where for afixed § and A, a greater » corresponds to a higher
bitrate SNR. The theoretical detection times for {# = 39, A =
0.487} and {# = 18.1, A = 0.76}, which correspond to the
parameter values for the synthetic TCP SYN attacks and a 30
Mbps Iperf attack, respectively, are plotted in Figure 5 as a
dashed red line and a dotted blue line, respectively.

We see that the theoretical time to detection trends as in
the experimental cases: the time to detection decreases as the
bitrate SNR increases. In the theoretical case, we find that the
detection time is an exponential function of the bitrate SNR;
lower-rate attacks take significantly longer to detect than high-
rate ones. The theoretical detection times are much lower than
the empirical times since there is no notion of cross traffic,
or interaction between the packets from the background and
attack streams, as experienced in a real router (in the case of
the Iperf attacks) or in the Stream-Merger application (in the
case of the synthetic TCP SY N attacks). A similar trend is seen
in the case of the experimental data, but a rigorous fit cannot
be performed due to the small set of averaged data points.
Thus, we find that attacks with higher bitrate SNR values are

detected more quickly for the simulated and emulated attacks,
which is consistent with what is predicted by the underlying
theoretical model.

B. Effect of Attack rate (Mbps) on Time to Detection

In the previous section, we saw that the time to detection
decreases as the bitrate SNR increases. The bitrate SNR as
defined in (20) consists of two components: the attack rate
(in Mbps) and the background traffic (in Mbps). We now
investigate the effect of each of the individua components
on the time to detection, and find that for a constant level
of background traffic, the time to detection decreases as the
attack rate increases. The effect of varying background traffic
for a constant attack rate is considered in the next section.

Asin Section V-A2, we again aggregate the emulated | perf
data, this time to better examine the effect of the attack rate.
Specifically, we group the detection times of emulated attacks
by level of background traffic: data points with background
traffic of less than 350 Mbps constitute the first group (low-
level), and data points with background traffic greater than 350
Mbps are the second group (high-level)®. The detection times
of the Iperf attacks, grouped by background traffic level, are
plotted as a function of the attack rate (in Mbps) in Figure
6. The attack rates for the data points in Figure 6 are al at
20, 25, 30 or 40 Mbps, but are plotted with random shifts
(€ (—1,1) Mbps) to improve the visibility of the data points.

To measure the association of the time to detection with
the attack rate, we compute the Pearson product-moment
correlation coefficient » [32] of the time to detection and
background traffic level, as well as the time to detection and
attack strength. The correlation coefficient is independent of
the scale of measurement, and its value ranges from -1.00 to
+1.008, wherein an r value of 0.00 represents no correlation
between the two variables, while a value of -1.00 or +1.00
indicates perfect predictability.

For this grouping of the data points, the correlation coef-
ficients between detection time and attack rate (Mbps) for
the high- and low-level background traffic are —0.3050 and
—0.0781, respectively. The correlation coefficients and their
associated p-values, along with the sample size for each group,
are listed in Table |. The p-value is a measure of statistical
significance, i.e. the probability that the result occurred due
to chance rather than an underlying cause. A p-value of less
than 0.10 indicates that there is statistical evidence for the
model being considered, or hypothesis being proposed, at the
10% significance level. We see that the detection time and
attack rate are weakly negatively correlated with statistical
significance for Ry, < 350, suggesting that for a specific
background level of traffic, the time to detection decreases
as the attack rate increases.

SFiner groupings of background traffic (100-200 Mbps, 200-300 Mbps, etc.)
were also considered, but the results were inconclusive due to insufficient data
points in each bhin.

6Given the variables Y and X, we define the standardized variables % =
(Y — Y)/Sy and Zx = (X — X)/Sx, where (Y,X) and (Sy7 Sx)
represent the sample means and standard deviations of the variables Y and
X, respectively. The Pearson r is then computed asr =>_ Zx Zy /(N —1)
[32].
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Fig. 6. Detection time for the Iperf attacks as a function of attack rate (in
Mbps), grouped by high and low levels of background traffic.
TABLE |
CORRELATION COEFFICIENTSAS A FUNCTION OF BACKGROUND RATE,
Ryg.
Bin
(Mbps) Rpg <350  Rpg > 350

Sample size 37 30

r -0.3050 -0.0781

p-vaue 0.0664 0.6815

Note that this weak negative correlation between time to
detection and attack rate also holds in the case of the set
of synthetic TCP SYN attacks discussed in Section V-Al
above, where the time to detection decreased as the bitrate
SNR increased. This result is intuitive because in both cases,
the effect of attack rate is examined for a given level of
background traffic.

Interestingly, for ahigher level of background traffic (R, >
350), the correlation becomes very weak ((r = —0.0781) ~ 0)
and looses statistical significance ((p = 0.68) > 0.10). In
order to support the claim that the decrease in correlation is
reflective of a legitimate trend, and not merely an artifact, we
now consider the variances of the detection times, grouped
by background traffic level, as a function of the attack rate.
Table Il shows that for the higher-level background traffic,
the variance in detection time is greater than in the low-level
background traffic case for al the attack rates. Recall that the
theoretical cases considered in Section V-A suggest that the
time to detection is an exponential function of the bitrate SNR.
This trend can aso be seen, but not rigorously verified, for the
experimental synthetic and Iperf data. However, the statistical
analyses presented herein show that as the level of background
traffic increases, the attack rate is less predictive of the time
to detection of the bPDM.

C. Comparing bPDM to Prior Methods

We compare the bPDM to a selected set of detection
schemes as described in Section 11, and find that our agorithm
performs comparably to or better than the other detection
mechanisms we consider, while mitigating key drawbacks of

TABLE I
VARIANCE OF DETECTION TIMESAS A FUNCTION OF BACKGROUND RATE,
Rypg, GROUPED BY ATTACK RATE Rqtt-

Ratt (Mbps) 20 30 25 20
Ry < 350 Mbps _ 3.4ed  8.15¢d  5.8¢4  2.4ded
Ry, > 350 Mbps  4.8¢4  10.0e4  13.2e4  11.4ed

the latter. Recall that the bPDM only requires 2-3 seconds of
background-only traffic for training, updates its model param-
eters in real-time, and requires no human intervention when it
is initially deployed. First, we focus on the Modeled Attack
Detector (MAD) [34], atime-domain sequential scheme which
adopts a simpler Poisson model and only uses the packet-
rate feature to detect attacks. The MAD requires at least 10—
12 seconds of background-only data to initialize the estimate
of its background parameter \ (the rate), which does not
update during the algorithm’s operation. Though in the MAD
the attack parameter » (the rate change due to the attack) is
updated in real time, the fact that the background parameter
remains static necessitates alonger training phase as compared
to the bPDM, which requires 2-3 seconds of training data.
Furthermore, significant evolutions of normal network traffic
are often flagged by the MAD as attacks since the background
parameter is not automatically updated. In contrast, the bPDM
updatesits model parametersin an online fashion, and employs
the packet-size feature to minimize false alarms.

The second scheme we consider is the Periodic Attack
Detector [34], a spectral-domain scheme that exploits the near-
periodic nature of attacks. The PAD is the sequentia version
of the spectral-domain scheme developed by He et a. [17], i.e.
the underlying models and development in [17] were adapted
into a sequential framework as described in Section I11. Like
the MAD, the PAD uses a longer training interval compared
to the bPDM, and additionally requires that the test data be
statistically similar to the training data.

Unlike the bPDM, which develops statistics based only
on aggregate traffic features, the entropy-based scheme by
Feinstein et a. [15] computes the entropy of flow-separated
parameters and compares the decision statistics against a
threshold in a sequential framework. We simulate this scheme
by computing the entropy of the destination IP address using
non-overlapping batches of 5000 packets, and note that the
time to detection for this method, listed in Table Il1l, does
not include the time required to extract the flow-separated
parameters. We reiterate that the bPDM detects attacks, and
that flow-separation would then be required to filter out the
attack. In effect, the proposed approach serves as a very light-
weight, early attack detection mechanism. If flow-separation
is required, the same method used in Feinstein et a. can be
used for the bPDM and thus will take the same amount of
time. The key difference is that Feinstein's detection method
requires a priori flow-separation, whereas our method would
only invoke flow-separation after attack detection.

We compare the performance of these three schemes to the
bPDM using the bitrate SNR metric. First, we compare the
four methods performance when tested on a reflector attack
[4] with a bitrate SNR of 0.0678, which sends echo reply



TABLE Il
NUMERICAL RESULTS FOR COMPARISONS OF THE BPDM TO OTHER

METHODS.
Scheme #FP TD  Drawback
bPDM 0 336 Limited training required
MAD [34] 2 280 Longer training phase required
IP Entropy [15] 0 400  Flow-separation required
PAD [17] 1 340 Higher complexity due to FFT

and longer training phase required

packets targeting a victim within Los Nettos and lasts for
204 seconds. The results are tabulated in Table 111, where the
second and third columns are the number of false positives
(# FP) and the time to detection (TD, in msec), respectively.
We note that the detection time for the method by Feinstein
et a. [15] may be shorter or longer if different simulation
parameters are employed. Comparison of the four methods
shows that the time to detection for the bPDM is comparable
to or shorter than those of the other three.

Next, we employ the set of synthetic TCP SYN attacks
to compare the MAD and PAD detection schemes to the
bPDM. Figure 7 shows the detection time as a function of
the bitrate SNR for the bPDM, MAD, and PAD schemes.
The IP entropy scheme [15] is not included in the comparison
because the synthetic attacks were generated without source
and destination IP addresses and port numbers. The label
“bPDM(SYN)” denotes the performance of the bPDM on the
set of synthetic TCP SYN attacks, and similarly for MAD
and PAD. Each of the three agorithms was run on 8 distinct
synthetic traces of a specific bitrate SNR, and the resulting
mean values are plotted in Figure 7 along with error bars
representing the standard deviation associated with the mean
detection time for each bitrate SNR. Notice that, as expected,
the time to detection decreases as the bitrate SNR increases.
We find that the bPDM generally outperforms both the MAD
and the PAD, dthough for lower bitrate SNR values, its
detection times are comparable to the MAD’s. The spectral-
based PAD consistently has the highest, though comparable,
detection times. We note that we achieve these comparable
or better detection times, in the case of fixed-size constant-
rate attacks, without the drawbacks of the other methods, as
described in Sections | and |1 (see Table I11). For the case of
the smart attacker (see Section V-E), the detection times for
the bPDM can be considerably longer.

D. Validating the bPDM’s need for only minimal training

The previous section showed that the bPDM outperforms
the MAD, PAD, and entropy-based Feinstein schemes. In this
section, we further explain two important advantages of the
bPDM: it requires limited training, and its model parameters
automatically update in an on-line fashion, as compared to
other existing schemes.

The MAD (see Section V-C for details) requires a 10-12
second or more training period and flags both marked changes
in the level of background traffic and actual attacks as attacks,
since the increase in traffic volume is captured by updating
only the attack parameter. In contrast, the bPDM uses the
generalized Poisson distribution with two varying parameters

10

1400

—6— bPDM(SYN)
% - 8 — MAD(SYN)
1200 |- v PAD(SYN)
3
< 1000
Q
[%]
E
o 800
£
c
.2 600
3
2 .
) v
Q400 —-— o _
-8
200
0 ‘ ‘ ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3
Bitrate SNR
Fig. 7. Comparing the time to detection (in msec) for the bPDM, MAD

and PAD detection algorithms using the set of simulated synthetic TCP SYN
attacks that employ 68-byte packets.

(6, \) to account for changesin the level of background traffic.
The attack parameter r, as in the case of the MAD, updates
as in (14), and is compared to the background to identify
the presence of an anomaly. Importantly, in the bPDM, the
packet-size SPRT is incorporated in addition to the packet-
rate SPRT to ensure that an increase in traffic volume without
a corresponding change in the packet-size distribution is not
flagged as an attack (see Section IV-C and Figure 2 for details).
We note that even if the packet-size SPRT had likewise been
incorporated into the MAD to reduce false alarms, the static
nature of the background parameter would still necessitate
a minimum 10-12 second training period for the MAD,
while the bPDM only requires 2-3 seconds. Furthermore,
our experimental results suggest that the bPDM requires only
2-3 seconds of background traffic irrespective of the attack
strength.

The second detection scheme to be considered, the PAD,
also requires a longer period of training data than the bPDM,
which it uses to characterize the spectral-domain features of
normal background-only traffic. In the testing phase, the pres-
ence of frequency-domain components that were not present in
the background-only traffic spectrum is used to detect attacks.
We note that the PAD is sensitive to significant changes in
the background traffic, and thus the data used to train the
algorithm must be statistically similar to those used to test it.
This is not the case for the bPDM, which initializes using a
limited amount of training data, and then automatically updates
its parameters as the network traffic evolves.

The MNA-CUSUM is a non-parametric sequential algo-
rithm developed by Tartakovsky et a. [33], which requires
a non-trivial amount of overhead when initialy deployed: it
filters incoming packets by size and uses individual channels
and decision statistics (analogous to the log-likelihood ratio in
the SPRT) to detect an attack rapidly. Because the decision
statistics are based on score functions that update periodi-
cally using a parameter update method similar to that of the
bPDM for each of the channels, the initial deployment of the
MNA-CUSUM involves hand-tuning of the thresholds of each
channel to meet the false alarm requirements. An alternative



to the hand-tuning of thresholds could be an explicit search
over the parameter space, which has not been implemented
in [33] but would presumably be computationally intensive
due to the multiple channels employed. Recall that the bPDM
is initially deployed with no hand-tuning, since the initia
parameter estimates are automatically computed using (12),
given a limited amount of background-only training data.

Thus, our agorithm requires only up to 2-3 seconds of
training data, as compared to the 10-12 seconds needed by the
MAD and PAD, since the H, and H; update window sizes are
1 second long as described in Section V. And unlike MNA-
CUSUM, our agorithm requires only a few parameters and
performs automatic training. Thus, we find that the bPDM’s
use of limited training data and automatic updating of its
model parameters in real time results in its being free from
the drawbacks of other, existing detection methods.

E. Robustness of the bPDM to a smart attacker

As described in previous sections, the bPDM uses the
packet-size both as a feature for detection and to reduce false
positives. We now consider the smart adversary scenario,
wherein the attacker constructs an attack whose distribution
of packet sizes attempts to match that of the background
traffic. For this purpose, we create a set of smart adversary
synthetic attacks wherein the attack stream uses a constant
bitrate, but with a distribution of packet sizes that is drawn
from the bimodal distribution described in [28]. We recall
that the packet-size distribution of nomina Internet traffic
has been characterized in [28] as mostly bimodal, a result
validated by an examination of our background trace data. For
any given data rate corresponding to a bitrate SNR, the smart
attack is generated by combining 40% 68-byte packets, 20%
1518-hyte packets, and a uniform distribution of the remaining
40% of packetsin the interval (68,1518) bytes since the smart
attacker is not privy to the exact (and evolving) distribution
of packet sizes in background traffic at the detector’s location.
Though attackers do not use this approach today, as in general
they cannot perfectly guess the packet-size distribution on the
monitored link, we present these smart attacks to consider
one possible set of countermeasures against our detection
mechanism.

It must be noted that, although the smart adversary actively
manipul ates only the packet-size distribution, the smart attacks
affect both the packet-rate and the packet-size aspects of the
bPDM:

1) The packet sizes used by a smart adversary are drawn
from abimodal distribution that resembles normal Inter-
net traffic. This results in the entropy of the packet-size
distribution in the case of an attack being similar to that
in the background-only case, reducing the effectiveness
of the packet-size SPRT.

2) Recdl that the synthetic TCP SYN attacks employ 68-
byte packets. In drawing from a bimodal distribution,
the smart adversary uses a range of packets, including
severa that are larger than 68 bytes. This variety of
packet sizes implies that for a fixed attack rate, say
60 Mbps, the smart attack has a smaller number of
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packets per second, than a TCP SY N attack. This should

challenge the packet-rate SPRT employed by the bPDM.
Despite these challenges, we will see that the bPDM can till
detect attacks from a smart adversary.

Figure 10(a) shows the bPDM detection times for the
smart, denoted “bPDM(smart),” and TCP SYN, denoted
“bPDM(SYN),” simulated attacks as a function of the bitrate
SNR. We recall that the (SYN) label refers to the set of
synthetic TCP SYN traces wherein fixed 68-byte packets are
employed; correspondingly, the (smart) label denotes packets
drawn from the bimodal packet-size distribution. In particular,
the bPDM algorithm was run on 8 synthetic TCP SYN and
smart traces each, al of a specific bitrate SNR. The mean
detection times are plotted in Figures 10(a), wherein the error
bars represent the standard deviation of the detection times. We
find that the bPDM successfully detects the synthetic smart
attacks, abeit with longer detection times than for the TCP
SYN attacks.

Since the smart attacker employs the bimodal distribution
of traffic, the sample entropy due to the packet sizes that
correspond to the two means of the bimodal distribution does
not change appreciably after the attack. On the other hand,
the 40% of packets that have sizes that are uniformly dis-
tributed do not precisely model the true distribution of packet
sizes of background traffic, and thus there is a measurable
difference in sample entropy that enables the bPDM to detect
the smart attacks. We now consider a smart attacker that
generates a “smarter” attack that more closely matches the
two most common packet sizes, and further incorporates the
third (denoted smart2), and then the fourth (denoted smart3),
most common (modal) packet sizes when designing the attack
packet-size distribution. In this scenario, the origina smart
attack matches 58% of traffic, and the smart2 and smart3
attacks consist of 71% and 78% matched traffic, respectively.
Figure 8 shows the packet-rate SPRT (subplot 1) and the
packet-size SPRT for increasingly smarter attacks (subplots 2—
4). Note that the packet-rate SPRT rapidly crosses the upper
threshold for these attacks with bitrate SNRs of 0.3, whereas
the packet-size SPRT takes longer since the attack packet
size distribution more closely resembles that of background
traffic. In the case of the “smarter” attack, wherein 58% of
the traffic is matched by the attacker (corresponding to an
empirical symmetric Kullback-Leibler (KL) divergence [11]
of 14.21 with respect to the background), the bPDM time
to detection is 770 msec (averaged over eight simulations).
As the percentage of matched traffic increases, so does the
time to detection. For the smart2 attack, wherein 71% of
the traffic is matched (empirical symmetric KL divergence
of 9.42), the time to detection for the bPDM is 1500 msec
(averaged over eight simulations). When 78% of the traffic
is matched (empirical symmetric KL divergence of 7.33), as
in the case of the smart3 attack, the BPDM cannot detect
the smart attacker. Even for the smart3 attack, the packet-
rate SPRT rapidly crosses the upper threshold at the onset of
the attack (as in Figure 8, subplot 1), but an attack is never
declared since the packet-size SPRT never crosses the upper
threshold. Thus, although the packet-size SPRT significantly
reduces false positives (especially in the case of fixed-size,
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Fig. 8. Comparing the packet-size LLRs for increasingly “smarter” attacks,
subplots 2-4 employ smart attacks that comprise 58%, 71% and 78% matched
traffic, respectively.

constant-rate attacks), in the case of “smarter” attacks, it
is responsible for false negatives. The consideration of the
set of “smarter” attacks further characterizes the performance
limitations of the bPDM. As seen in Section V-A1, the bPDM
cannot detect attacks with bitrate SNRs lower than 0.02, and
we now conclude that attacks with packet-size distributions
that comprise roughly 80% or more matched traffic are also
missed by the bPDM.

The bPDM'’s inability to detect attacks with packet-size
distributions that closely match that of the background traffic
is aso relevant in the case of open-loop versus closed-loop
TCP flows. Since open-loop TCP flows exhibit greater traffic
variability than closed-loop TCP flows [26], we would expect
the packet-size distribution of the latter to resemble that of
background traffic more closely than that of the former. In
general, this would result in increased detection times for the
bPDM for closed-loop TCP traffic. However, quantifying the
difference in the packet size distributions for open-loop and
closed-loop TCP traffic, and its effect on bPDM performance,
is beyond the scope of this paper.

F. Bitrate SNR versus packet SNR

An dternative metric, the packet SNR, is used by He et
al. [17] to evaluate their methods. In this section, we compare
the packet SNR to the bitrate SNR, and we find that the
latter is a more effective measure of anomaly strength for this
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application. The packet SNR is defined as [17]

# of attack packets D oges, Ms

# of background packets Y gcs, MS(’ )

22
where S5, Sp and Mg are as defined for (20). This metric
is thus defined in terms of the packet rates of both the attack
and the background traffic, rather than the bitrate (in Mbps)
as in the case of the bitrate SNR.

Both the packet and bitrate SNRs are equivalent metrics for
the TCP SYN attacks, described in Section V-C, in that the
relative times to detection for different schemes, e.g. bPDM,
MAD, PAD, are identical for both metrics. For example, the
bPDM detects TCP SY N attacks faster than the other methods
irrespective of the metric used for comparison. This equiva-
lency exists for any anomalies that employ fixed-size packets.
To compare the metrics' efficacy in this case, we revisit Figure
7 in Section V-C as Figure 9, this time employing the packet
SNR instead of the bitrate SNR. The times to detection for the
three methods, averaged over 8 sets of synthetic TCP SYN
attacks, are plotted as a function of packet SNR in Figure
9, with error bars representing the standard deviation of the
detection times. In comparing Figures 7 and 9, we note that
they are simply scaled and shifted versions of each other,
which shows that the packet SNR is equivalent to the bitrate
SNR in the case of attacks with fixed-size packets.

However, this is not always the case; we now consider an
attack due to a smart adversary, as introduced in Section V-E.
We compare Figure 10(a) to 10(b), wherein the bPDM times
to detection are plotted for the smart and TCP SYN syn-
thetic attacks as a function of bitrate SNR and packet SNR,
respectively. Note that in Figure 10(b), the smart adversary
attacks are detected more quickly than the corresponding TCP
SYN attacks. This is a very counterintuitive result, since,
as described above, the smart adversary represents a set of
countermeasures against our detection mechanism. In contrast,
in Figure 10(a), the TCP SY N attacks are shown to be detected
markedly and uniformly faster than the smart adversary attacks
for the entire range of bitrate SNR values, which is the result
we expect.

Given that both metrics are equivalent in the case of attacks
that use fixed-size attack packets, but that the packet SNR
yields a counter-intuitive result in the case of the smart
adversary, we conclude that the bitrate SNR is an effective
metric for comparison and evaluation, and better than the
packet SNR.

packet SNR =

G. Validation of Synthetic Attacks

In order to confirm the conclusions drawn from the bPDM’s
performance on simulated attacks, we here test the bPDM
using three real network attacks captured in the wild and avail-
able through PREDICT, and three proxy-real attacks consisting
of real denia-of-service attacks (DoS) and real background
traffic streams combined using Stream Merger [22]. We find
that the detection times for the real and proxy-real attacks
closely resemble those of the synthetic attacks.

Though the three real network attacks considered were
collected in varying network conditions, all six attacks employ
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Fig. 10. Comparing the bPDM detection times for the set of synthetic TCP
SYN and smart attacks as a function of (&) bitrate SNR and (b) packet SNR.

either 15-byte, 60-byte or 68-byte fixed-size attack packets.
In this respect, they resemble the set of synthetic TCP SYN
attacks. Thus, we expect the detection times for the real attacks
to resemble those for the SYN attacks. Table IV summarizes
the attack details; the bitrate SNRs for the real attacks range
from 0.012 to 0.53, with varying attack and background traffic
levels (in Mbps).

The detection times for the individual real and proxy-real
attacks are plotted (as open, unconnected symbols) in Figure
11 for comparison to the detection times for the synthetic
traces of the bPDM, MAD and PAD detection schemes.
As in earlier plots, the points for the synthetic traces (i.e.
bPDM(SYN), bPDM(smart), MAD(SYN) and PAD(SYN))
represent the mean detection times, with the error bars pro-
viding the standard deviation. The bPDM detection times for
the real and proxy-real network attacks as shown in Figure 11
were obtained by running the algorithm on the attacks with 2—
3 seconds of background traffic before the onset of the attack.
Furthermore, the plot of the detection times for the synthetic
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Fig. 11. Comparing the bPDM detection times (in msec) of the real network
attacks to the bPDM, MAD and PAD detection times for the simulated
synthetic attacks, TCP SYN and smart adversary.

TCP SYN attacks has been extrapolated (as indicated by a
dashed black line) to compare the TCP SYN detection times
to those for the real ip-proto 255 and UDP Servpath attacks. Of
the models considered, the best fit for the synthetic TCP SYN
detection times was found to be an exponential one, which is
described as f(detection time) = 22.6+1053¢ ~16-08-birae SNR_

For al real and proxy-real attacks, we see that a higher
bitrate SNR corresponds to a lower time to detection, and
further note that the actual (and extrapolated) detection times
for the synthetic TCP SYN attacks are consistent with the
times to detection for the real and proxy-real network attacks.

H. Considering the Effect of Hop Count on Time to Detection

Recall that Figure 5 in Section V-A1 shows that the detec-
tion times for the synthetic TCP SYN attacks are consistently
lower than the averaged Iperf detection times, described in
Sections V-Al and V-A2, respectively.

We believe this disparity is due to the shorter path for our
synthetic TCP attacks: our synthetic TCP SYN attacks are
constructed by mixing traffic using Stream Merger, so the
attack traverses the equivalent of one hop. In contrast, the
emulated Iperf attacks from CSU to USC must traverse the
8-10 hops over the rea Internet (as measured by traceroute,
see Appendix A), and at each hop through a router, cross-
traffic from other applications can distort the attack. Although
this conjecture is consistent with the data, its verification in a
controlled experiment is an area for future work.

I. Controlling the Probability of False Positives

As discussed in Section IlI, the SPRT allows control
over the probability of false positives via tunable parameters
a = P and 8 = PN, Which directly affect the SPRT
thresholds A and B. To examine the effect of these parameters
on the probability of false positives, we employ a set of 24
background traffic traces [2], each 5 minutes long, gathered
every hour for 24 hours.
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TABLE IV
BPDM DETECTION RESULTS FOR REAL NETWORK ATTACKS.

Attack Background bitrate D o
Symbol  Trace (Mbps) (Mbps) SNR (msec) Description
9 ] 34.45 69.86 0.49 29 Tp-proto 255 attack
o [4 211 3112 0.678 338 reflector attack
O [1] 21.6 40.75 0.53 12 udp servpath attack
A [3] 384 320 0.012 823
> [3] 11.2 320 0.035 788 proxy-real DoS attacks
v [3] 13.44 320 0.042 734
* - times for the synthetic attacks are validated using real and
2 B[ .« P_-10¢ proxy-real network attacks, and the bitrate SNR is shown to be
£ 7\ FP . . . .
b Y AR St not only an effective metric for evaluating anomaly detection
P N, R T methods, but also a better one than the previously-proposed
2 . ! .
ol AN v VNN Y packet SNR metric. For all the datasets considered, as well
§ v vl as the underlying theoretical model, we find that the time to
° S s detection decreases as the bitrate SNR increases. Furthermore,
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Fig. 12.  (a) Number of false positives, and (b) the bitrate (in Mbps) as a
function of time of day.

Figure 12 shows (&) the number of false positives declared
by the bPDM for different values of Pgp, and (b) the bitrate
(in Mbps) as a function of time of day for a 24-hour period.
As expected, the number of false positives increases as Prp
increases, which is equivalent to lowering the upper threshold,
log(B), of the SPRT. Furthermore, we see that the number of
false positives declared by the bPDM is not correlated with
the level of the background traffic, implying that the bPDM is
fairly robust against variations in the background traffic. For
the bPDM simulations using the simulated synthetic, emulated
Iperf and real traces, we use Pep = 1078, Py = 10~ 7 and
note that false positives are reduced to zero, which corresponds
to the Prp = Py = 1078 plot in Figure 12.

V1. CONCLUSIONS

We have developed the bivariate Parametric Detection
Mechanism (bPDM), which can detect anomalies and low-
rate attacks in a few seconds. This approach allows the real-
time estimation of model parameters, and only requires 2—3
seconds of background-only traffic for training. Incorporating
the packet-rate and packet-size features enables us to detect
anomalies in encrypted traffic and avoid state-intensive flow
tracking, since our method does not use flow-separated traffic;
furthermore, combining these same two features also elimi-
nates most false positives. We have evaluated our methods
using synthetic traces and emulated I perf attacks, and find that
the bPDM can detect attacks in a few seconds. The detection

we examine the effect of the individual components of the
bitrate SNR on the time to detection and find that as the attack
rate increases, the detection time decreases, and as background
traffic level increases, the time to detection decreases.

APPENDIX A
GENERATION OF |PERF ATTACKS

Our evaluation of the bPDM uses controlled | perf attacks in
varying Internet traffic mixes. These 80-second UDP attacks
are generated at a fixed attack rate (in Mbps) and employ
345-byte fixed-size attack packets. The Iperf attacks originate
at Colorado State University (USC) and are destined for the
University of Southern California, with 10 routers traversed
between the source and destination as determined by tracer-
oute. The network packet traces consisting of these attacks
are captured via port-mirroring by capture machines that use
DAG cards and see both incoming and outgoing university
traffic. In particular, we use one link (out of five) at Los
Nettos, a regiona ISP in the Los Angeles area serving both
commercial and academic institutions. The traces are collected
a Los Nettos with a timing precision of 0.1 microsecond,
which is dueto the accuracy of the Endace DAG network card.
The link we use captures bidirectiona traffic, but since the
bPDM operates on a unidirectional traffic stream, the incoming
traffic is filtered from the bidirectional traffic using a complete
list of destination IP subnets for the University of Southern
Cdlifornia. Once the incoming traffic has been isolated, the
bPDM exploits only the aggregate traffic fields, the timestamp
and the packet size, which yield the packet-rate and entropy
of packet-size distribution statistics.

We collected four datasets, each 3 hourslong, and consisting
of an average of 15 Iperf attacks with attack rates of 20, 25,
30 and 40 Mbps. The experiments were conducted both during
weekend non-peak hours and during busier weekday hours, to
investigate the effect of different background traffic levels. We
see qualitatively similar results across all the datasets, in that
the time to detection is uncorrelated with the time at which
the datasets were collected, and thus we do not analyze the
dataset-partitioned data.
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APPENDIX B
AVERAGE SAMPLE NUMBER ANALYSIS

The average sample number (ASN) function is used to
evaluate the efficacy of the sequential test reviewed in Section
[1l. The ASN function is simply the average number of
samples required to make a decision by a particular test. For
the binary hypothesis test considered in our work, the ASN
function is denoted E,; (V) for hypothesis H,;. We present an
analysis of the ASN function for the GPD/SGPD hypothesis
test sinceit is used to determine an alternative window size for
parameter estimation. In order to compute the ASN function,
we first define z = log ggg}g;; and denote E4(z) to be
the expected value E(z) of z when § € {0,1} is the true
hypothesis. From the expressions in (3), we can solve for

A1 AB - 1)
~A-B A-B

and now obtain expressions for the ASN functions for each of
the hypotheses as [16]:

a and = — (23)

alog B+ (1 —a)log A

Eo(N) Eo(2) , (29
and E\(N) = “_Bﬂﬁijﬁb@4 (25)

Thus, for the GPD/SGPD hypothesis test, given the probability
mass functions in (7) and (9), we derive

z =

(x —r —1)log[d + Az —7)] + A\r + log[z!]

—(z — 1) log[f + Az] — log[(x — 7)!], (26)

and then compute E4(z) numerically. The ASN function for
hypothesis H, is computed using (25) and is plotted in Figure
13 for typical values of # and r for varying A.

The sizes of the update windows are chosen to be on
the order of the ASN function for the respective hypotheses
to ensure that the parameter estimates, computed using the
observations in those windows, correspond to a decision being
made by the SPRT. When an anomaly is detected, the ASN
functions and update window sizes are recomputed using the
current estimate 7.
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