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Abstract

The principles of sensor networks—low-power, wire-
less, in-situ sensing with many inexpensive sensors—are
only recently penetrating into underwater research. Acous-
tic communication is best suited for underwater commu-
nication, since other methods (optical and radio) attenuate
very quickly. Yet acoustic propagation is five orders-of-
magnitude slower than RF, so propagation times stretch to
hundreds of milliseconds. A new generation of underwa-
ter acoustic modems have added low-power wakeup tones
that combat the energy consumption acoustic modems would
waste on idle listening. Recently, these tones have been
used as an integral part of application layer and MAC pro-
tocols. While all wireless data-networks suffer from mul-
tipath interference of received data, in this paper, we show
that due to large acoustic propagation delay tone echoes
cause a unique interference, tone self-multipath, for tone-
based protocols. To address this interference we introduce
Self-Reflection Tone Learning (SRTL), a novel approach
where nodes use Bayesian techniques to discriminate self-
reflections from noise and communication from other nodes.
We present detailed experiments using an acoustic modem
in two physical environments to show that SRTL’s knowl-
edge corresponds to physical-world predictions, that it can
cope with reasonable levels of noise, and that it can track a
changing multi-path environment. Simulations confirm that
these real-world experiments generalize over a wide range of
conditions.

1 Introduction

Sensornets are transforming for science and industry
by enabling pervasive, in-situ sensing through inexpensive,
wireless sensors. This success has sparked interest, bring-
ing sensing with these characteristics underwater to improve
our ability to chart the oceans, lakes, and waterways that
strongly influence our environment and can provide natural
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resources [32, 17, 9].

Perhaps the most significant to changes when deploying
sensornets underwater is the use of acoustic instead of radio-
frequency-based (RF) communication. Radio communica-
tion is significantly attenuated underwater, making it imprac-
tical for distances over a meters or so. (Low-frequency RF is
impractical because it requires a very large antenna and sig-
nificant energy to operate.) While optical links can provide
high-speed communication over short-range, point-to-point
links, it requires careful aiming and so cannot fulfill the need
for easy deployment as is possible with surface sensornets.

Underwater acoustic communication poses several chal-
lenges. The most serious is large propagation delays. With
the speed of sound around 1500m/s underwater, and ranges
of 100 to 10000m, delays of 100ms are common and multi-
ple seconds are possible. The large delay makes adapting tra-
ditional media access protocols difficult, since channel sens-
ing time follows propagation delay, a simple CSMA MAC
will consume a great deal of power listening to an idle chan-
nel. In addition, the underwater channel poses additional
challenges, including temperature-based delays, ducting and
significant problems due to multi-path interference. Several
papers summarize these challenges [3, 26, 19]

Commercial underwater acoustic modems today primar-
ily target long-range (multi-km) point-to-point communica-
tion (for example, the Benthos modem [1]), and recent re-
search efforts have targeted higher throughput using coherent
communication [6, 24]. Since energy is a constraint in many
underwater networks (for example, stationary networks, or
those using battery powered gliders [22])), some modems
employ special wake-up tones and low-power wakeup re-
ceivers to activate modems [1, 33], and recent work has
shown how to integrate tones with a low-power MAC pro-
tocol [30] . Tone-based wakeup is also important for wakeup
after long-duration sleep [21, 16], or triggering more sophis-
ticated data reception algorithm [1, 6, 33]. Replacing full
packet reception with tone detection (detecting energy on the
channel) is a very effective way to save energy since it can
be done both very quickly, as seen in low-power listening
with radios [4, 18]; and very efficiently with dedicated hard-
ware, as seen in radio-based pagers and recent underwater
modems [33].



Multipath interference is a problem in all wireless com-
munication. For data, it causes inter-symbol or inter-chip
interference. These problems have been extensively studied
in radios [20, 14]. Long propagation makes multipath worse
underwater, and only in the 1990s was coherent communica-
tion demonstrated underwater [27]; managing data multipath
is still an area of research [23].

While a problem for data communication, multipath can
be crippling for tones. When tones are used for coordina-
tion, echos reflecting from stationary objects cause the trans-
mitter to hear self-reflections of their tones. If tones indi-
cate contention and their absence indicates a channel clear
for transmission (as it does for T-Lohi MAC protocol [30]
), self-reflections will prohibit all communication, since a
sender will always mistake the echo for another contender!
We explore this scenario in more detail in Section 2 where we
use the T-Lohi MAC protocol to illustrate tone-based self-
multipath. This paper is the first to identify the problem of
self-multipath for low-power underwater acoustic communi-
cation.

The challenge of self-multipath is that a transmitter will
always interfere with itself. We show that this challenge pro-
vides the means to address the problem: senders can and
must learn their self-multipath patterns. This goal is difficult
because of the unique challenges of underwater sensornets.
First, current data-focused multi-path techniques do not di-
rectly apply because we are concerned with self-multipath,
not sender-receiver multipath. Also wakeup tones are sim-
ple signals and are therefore not amenable to sophisticated
coding. Finally we must allow for long acoustic propaga-
tion times and reflections to hundreds of milliseconds. In
Section 3 we describe Self-Reflection Tone Learning (SRTL)
where we use Bayesian techniques to learn the channel state.
In addition to directly applying to underwater MAC proto-
cols, SRTL’s ability to estimate the number of reflecting sur-
faces in the environment also indicates the sparsity of the
channel. This information may assist optimizations that ex-
ploit sparsity in managing the complexity of multipath in
data reception [15].

Since wireless channels are very difficult to model or
simulate, we demonstrate the effectiveness of our approach
with experiments using an acoustic modem in three differ-
ent physical environments in Section 4. We establish that
what SRTL learns matches to physical-world predictions
through tests in a completely controlled anechoic cham-
ber (Section 4.2). We show that SRTL copes with reason-
able amounts of noise through tests there and in a less con-
trolled laboratory, and with simulations that let us vary noise
precisely (Section 4.3). Our controlled tests require in-air
acoustics; underwater tests are currently underway. Finally,
we show that SRTL can track changes to the environment
(Section 4.4), how environmental parameters and their esti-
mates affect the accuracy of algorithm (Section 5.1 and 5.2 ),
and finally that SRTL remains effective with low-complexity,
low-memory implementations (Section 5.3)

The contributions of this paper are to identify self-
reflections as a new problem posed in low-power, high-
latency underwater communication; to show how Bayesian
learning with SRTL can mitigate this problem; and finally
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Figure 1: An example T-Lohi protocol contention exchange

to show that it works experimentally. We believe this ap-
proach will be essential to energy conserving underwater me-
dia access protocols, and also useful for long-duration sleep,
and may apply to the broader problem of multipath in high-
latency channels.

2 T-Lohi MAC: Embracing the Propagation
Latency of Acoustic networks

Tone-Lohi (T-Lohi) is a contention-based MAC protocol
for underwater acoustic networks [30] . Its key features are
that all contention is done with short wake-up tones, that can
be observed with sub-mW energy consumption [33] and that
it converges quickly due to accurate estimates of the number
of contenders [30] . As a result, overall energy consumption
is minimal even in the face of contention periods that may
last up to a second. However, we will show that echos due
to self-reflection will compromise these benefits. We next
briefly summarize this protocol and then describe the prob-
lem self-multipath poses for it.

2.1 Overview of T-Lohi

The primary objective of T-Lohi is to provide a MAC pro-
tocol that has efficient channel utilization, stable throughput,
and low energy consumption. It is contention-based, so that
nodes can adapt to varying traffic patterns. A full description
of T-Lohi can be found elsewhere [30] ; we summarize it
here to show how tones are key to its energy-efficient opera-
tion.

In T-Lohi, nodes contend to reserve the channel to send
data. It requires that nodes first send a short tone and then
listen for the duration of the contention round to decide if
reservation is successful. If only one node contends in a
contention round, it wins, ending the reservation period and
then transmitting its data. When nodes detect another con-
current tone, they interpret it as another node’s contention
and extend the reservation period by randomly backing-off.
As tones are short and distributed over a long contention
round (due to space-time uncertainty in high-latency com-
munication [28]) each contender can do contender counting
by counting the tones received. This count gives a good es-
timate of the number of other contenders, allowing the chan-
nel to quickly converge by adapting back-off in proportion
to the number of contenders. Figure 1 shows an example of
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Figure 2: receiver- and self-multipath shown for a single re-
flecting surface at a distance h from transmitting node A.
Similar multipath occurs for each reflecting surface.

this process: nodes A and C have data to transmit but first
send tones indicating contention. At the end of the first con-
tention round both A and C have a count of two and back-
off to attempt uniformly in one of the next two rounds. If
no other tone is detected in a given round (like A does not
in round two), collision free data transmission occurs in the
subsequent round.

Three significant sources of energy consumption in me-
dia access are idle listening, collisions, and control over-
head [34]. T-Lohi addresses these sources of waste with
two different mechanisms. First, in lightly used networks
such as many sensornets, the majority of time is spent wait-
ing for traffic, or idle listening [34]. Terrestrial sensornets
have reduced this cost with scheduling [34] and low-power
listening [4, 18]. In T-Lohi, we exploit very-low power dedi-
cated hardware for tone reception, where tone listening con-
sumes only 500uW [33], Second, to reduce the cost of col-
lisions and control overhead, T-Lohi converges very quickly
to a collision free channel reservation when traffic occurs.
Quick convergence is possible because of contender count-
ing, allowing the MAC protocol to converge in a small con-
stant number of rounds with high probability, instead of the
O(logn) convergence form binary-exponential backoff (as in
Ethernet and 802.11).

2.2 Impact of Multipath

We now show how tone echos result in self-multipath that
cripples the T-Lohi protocol.

Figure 2 shows multipath occurring between two con-
tenders, A and B. Tone sent by A reaches B directly and, a
little later, via a surface reflection. This regular, or receiver-
multipath, will cause multiple tones to be detected at B.

From the perspective of T-Lohi, the additional tones in-
crease the contention count. However, as our simulation and
analysis of reservation period show the duration of reserva-
tion period does not increase significantly with network den-
sity [29]. Therefore, although the throughput decreases due
to slightly longer duration before a packet is sent, T-Lohi will
successfully contend the medium to send data.

Other than the multi-path reflections received at B there
is also the echo that A receives of its own tone; this re-
flection causes what we call self-multipath as it interferes at
the transmitter(Figure 2) understanding of the contention sta-
tus. As opposed to traditional multipath that results in data

interference at receivers, self-multipath is essentially echo-
interference amplified in the acoustic channel due to large
propagation delays. Moreover, while the multipath spread
(the maximum delay between direct and multipath signal)
of receiver-multipath is proportional to the difference in the
path taken by a direct and reflected signal (typically 10s of
msec for 500m range) self-multipath is proportional to just
the delay to a reflecting surface (and thus larger than just the
difference, typically 100s of msec for 500m range).

This self-multipath breaks T-Lohi MAC in such a way that
contending nodes are never able to transmit data. This is be-
cause a self-reflection ! for a contention tone sent in any con-
tention round will result in an echo-induced tone detection.
Since contenders transmit data in T-Lohi only when no other
tone is detected, even a single reflecting surface, results in
a contender always hearing an echo tone that it interprets as
another contender. Thus a contender will always backoff and
never be able to transmit data.

While one could work around this problem, perhaps by
timing out after non-convergence, or by sending information
with the tone, these approaches would increase energy con-
sumption. Instead, we next show how Bayesian techniques
allow contenders to learn about self-reflections, then choose
to ignore them.

3 SRTL: Learning to Ignore Echos

We now introduce the Self-Reflection Tone Learning
(SRTL) algorithm, our approach to manage self-reflection.
We first give an overview of SRTL, then review Bayesian
learning, the theory we draw upon (Section 3.2). We then
cover SRTL details: what it observes about the channel,
sources of error in those observations, and how these factors
come together.

3.1 Overview of SRTL

The goal of SRTL is to learn about self-reflection and al-
low higher-level protocols (such as T-Lohi) to distinguish be-
tween echos, random background noise, and tones sent from
other contenders.

The key intuition behind SRTL is that echos are determin-
istic and repeatable relative to a transmission, while noise
and tones from other senders are independent and uncorre-
lated. An example of this observation is shown in Figure 3.
When a node transmits a tone that reflects off other surfaces
(A and B in Figure 3), the echos return to the sender with
the same delay after each transmission (Figure 3). The tone
receiver will also trigger in response to ambient noise (as
shown by lightening bolts in Figure 3), or other transmitters,
but these triggers occur independently of transmission times
(compare location in Figure 3(a) and 3(b)). SRTL can there-
fore learn repeated echos using Bayesian learning techniques
(reviewed next in Section 3.2).

SRTL makes two assumptions: echos are repeatable, and
other triggers are independent. Since echos are dependent
on the physical placement of nodes and reflecting surfaces,
they will be repeatable in a static network. We confirm both
of these assumptions, showing in Section 4.2 that the echos

IWe refer to each echo as self-reflection, distinct from the
broader protocol-interference concept of self-multipath.
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Figure 3: Key idea behind the sample collection process for
SRTL algorithm: A node sends a tone and waits for a Sample
period. Bin location of echos repeat but that of non-echo
detections do not.

we observe correspond directly with the physical environ-
ment. We tolerate minor variation in echo delay by discretiz-
ing responses into bins; in Section 5.3 we show our choice of
bin size is reasonable and that we tolerate responses on bin
edges. Although SRTL is optimized for a static network, we
show in Section 4.4 that it can accommodate environmental
change due to drift or slow movement.

The second assumption is that other (than echos) tone
triggers are independent of transmissions. Most observations
confirm that underwater noise is uncorrelated and random,
although the noise distribution is different for shallow and
deep water channels [3, 26]. We have confirmed this obser-
vation in the experiments at the Marina del Rey harbor.

It is possible that higher-level protocols or applications
would create synchronization, either intentionally or acci-
dentally [5]. While some variations of T-Lohi intention-
ally synchronize transmissions similar to slotted ALOHA,
MAC protocols in general (and the variant of T-Lohi that
we use) can explicitly randomize transmissions to guarantee
protocol-level synchronization does not occur, and thus con-
current application-level transmissions are desynchronized
at the MAC-level.

Learning about echos is not the only approach to identify
self-reflection. We consider related work in detail in Sec-
tion 6, but two alternate approaches are to use signal pro-
cessing techniques to correlate echos and transmitted signals
for disambiguation, or to code sender identification in tones.
For example, Rake receivers handle data multipath [20] us-

ing chip-correlations, but because its complexity is propor-
tional to delay, it doesn’t easily scale to high-latency acous-
tic communication. Similarly Girod and Estrin use a similar
approach in acoustic localization [7]. Coding sender iden-
tification in a data packet can also solve the issue of self-
multipath. Using data packets, however, precludes the en-
ergy benefit of tone wake-up. Alternatively, we could use
time-based codes, pulsing the tone on and off. However, to
reach low power, the low-cost tone wake-up circuit uses very
simple analog electronics and so is unable to use sophisti-
cated codes or provide bit synchronization guarantees. Also,
to maximize sensitivity, the wakeup receiver requires long
activation times (up to 5Sms in the worst case). Thus, the re-
quirement to minimize energy consumption precludes many
alternate approaches. We therefore turn to learning, and next
provide background about Bayesian inference as employed
by SRTL.

3.2 Bayesian Inference Background

Bayesian Inference is a well established approach that
measures a probabilistic belief or knowledge regarding an
event or hypothesis [12]. (Note that probability here repre-
sents belief in a hypothesis, not probability as frequency of
occurrence.) We next briefly introduce the Bayes’ theorem
and show how it can be extended to perform inference based
on empirically collected data.

The classical Bayes’ theorem as defined for a bimodal hy-
pothesis H, incorporating current evidence X is:

(X|H) P(H) _ P(X|H)P(H)
P(X) P(X|H)P(H)+ P(X|H)P(H)

p(HX) =~

We assume, in all cases, either the hypothesis holds (H)
or is not true (H). The prior probability, P(H) is the confi-
dence before considering current evidence, while P(H|X) is
the confidence after observing X. P(X|H) is the conditional
probability, the likelihood that event X implies that hypoth-
esis H is true, while P(X|H) is the likelihood X occurs even
though the hypothesis is not true. P(X) is the probability
of witnessing the new evidence X under the two mutually-
exclusive hypotheses.

The factor Pg&l){) represents the impact that evidence has

on beliefin the hypothesis. When evidence strongly indicates
the hypothesis, this factor is large, but if evidence is incon-
clusive, perhaps because the environment is noisy, it will be
small. This ability to incorporate evidence lends naturally to
using Bayesian inference for interactive sensing.

The Bayes theorem describes how a single observation
modifies a belief. We build on work in landmark-based
localization in robotics [31] to use successive observations
to learn about the environment. This work uses robots
with sensors that identify landmarks and move or change
their environment. Observations of landmarks represent evi-
dence increasing belief in the current location; manipulation
and movement change the environment and decrease belief.
Changes in belief are scaled by models of accuracy of sens-
ing and actuation. Next, we describe how SRTL “senses”
echos, and how we model its accuracy to scale the belief up-
date, thus learning echo locations.




3.3 Sampling in SRTL

To apply Bayesian reasoning, and inspired by work in
robotics (Section 3.2), we must decide how to sense the envi-
ronment, and how our samples correspond to our hypothesis.
Each time we send a tone, we follow that transmission with
a sampling period (as in Figure 3). The duration of this pe-
riod is defined by the maximum range of our tone hardware.
Since transmissions attenuate, we listen until any additional
echos would be too faint to detect.

To manage observations, we divide the sampling period
into fixed-duration bins. For each bin i, we track the hy-
pothesis H representing belief that the i bin corresponds to
a self-reflection; we call such bins self-reflection (SR) bins.
For each bin the hypothesis H, that a bin does not have echos,
is simply complementary to H due to bimodality of the hy-
pothesis space.

After a transmission and the entire sampling period, we
have an array of evidences, one sample per bin. Each sample
can take on two values, either E;, indicating a tone detection
(an apparent echo), or E;, indicating absence of any detection
in that bin.

Bayesian learning has a rich mathematical background
for estimating hypothesis by incorporating empirical data.
While we currently model static nodes, the incremental
Bayesian learning can also incorporate motion if an ap-
propriate model is provided [31]. Thus we believe that a
Bayesian learning approach is appropriate for learning tone-
echoes.

3.4 Modeling Truth and Observations

A transmitter’s observation corresponds to four possible
real-world events: True echo detection, true silence detec-
tion, Non-echo Detection (ND), and Tone Cancellation (TC).
The first two events are the accurate observations about the
world from the point of view of the transmitter. However,
we model the next two events because they represent error
introduced into our observations.

Non-echo detection corresponds to an incorrect observa-
tion where our tone detector triggers, but it is not due to an
echo of our transmission. Channel noise is a common source
of a ND. A ND can also be caused by a valid tone trans-
mission from another node. We cannot distinguish between
these sources of incorrect observations, but our approach can
filter both out, since both are effectively random sources of
noise (as justified in Section 3.1).

A second source of error is Tone cancellation. While
unlikely, it’s possible that channel noise or another node’s
transmission can interfere with and cancel reception of a
tone. In these cases, we are unable to observe an echo that
should be there. Missing tones also occur when a tone lies
on the boarder of a bin as we discuss in Section 5.3.

We model the event ND and EC with parameters p,,; and
Pre. These parameters are engineering estimates of the prob-
abilities that these events will occur in for a given hardware
and physical environment. We show in Section 5.1 that our
algorithm tolerates a wide range of parameters, so they need
not be set exactly, but its estimate tracks reality best when
the parameters closely approximate the actual probability of
these events.

3.5 The SRTL Algorithm

We now apply Bayesian learning to our system. We apply
our algorithm in parallel to the hypothesis H and H for each
bin, using the samples array observed in each sample pe-
riod. For simplicity we stop using the subscript and describe
a single bin. We refer to E and E as positive and negative
evidence of a tone activation in that bin. We next describe
how we initialize our algorithm, then how we substitute £
and E into X from Equation 1 to update, as we learn, Bel(H)
which is our confidence in the hypothesis, then finally how
we make decisions from our observation.

3.5.1 |Initializing the Algorithm

We initialize the algorithm with Bel(H )™, representing
our initial belief of the bin being a self-reflection (SR) bin.
This value seeds the Bayesian algorithm and is the same for
all bins. Subsequent samples update the current belief using
the update equations we describe next.

From the perspective of Bayesian learning, the initial
value should reflect our assumptions about the environment,
presumably from prior experiments for a given transmitter.
Since in general we do not have such knowledge, we instead
start with an arbitrary value of Bel(H)™! = 0.3. The algo-
rithm is largely unaffected by choice of initial value because
it rapidly aligns with reality using experience; Section 4.4
confirms that we can quickly track environmental changes,
and we have confirmed in experiments (omitted here due to
space) that we are largely unaffected by the initial value.

We next explore how negative and positive evidence
change our estimate Bel(H )P**"°" and mark bins as self-
reflecting.

3.5.2  Update for Negative Evidence

We consider absence of a tone as negative evidence (E)
that indicates a bin does not receive echos. We therefore
update our estimate from Equation 1, replacing X with E.
Also, we replace the term P(H|X) with Bel(H)PS¢"°T (be-
lief after incrementally incorporating current evidence) and
P(H) with Bel(H)P"" (current belief incorporating all prior
evidence) to reflect the standard Bayesian inference termi-
nology [31].

P(E|H)Bel(H)PTiO
P(E|H)Bel(H)P"'OT + P(E|H)Bel(H)PT'OT

Bel (H)posterior —

We next explore how this update equation for negative
evidence is modeled using our parameters p,,; and py.

P(E|H) is the conditional probability for the event when
no tone is detected, given that we know an echo tone should
be detected. This event is essentially the failure of our tone
detection hardware to be triggered in the presence of tone
energy. Assuming that bin duration is small enough to allow
only a single detection, such an event can happen only if
the tone echo is canceled by noise or interference (the event
TC|H, which reduces to 7C since 7C is independent of the
hypothesis H). This assumption simplifies our modeling as
we no longer consider the more complicated case when an
additional tone detection occurs, in the same bin, after the
first. Thus, we can now define:



P(EH) = pe 2

P(E|H) is the probability for the event when no tone is
detected given that we know that no echo can occur in that
bin. However, this knowledge does not rule out non-echo de-
tections caused by noise or other transmitters. Thus the event
can be described by the union of two disjoint events: no non-
echo noise is detected (the ND event) union with the event
that although wake-up-triggering noise could have been de-
tected it was canceled (the ND(TC event). Noting that the
above events are disjoint, we formulate the following proba-
bility:

PEH) = (1—pua)+pPnd X Pre 3)

Finally, using the definitions from Equation 2 and 3 the
update equation for negative evidence becomes:

Bel (H)posteri()r —
PrcBel (H)PTor “)
PicBel (H)P"" + (ppapic + 1 — ppa) Bel (H)P""

This update is applied to our current belief Bel (H)P""" to
realize a new belief Bel (H)P?5'¢"°" when no tone is detected
within that bin (negative evidence).

3.5.3 Update for Positive Evidence

Detection in any bin during a sample period is considered
positive evidence (E) of the bin being a SR bin. Similar to
the negative update, we update our belief according to Equa-
tion 1, replacing E for the update event X. We next define
the components of the update equation for positive evidence
based on the input parameters p,; and py.

P(E|H) is the conditional probability for the event that
tone detection occurs in a bin with known self-reflection.
This probability is simply the complement of P(E|H ) ; Thus:

P(EIH) = 1-p )

On the other hand, P(E|H) is the conditional probability
for a detection occurring in a bin we know has no echos. This
detection can, therefore, occur only because of wake-up-
triggering noise (ambient noise and other contention tones)

that is not canceled; the event ND[\ TC. Thus this probability
becomes:

PEIH) = ppa(l—prc) (6)

Finally, using the definitions from Equation 5 and 6 the
update equation for positive evidence becomes:

Bel (H)posterior —
(1 — pec)Bel (H)Prior @)
(1= pic)Bel(H)P"" + (ppa(1 — pic))Bel (H)Prer

This update is applied to our current belief Bel (H)P"™" to
realize a new belief Bel(H )P?""'°" when a tone is detected
within a bin (positive evidence).

Table 1: Payoff table used in determining decision threshold
that maximizes payoff.

Reality
Decision SR bin  not a SR bin
SR bin (Ignore tones) 10 2
not a SR bin (Count tones) 1 9

While Bayes works as described in theory, in our exper-
iments we observed that long runs of consistent evidence
would saturate the bins with perfect positive or negative be-
lief (Bel(H) = 1 or Bel(H) = 0). We expect saturation occurs
because of floating point rounding error. These equations are
unable to shift from certainty, even in the face of later con-
trary evidence. We therefore cap the belief for each bin at a
maximum value of 0.999 and a minimum value of 0.0001 to
avoid saturation.

3.5.4 Identification of SR Bins

We intend for the SRTL algorithm to work continuously
in the background to our MAC protocol (or any other net-
working protocol using tones). In T-Lohi, we automatically
get one sensing period for each contention round, so observa-
tions about the environment occur automatically as a side ef-
fect of MAC operation, incurring no additional overhead. We
next evaluate how to translate these continuous observations
into decisions about which bins represent self-reflections and
therefore should be ignored.

To reach a decision, we bias our estimates by the payoffs
of correct or incorrect decisions, then select the most prof-
itable. We believe this decision threshold is reasonable, and
we show later (Section 5.3) that our assumptions about the
environment (p,4 and p;.) have much stronger influence on
correctness. For the values given in Table 1, we can derive
a fixed threshold of 0.45. Thus if the Bel;(H) is greater than
0.45 we will consider that to be a SR bin. We use this thresh-
old in our experiments. In principle, one could adapt these
values to the environment.

3.5.5 Selecting Bin Duration

Our algorithm uses fixed size bins; bin granularity is one
factor to the sensitivity of our algorithm. In practice, bin
size is limited by hardware. As a lower bound, our micro-
controller has a millisecond level clock granularity, and in-
terrupt debouncing causes a 2ms delay between successive
tone detections. We therefore set bin size conservatively at
3ms in both simulations and experiments.

4 Experimental Evaluation of SRTL

We now evaluate SRTL through experiments, both in the
controlled setting of an anechoic chamber and a less con-
trolled open lab. Table 2 summarizes our research questions,
but our overall goal here is to show that SRTL can success-
fully manage echos. To do that, we first confirm SRTL’s
conclusions are justified by the physical environment (Sec-
tion 4.2), and evaluate how to copes with different levels
of noise (Section 4.3). Finally we verify that the algorithm
adapts to changes in environment, either due to movement of
the node or other objects (Section 4.4). We begin by summa-
rizing our experimental methodology.



Table 2: Research questions asked about the merits of our Bayesian learning algorithm.

Environment
Questions asked about SRTL Section | Controlled Uncontrolled Underwater
Correctly ID known surface? 4.2 Yes n/a n/a
Is robust to Noise? 4.3 Yes Yes Planned
Can handle dynamic environment? 4.4 Yes n/a n/a
How sensitive to parameters? 5.1 Yes Yes Planned
What'’s the impact of discrete bins? 53 Yes n/a n/a
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(b) Reflecting Surface

Figure 4: Controlled Experiments: The Setup in the ane-
choic chamber. On the left was the transmitter/receiver setup
and the right figure shows a reflecting surface whose location
was varied in our experiments.

4.1 Experimental Methodology

We evaluate SRTL using our acoustic modem in differ-
ent environments: a controlled, anechoic chamber and a less
controlled laboratory, both using in-air acoustics. In addi-
tion, we are currently carrying out underwater tests. We next
describe details in common to the three environments we re-
port here, how they differ, and bounds on our ground truth.

4.1.1 Details common to experiments

We run experiments using the SNUSE acoustic mo-
dem [33], hardware revision 2. We use tweeters for in-air
tests, and hydrophones when underwater. The modem is
driven by a custom data collection program running on a
Mica-2 mote. The microcontroller directly controls modem

(b) Underwater test setup

Figure 5: Uncontrolled Experiments: Uncontrolled exper-
iments were performed at two locations. The lab/office loca-
tion provided for in-air experiments, while the test setup off
the docks in Marina del Rey harbor provided for underwater
experiments.

operation via I/O through a custom digital interface.

Each experiment consists of 200 sample periods of tone
transmission followed by echo observation. For each sample,
the mica2 configures the modem to transmit a wake-up tone,
then switches to tone-sleep where it is quiescent until woken
up by a tone. We timestamp each tone reception on the Mica-
2 with 1ms resolution, then compute delay between initial
transmission and echo. We later map detection delay into a
corresponding 3ms bin (Section 3.5.5).

The SRTL algorithm currently runs in a host PC con-
nected to Mica-2, although in principle it could run on the
mote itself. After each transmission we record all tone trig-
gers as positive evidence (E), and assume negative evidence



(E) for all other bins. We then update SRTL belief estimates
based on Equations 4 and 7.

We set the sensing duration based on the maximum ob-
served in-air range of our modem. We measure in-air range
at 20m, so we anticipate reflections from objects up to 10m
from the transmitter. We therefore anticipate echos arriving
with up to 60ms delay (20m, with speed of sound as 343m/s
at 24° Celsius). We conservatively extend sensing duration
to 100ms after each transmission.

We next describe details specific to our three experimental
locations.

4.1.2  Location-specific experimental details

We carried out experiments at three locations, each pro-
viding us with different level of complexity in the reflective
nature of the environment.

The first experiment location is an anechoic chamberat
USC’s UltraLab Laboratory. The chamber is designed to ab-
sorb all RF radiation for controlled radio experiments, but
it also provides a good acoustically neutral environment.
When necessary we place a large metallic pan in the cham-
ber to act as a reflecting surface (Figure 4). We measure the
distance from our transmitter as described in Section 4.1.3.
Since the anechoic chamber is designed to be reflection free,
this configuration lets us confirm against a strong ground
truth: the physics of the measured location of our reflecting
surface.

Our second environment is an office laboratory (Fig-
ure 5(a)). This location is much more complex, with multi-
ple possible reflecting surfaces (walls, file cabinets, machine
rack doors, etc.). We therefore observe more complicated
channel response and so cannot provide firm ground truth.
However, this more complex environment provides a richer
level of noise and signal response.

For both in-air tests (anechoic chamber and laboratory),
the modem uses high efficiency, Motorola piezoelectric
tweeters that were impedance matched for both transmission
and reception.

Our final experimental environment explores underwater
performance. We test at the docks in Marina del Rey harbor
(Figure 5(b)). Our current experimental modems are not yet
packaged for underwater use, so we operate them on dock,
connected to a Benthos AT-18AT hydrophone lowered about
Im underwater off the docks. Our initial underwater ex-
periments were not successful because the wake-up receiver
was too sensitive, receiving near-continuous activations from
background noise. We have recalibrated it and are in the pro-
cess of collecting additional data underwater.

4.1.3 Estimating ground truth

We estimate ground truth based on the physical distance
between transmitter and reflector and compare this distance
to measured echo distance (converted from measured echo
delay). Both these measurements, however, have potential
sources of error due to our modem hardware and the mea-
surement process.

The largest source of error in measurement of echo delay
is the detection circuit of our modem. We time-stamp the
transmit time of tone and detection time of echos to calculate
the distance to reflector. Due to transmit side warm-up, the
actual transmission time of the tone can vary by about 1ms.

Bin Index
1 2 3 4 5 6 7 8

SRTL identified bin-..

‘tolerance region

CDF detection delay (solid line)
°
Belief Confidence (blue bars)

Sample CDF.

tone detection delay (ms) after transmit

(a) Reflecting Surface at 3.36m

Bin Index
1 2 3 4 3
SRTL identified bin-.__

Measurement tolerance regi

CDF detection delay (solid line)
°
Belief Confidence (blue bars)

Sample CDF

5 10 15 20
tone detection delay (ms) after transmit

(b) Reflecting Surface at 4.11m

Figure 6: Experimental results showing the CDF of 200 sam-
ples and SRTL response with objects at known location, ad-
justed for measurement error (shown as the shaded area with
dashed boundary).

Similarly the actual detection time can vary by 2ms based on
the strength of echo.

We measure the physical distance with a HILTI PD-40
high-precision laser range-finder [11]. Accuracy is +1mm,
so we believe error in the distance measurement is minimal.
However, the most significant source of error is in our mea-
surement process when we approximate the angle for the
line-of-sight measurement between the piezoelectric crystal
located inside the transducer and the reflecting surface. This
measurement error is approximately £=2cm and results in a
corresponding delay error of about £0.5ms (with speed of
sound as 343m/s at 24° Celsius).

When comparing the ground truth to identified echos, we
have to reconcile the above independent errors, in both mea-
sured distance and echo location. In the figures, we show the
tolerance region that accounts for the worst case error in each
measurement. The identified location can safely be consid-
ered to match the ground truth if these regions overlap. Thus,
due to the resulting overlap of the error bounds, the tolerance
region varies on a case-to-case basis for each measurement.

4.2 SRTL Correctness

We first seek to confirm that SRTL can correctly identify
the location of a known reflecting surface: does our algo-
rithm and experimental setup match the physical configura-



tion of the world?

Since this experiment needs knowledge of the ground-
truth, we use the anechoic chamber to perform controlled
experiments. For this experiment we place a reflecting sur-
face perpendicular to the piezoelectric tweeters, measure its
distance and compute the expected delay. We take several
measurements (as described in Section 4.1) with the surface
at a particular location. Since there is only one reflecting
surface in the room, our algorithm should only identify the
bin corresponding to the measured distance. We then com-
pare SRTL’s estimate with our prediction from the physical
distance.

Figure 6 shows the result of our experiments for reflectors
at two different distances. Each figure combines three differ-
ent values: prediction from physics, all observations, and the
SRTL belief distribution. The dotted box indicates the pre-
diction from our distance measurements, including estimated
error. The solid black line represents the cumulative distribu-
tion function of delay values for all the samples considered
by SRTL, measured against the left axis. Finally, solid blue
bars represents the belief distribution (Bel;(H)) for each bin
in the 100ms sensing period (we show only the first 25ms
and omit the remainder since there is no belief there). Bin
indices are given on the top axis.

Figure 6(a) shows the result of our experiment with the
surface measured to be at 3.36m from the transmitter. The
sample CDF shows that nearly all samples are received at a
delay of 17ms, which corresponds to the fifth bin. SRTL is
able to identify this bin with complete confidence and we can
see that the identified bin lies within the error bounds of the
physically measured surface location.

Figures 6(b) shows results from the same experiment with
the surface at 4.11m (the seventh bin). We observe that the
bin identified by SRTL matches the location indicated by the
CDF and predicted by our range measurements.

From these experiments we conclude that we can com-
pletely explain SRTL performance under known conditions;
SRTL places known reflections in their correct bin as pre-
dicted by the physical setup.

4.3 Robustness to Noise

Although we verified that SRTL works as expected in per-
fect conditions, we also care about performance in the face
of environmental noise.

We investigate this question by adding an artificial noise
source to our experiments. This noise source is a second
modem that transmits tones that trigger non-echo tone de-
tections at our original sender (on which SRTL algorithm is
running). Our artificial noise source transmits tones repeat-
edly, with inter-transmission times chosen uniformly ran-
domly within a fixed interval. We then vary this interval
to adjust the degree of noise, with smaller intervals caus-
ing greater (more frequent) noise. Since timing of noise is
random, we expect SRTL to ignore such noise and still be
able learn detections from known surfaces. (We select this
noise model to provide simple, controlled tests. Exploration
of richer noise sources is an area of future work.)

We performed our experiments with different levels of
noise in both controlled and uncontrolled environments (ane-
choic chamber and laboratory). Figure 7 shows the result for
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Figure 7: Results of a controlled experiment (object at
3.87m) showing the CDF of 200 samples and SRTL re-
sponse, with varying levels of noise.

the controlled environment of the anechoic chamber.

The presence of a gradual slope in the sample CDF (the
solid black line) indicates the presence of noise. The slope
of the CDF indicates the level of noise; a steeper slope in-
dicate greater noise, as can be seen comparing Figures 7(a)
and 7(b). However, we observe that SRTL identifies the cor-
rect bin of the reflector even with substantial interference.
We looked at several noise levels, Figure 7(b) shows the case
where there are, on average, two noise triggers in each sam-
ple period for the single true echo. However, because noise is
randomly distributed, SRTL can suppress it and learn the true
echos. We conclude from this experiment that while SRTL
will learn its environment, it will not be fooled by competing
contenders (in the case of T-Lohi) or some levels of environ-
mental noise.

We anticipate that real-world noise and multipath will be
more complex, so we next reproduce this experiment in the
uncontrolled environment of our lab where bin identification
is more challenging for SRTL. Figure 8 shows the result of
our experiments. Over many experiments with and without
noise (not shown) SRTL detects two likely echos in bins 4
and 8. Although we do not know the ground truth surface,
these indicate empirically the presence of two reflecting sur-
faces.

Again, we see that the algorithm consistently identifies
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Figure 8: Laboratory experiment empirically find two sta-
tionary reflections with two levels of artificial noise.

these as self-reflection bins and is able to see through and
suppress random noise.

Our underwater experiments provide a final evaluation of
noise. Our preliminary tests in the Marina show tone trig-
gers every few milliseconds. Assuming a single reflecting
surface, this corresponds to 50 false triggers per sensing pe-
riod, far more noise than regular reflections. SRTL is unable
to track known surfaces with this level of noise. We are cur-
rently working to better characterize SRTL tolerance, and to
improve our wakeup receiver’s ability to filter brief noise in
hardware.

From the above results conclude that SRTL can tolerate
random noise up to at least two false triggers per true echo,
and shows the need to further characterize the limits of noise
tolerance. We do not characterize further due to hardware
limitation, but explore greater noise tolerance using simula-
tions in Section 5.2.

4.4 SRTL in a Changing Environment

Most underwater environment change, either due to tides
or currents, precession on an anchor, or movement of human
artifacts or fish. We therefore next wish to evaluate how well
SRTL adapts to a changing environment. Properly config-
ured, Bayesian learning can track changes in belief so we
expect SRTL to track changes in the environment success-
fully.

To investigate SRTL response to environmental changes,

we return to the anechoic chamber. We place a reflecting
surface at a known location (at 3.32m, corresponding to the
fifth bin). We then take twenty consecutive samples at that
location to train the SRTL algorithm to identify that loca-
tion with maximum confidence. We then move the reflecting
surface to a different location (4.11m, corresponding to bin
7) relative to the transmitter. We then observe how SRTL’s
belief distribution (about which bins are SR) evolves as it
collect additional observations. We expect SRTL to track the
changed environment and identify the new bin after incorpo-
rating a few samples. The decision threshold is set using the
mechanism described in Section 3.5.4.

Figure 9(a) shows how SRTL’s belief changes as it takes
more observations. Initially SRTL is certain that bin five is
the surface, but after 5 samples (the second figure from the
left), this believe begins to waver. At 10 samples it has be-
gun recognizing bin 7, the new location, as a self-reflection,
although it still remembers the old location. Finally, after
about 15 samples, SRTL has nearly completely shifted its
understanding of the environment. This experiment demon-
strates that SRTL will adapt to changes in environment. In
the next section we consider how SRTL parameter settings
affect this convergence time.

5 SRTL Parameter Sensitivity

The previous section describes experiments that show
SRTL works well, even with noise and environmental
change. SRTL has several parameters that affect its opera-
tion, including estimates of ND and TC events and choice of
bin size. We next evaluate how sensitive SRTL is to choice
of these parameters.

5.1 Estimates of Observation Errors

SRTL’s learning algorithms takes two parameters, p,q
and py., that are used to adapt its belief to new observa-
tions. In Section 3.4 we describe how these parameters
model our estimates of observation errors. To understand
how the parameters affect SRTL, we continue our experi-
ment with changing locations of reflecting surfaces first for
a controlled environment. We then reexamine parameter set-
ting for the more complex and uncontrolled laboratory envi-
ronment.

5.1.1 Parameter Choices: Controlled Dynamic Envi-
ronments

We next repeat the experiments from Section 4.4 where
we move the reflective surface. Figure 9 shows the result for
three different estimates of error probability.

We make four observations from these results. First, in
every case SRTL is able to adapt to the changed environ-
ment and identifies the new bin location (after 15 samples).
However, parameter choice affects the rate of adaptation and
the transient behavior.

For moderate and equal parameters (Figure 9(a), p,q =
0.4, p;e = 0.4), beliefs change relatively slowly. However,
when tone cancellation is lower than non-echo detection
(Figure 9(b), pyq = 0.4, p,e = 0.1), confidence in the old
bin decays quickly. So after 5 samples, neither bin is iden-
tified as self-reflective. We explain this result because a low
Prc means that cancellation is unlikely, so negative evidence
(absence of tone triggers in the old bin) is quickly accepted.
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Figure 9: SRTL response to change in location of reflecting surface from 3.36m (bin 5) to 4.11m (bin 7) with different input

parameters.

In Figure 9(c) we see the opposite case, with low non-
echo detections but likely cancellation (p,4 = 0.1, p;c =0.4).
Now new evidence is rapidly accepted (bin 7 is detected after
five samples), but old assumptions decay slowly. Here, a
low value of p,,; indicates a low-noise environment, SO new
triggers are quickly taken as echos.

Overall, we conclude that high p;. values act to damp the
response of our algorithm to missed reflections, while large
Pra dampens response to new bins. We believe that keeping
a moderate value of p,. is essential, because our lab exper-
iments that show that sometimes there are several consecu-
tive absent echos in even regular locations. Also, a moderate
value of p,; helps suppress short, transient noise. We there-
fore suggest moderate and equal values of both parameters
(like, pyq = 0.4, p;e = 0.4). We expect to review these set-
tings as we gather additional data from underwater experi-
ments.

Finally, detection theory allows one to trade certainty of
detection for time; we observe this tradeoff in the value of
parameters. Thus, a higher value of p;. confirms removal of
a reflecting surface slowly, but also increases accuracy as we
now do not react to transient changes.

5.1.2 Parameter Choices: Uncontrolled Environ-
ments

We have shown that balanced values are appropriate in a

controlled setting. We next evaluate their impact in the un-

controlled laboratory setting. To do so, we return to our lab-

oratory experiments with relatively complex multipath. We

performed experiments for a wide range of parameters sets,

including the ones shown in Figure 9. Figure 10, however
shows the results for two additional sets of parameters as
they depict an interesting case where the choice of parame-
ters becomes important.

Figure 10(a) shows response with moderate parameters
(pna = 0.4, p;c = 0.5). Here the algorithm identifies just a
single bin (bin 4) as self-reflective. However, the same ob-
servations but with (p,gs = 0.7, p;c = 0.7) causes SRTL to
also identify an additional bin (bin 11, Figure 10(b)). Which
parameter set is best?

The CDF of the observations suggest that both poten-
tial reflections are consistent reflection and above the noise
threshold. Thus it appears that the second parameter set with
high values is a better choice. However, a more detailed look
at the data shows that detections in bin 11 were consistent
at the beginning of the experiment, but after 160 of the 200
samples, detections in that bin became infrequent (just five
more times in the next 40 sample periods). These different
observations suggest that multipath changes even in an ap-
parently static room over a few minutes. (This change does
not show up in the CDF because it sums the entire experi-
ment.) We conclude therefore that the moderate parameters
are a better choice since they correctly dismiss the second
bin by the end of the experiment to reflect the change in en-
vironment.

5.2 Parameter Alignment with Environmen-
tal Conditions

Hardware limitations prevent us from introducing large

amounts of non-echo or tone cancellation noise in these ex-
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False Positive Ratio
False Negitive Ratio

02 04 06 ) 01 02 03 [ 5
Simulated noise probability Simulated probability of tone cancelation

(a) False Positives (b) False Negatives
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simulated noise and chosen noise estimates vary. Error bars
show 95% confidence intervals. (The y-axis starts below zero
to show values along the origin.)

periments. To study both types of noise, we simulate the al-
gorithm with artificial noise, allowing us to explore arbitrar-
ily high noise levels under controlled conditions. Our goal
is to understand what levels of noise cause SRTL to fail, and
how SRTL behaves when our noise estimates (p,q and py.)
differ from the actual amount of noise. Because of space lim-
its, we summarize simulation results here, while details can
be found in a technical report [29].

To observe false positives, we vary simulated (wake-up
tone triggering) noise in the environment. In Figure 11(a)
we fix both the simulated and algorithm parameters of tone
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Figure 12: SRTL belief for a single bin being SR for a worst
case scenario of reflection time alternating between adjacent
bins.

cancellation probability at 0.05, we then vary noise (the x-
axis) and observe the fraction of false identifications for dif-
ferent values of p,;. Figure 11(a) shows that the fraction of
incorrectly identified bins increases as the simulated environ-
mental noise increases. At greater than 80% noise, nearly all
bins are incorrectly identified as self-reflections; SRTL can-
not tolerate this level of noise. However, this exact threshold
is a function of our noise estimate p,,;, because larger esti-
mates make SRTL more skeptical that triggers indicate self-
reflections. In general, SRTL performs reasonably as long as
the estimate is at least as large as true noise, with some lee-
way when noise is low. Thus, with p,,; = 0.1, SRTL handles
up to 40% noise (the leftmost line), with p,,; = 0.4, it works
reasonably to 70% noise (the second line from the left). In
fact, with p,; = 0.9, there are only 10% false positives at
90% noise.

To observe false negatives we vary the simulated prob-
ability of a tone cancellation. In Figure 11(b) we fix both
the simulated and algorithm input values of noise detection
probability at 0.4. Figure 11(b) shows that the fraction of SR
bins that are SRTL fail to identify (false negative) increases
with the simulated tone cancellation probability. Just as with
false positives, performance is best when the estimate (py.)
is close to actual tone cancellation probability, but at low
levels SRTL will tolerate noise two or three times that esti-
mate. The main difference is that SRTL is less forgiving of
tone cancellation than noise. Because there are few echos,
moderate cancellation makes them difficult to identify. For-
tunately, as it is rarer for interference to completely suppress
channel energy, so cancellation is rarer than non-echo noise.

Thus we conclude that SRTL can tolerate a wide range
of noise in the environment, provided that corresponding es-
timates (both p;. and p,,;) are reasonable approximations.
Moreover, over-estimating the actual observation errors has
a lesser penalty than under-estimating these parameters.

5.3 Impact of Bin Discretization

SRTL uses discrete bins to track belief and provide effi-
cient and low-complexity operation even on mote-class de-
vices. Our final question is to explore how bin size affects
our algorithm. We have three concerns: bins that are too



small may disperse observations, bins too large may cause
echos to hide real tones from other transmitters, and even
with correctly sized bins, tones might fall on the border be-
tween two bins. Our observations about system sensitivity
(Section 3.5.5) limit our bins to at least 3ms, and we have
not seen drift by more than a few ms, so we believe our bins
are neither too large nor too small. We next look at echos
that lie on the border to investigate the worst case impact of
using such a low-complexity, low-memory implementation.

For a reflecting surface exactly on the edge of two bins,
minor observation jitter (hardware delays, software locks,
clock granularity, or simply very slight motion of either the
node or reflecting object) can easily move observations in ei-
ther direction. To simplify evaluation, we consider the worst
case scenario: each sample produces detection at an alternate
of two adjacent bins. We emulate this scenario by artificially
providing such a sample input to our SRTL algorithm.

Since the bins are symmetric, belief in each bin is identi-
cal. Figure 12 plots the belief in one of the adjacent bins as
more samples are incorporated by the algorithm using SRTL
for four different parameter sets. We see that combining
a low value of tone cancellation probability with a higher
value of noise detection prevents both bins from ever being
declared as SR bins (p,qs = 0.4,p;c = 0.1). This result is be-
cause low value of p,. implies any confidence is lost quickly,
while a higher value of p, 4 requires long time for new iden-
tification to be made.

Flipping these parameters results in an almost immediate
identification of both bins as SR bins (p,q = 0.1,p;c = 0.4).
This choice is very aggressive and thus inappropriate as a
small value of p,; makes for a higher possibility of false pos-
itives as discussed in Section 5.1. A more appropriate choice
of parameters is possible with both values at a moderate and
equal value such as 0.4 (as suggested in Section 5.1). In this
case the algorithm requires just six samples (three positives
for each bin) before successfully identifying both as being
SR bins.

The SRTL input parameters provide us with a fine-tuning-
knob to adapt our algorithm to the need of our environment.
The results in this section and Section 5.1 suggest setting
these parameters is more critical to the performance than the
decisions threshold, since belief increases exponentially with
positive reinforcements (so a threshold of 0.45 and 0.8 might
be reached in just one additional sample). Our results also
suggest that using moderate and equal values (for example,
0.4 and 0.4) for both noise-detection and tone-cancellation
events provides good performance. This combination damps
both the increase in confidence for a new bin as well as the
decrease in confidence for bin for which reflections come
and go.

6 Related Work

Our work on tone self-multipath is related to three ar-
eas: data multipath, echo-detection techniques, and Bayesian
learning. We next describe background for each related area
and highlight the novelty of our approach.

Combating the large multipath spread to achieve ro-
bust data communication is considered the most challenging
task of an underwater acoustic (UWA) communication sys-

tem [25, 3]. Coherent systems, bandwidth efficient for the
band-limited UWA channel, are much more sensitive (than
non-coherent systems) to this large multipath spread which
can result in inter-symbol or inter-chip interference. Sto-
janovic et al. were the first to propose a suboptimal, and
therefore less complex, Decision Feedback Equalizer (DFE)
jointly optimized with a Phased Locked Loop (PLL) that en-
abled coherent underwater communication [27]. Recently
Time-Reversal-Mirror (TRM) has also been considered as a
mechanism to handle multipath in an underwater environ-
ment [23]. Such existing physical-layer techniques, includ-
ing Rake receiver [20] or TRM [23], distinguish between
several copies of the same signal at a receiver. However, we
are faced with the challenge of self-multipath, where a trans-
mitter must identify echos of its own signal, while using low-
power acoustic tones, not the more energy consuming data.
We therefore require different approaches at the transmitter.

Perhaps the closest to our work are acoustic signal pro-
cessing techniques based on interpreting echos from the
environment, including echolocation, echo-sounding, and
sonar [13, 8]. While sonar is used to detect the presence of
obstacles for navigation [13], echo-sounder are widely de-
ployed for bathymetric data collection [2]. In both active
sonar and echo-sounding, sound pulses, often called “pings”,
are sent for echos detection that measures the distance to
a reflection surface. In these techniques signal correlation
or matched filters are used to disambiguate echos. Further-
more, sonar identifies targets by comparing echos with pre-
recorded signatures. However, such techniques are not de-
signed for energy-efficient applications. Underwater sensor-
nets use low-power, wake-up circuit that focus on energy and
cost-efficiency. Thus the wake-up circuit is a simple analog
part that precludes the use of any complex signal-processing
techniques. Our work tackles this unique problem of echo
identification for low-cost, low-power acoustic tone signals
by using the simple tone activation signal provided by such
devices to probe the medium and learn to accurately identify
echos.

Bayesian learning as a field builds upon the rich mathe-
matical history of Bayesian statistics. Bayesian learning uses
empirical data (collected by sensors) to progressively im-
prove estimates of system parameters [31, 10]. Researcher
have used Bayesian inference to learn complex CGI (com-
puter graphic imagery) models from human actors [10] as
well as to localize robots using landmarks [31]. The prob-
lem of self-multipath is unique for low-power acoustic tone-
based communications. We are the first to use Bayesian
learning mechanism to overcome the impact of such tone
echos within the constraints of low-cost, energy-efficient
hardware necessitated in underwater sensornets.

7 Future Work and Conclusions

Although this paper reports on extensive in-air experi-
ments, our most pressing area of future work is completing
our underwater experiments. We expect hardware revisions
in our version 3 modem will enable underwater experiments,
and we are very interested in confirming our choices under-
water.

There are several other possible future directions. Al-



though we focus on Bayesian approaches, other possibly
simpler approaches like exponential weighted moving aver-
ages, may also work. We also plan to integrate our approach
into T-Lohi. Finally we can use SRTL to suppress receiver
multipath of contention tones and explore using our algo-
rithm in conjunction with other application layer protocols
for underwater sensornets.

In this paper we first identified the issue of tone self-
multipath unique to the large propagation delays of acous-
tic networks. We then used T-Lohi as an example to show
that this delay can significantly reduce the throughput of our
MAC protocol. We then introduced a Bayesian learning al-
gorithm, Self-Reflecting Tone Learning (SRTL), that can be
used to learn-and-ignore these self-multipath or echo tones.
We performed experiments to verify that our algorithm is
correct, robust to noise, and can adapt to a dynamic envi-
ronment.
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