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Abstract—A number of different systems today detect outages
in the IPv4 Internet, often using active probing and algorithms
based on Trinocular’s Bayesian inference. Outage detection
methods have evolved, both to provide results in near-real-time,
and adding algorithms to account for important but less common
cases that might otherwise be misinterpreted. We compare two
implementations of active outage detection to see how choices
to optimize for near-real-time results with streaming compare
to designs that use long-term information to maximize accuracy
using batch processing. Examining 8 days of data, starting on
2021-02-26, we show that the two similar systems agree most of
the time, more than 84%. We show that only 0.2% of the time the
algorithms disagree, and 15% of the time only one reports. We
show these differences occur due to streaming’s requirement for
rapid decisions, precluding algorithms that consider long-term
data (days or weeks). These results are important to understand
the trade-offs that occur when balancing timely results with
accuracy. Beyond the two systems we compare, our results
suggest the role that algorithmic differences can have in similar
but different systems, such as the several implementations of
Trinocular-like active probing today.

I. INTRODUCTION

Businesses, schools, and governments rely on the Internet
for daily operations and communications [30], [26], [33].
Today the Internet is very reliable, in general, but outages do
occur, due to natural disasters such as hurricanes [19], [18],
human disasters such as wars [22], and everyday human error
at ISPs [29], [28], [8], [9].

Several groups measure Internet outages to understand In-
ternet reliability. Outage detection began with weather-focused
measurements [24] and today includes active measurement
of millions of networks in the IPv4 Internet [19], passive
analysis of darknet data [11], [12], and analysis of CDN
data [23], often processing in batches of an hour, days, or a
few months. Comparison of these different methods has shown
strong agreement of the core results [25], [23], but also pointed
conditions where outages are misreported [1], [23], prompting
algorithmic improvements that provided confidence to increase
coverage [4]. Often, resolving incorrect cases requires obser-
vations over longer periods of time (a few hours or days) and
from different vantage points, as more information can clarify
conditions that would otherwise be ambiguous.

Streaming outage detection can help assess disaster re-
sponse, often reporting data in near-real-time with updates
every ten minutes or so. As data is generated, streaming

systems quickly output estimates of the most recent state, often
in as little as 20 to 60 minutes. Today, websites report country-
wide [10] and geographic [3] outages in near-real-time. How-
ever, rapid (near-real-time) responses are incompatible with
algorithms that employ observations over hours or days.

Contributions: This paper’s goal is to quantify differences
between batch-processed and streaming outage detection. Our
first contribution is to directly compare batch and streaming
systems using the same observations and similar but not
identical algorithms. We find that batch and streaming agree
a great majority of the time (84%, Table III), suggesting
streaming results are generally trustworthy.

Our second contribution is to examine the causes of the
16% of differences. In particular, we want to understand when
differences are concentrated in specific types of networks, or
by which specific algorithmic choices. We show that actual
disagreements account for a very small fraction of time: only
about in 0.2% of overall duration do streaming and batch
outage report results differ. The remaining 15% of time only
one system reports, while the other reports it is uncertain about
network status. We show that most of these differences are
because streaming omits several algorithms that require long-
term data. These differences show the “cost” of near-real-time
reporting is a few false outages in specific blocks.

While our results are specific to comparing batch and
streaming results in two versions of Trinocular, we suggest
they provide insight into other outage detection systems as
well. They confirm the importance of specialized algorithms
to correct for conditions that occur in a few blocks that
would otherwise result in noticeable numbers of false outages,
confirming prior observations [23], [4]. They also suggest
that alternative implementations of Trinocular’s active probing
likely also will exhibit small but noticeable differences in
reporting. Such differences motivate careful comparison of
systems to build confidence in core results through indepen-
dent methodology, and to understand the conditions where any
algorithm (or omission of an algorithm) yields false results.

Data availability and ethics: All batch-processed data used
here is available at no cost [2], and we will provide the
streaming data for the period we analyze as well. Our work
poses no ethical concerns. We re-analyze existing data, and
since outage data begins with pings to specific IP addresses
(a potential privacy concern), we evaluate the data only at the
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block-level and thus, have no information about individuals.

II. REVIEW OF OUTAGE DETECTION

Our goal is to compare batch and streaming, near-real-time
(NRT) reports of Internet outage detection, to understand the
“cost” of running in NRT. For concreteness, we examine data
from Trinocular [19], an outage detection system operating
continuously since Oct. 2014. We next summarize Trinocular,
the specifics of its batch and NRT implementations, and how
these results apply to other outage detection systems.

II-A Trinocular’s Core Algorithms
Trinocular detects outages in millions of address blocks,

each a /24 IPv4 prefix, when active probes (ICMP echo re-
quests, or “pings”) no longer reach addresses in the block [19].
It checks the reachability of each of the approximately 5M /24
blocks every 11 minutes, a Trinocular probing round.

Each Trinocular observer minimizes the number of queries
it sends to each block each round based on Bayesian inference
assessing block reachability based on query responses and
its knowledge of long-term block responsiveness. Reducing
traffic to each block is designed to avoid any possible stress on
the target network—when published, each Trinocular instance
added only 1% to typical background traffic (and today, there
is much more background traffic on the Internet). Minimizing
traffic is also important to reduce time and traffic spent
measuring, so that one computer can easily reach 5M blocks
every 11 minutes. Trinocular sends between 1 and 16 queries
to each block each round, stopping when it is confident in
its assessment of block reachability. Typically one positive re-
sponse confirms the block is up, and requires several negative
responses to conclude the block is not reachable.

A complete system runs Trinocular observers from multiple,
physically distributed locations, then integrates the results.
By combining observations of the same target blocks from
multiple locations, it becomes possible to distinguish network
problems near the target block from problems near a prober.

In addition to the collection-time Bayesian algorithm,
Trinocular uses several algorithms (Table I) that integrate
information over time and space, sometimes changing specific
states.

II-B Algorithms In Batched Outage Detection
Trinocular began as a batch-processing system: each ob-

server would be started at a different site, where it would
run for days or months and saving its results locally [19].
Trinocular then fetches results from each observer and cen-
trally processes observations from all sites with all Trinocular
algorithms (Figure 1). Batching data retrieval and processing
is efficient, and batch analysis allows algorithms to consider
three months of observations at the same time.

Several of the Trinocular algorithms take advantage of this
long-term perspective to make the best decision about network
status for each instant. Sometimes these decisions consider
only a small time window: Hole-Filling resolves uncertainty
in one round by looking at the prior and next results. Other
decisions require more time: Full-Block Scanning evaluates

Trinocular
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probers (per site)

Input Output

Trinocular input 
files

per site (“raw”) outage 
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different sites
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Outages Format
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outages data from 6 sites merged outages data

Fig. 1: Flow chart detailing batch post-processing steps.

data from several rounds (enough to evaluate all measured
addresses in the block) before confirming an outage. Other
times, decisions require days or weeks of data to conclude:
the Gone-Dark algorithm replaces a week-long non-responsive
period with unmeasurable, meaning it requires at least a week
of measurements.

When processing a full quarter of data in a batch, algorithms
can easily consider as much time as needed to reach the best
possible conclusion. We consider batch-processed Trinocular
data as our best estimate of Internet status.

II-C NRT Streaming Outage Detection
When using Internet outage detection to assess an ongoing

event like a hurricane, one cannot wait three months for a batch
of results. We therefore implemented near-real-time streaming
outage detection (or just “streaming”).

Streaming outage detection uses the same Trinocular ob-
server and observations, but rather than writing results to local
disk, data is sent to the central site in near-real-time. Streaming
has several steps: a compressor runs with the observer, but
since most results are “no change”, it supresses duplicate
results for up to 90 minutes. Any change in block status is
sent immediately, plus one result every 6 h to confirm that
measurement of that block is ongoing.

At the central site, we reproduce the usual batch-processed
algorithms of precision improvement and multi-site resolution,
but with Kafka [16], a streaming framework. We then join the
results with geolocation to group networks in each physical
location, a 0.5, 1, or 2-degree latitude/longitude “grid cell”.
Updated results are written to a database, and a custom website
makes it easy to examine outage results, as shown in Figure 2.
The website updates in real time as new results arrive, with
updates appearing representing about 30 to 60 minutes in the
past (due to collection, forwarding, and processing times).

Because streaming emphasizes near-real-time reporting,
streaming omits algorithms that require examining hours or
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Algorithm Description Batch Streaming State State
Initial Post

Insufficient Site Detection ([19]) Mark blocks with fewer than three sites unkown up/down unkown
Gone-Dark ([19] §4.4) Mark long-term unresponsive blocks as unknown *§IV-C down unknown
Precision Improvement ([19] §4.5) Resolve outage start and end times that differ be-

tween observer in favor of the earlier time
slightly adjusts change
start and end time

Multi-Site Resolution ([19] §4.5; [4]) Resolve conflicting observers in favor of majority up/down majority
Hole-Filling ([14] §3.5) For blocks with lost replies, retroactively mark block

up if periods preceding and succeeding it are up
down up

Full Block Scanning (FBS) ([4] §3.1) Retroactively decide block status for sparsely respon-
sive blocks once all IP addresses are scanned

down up

Lone-Address-Block Recovery
(LABR) ([4] §3.2)

For blocks with a single active IP address, outages
become unmeasurable (treat it as a host problem)

down unmeasurable

TABLE I: Post-processing algorithms and their results.

Fig. 2: Our website https://outage.ant.isi.edu showing the onset
of the 2024-07-18 country-wide outage in Bangladesh [13].

months of data. In particular, streaming does not use Hole-
Filling, FBS, LABR, and Gone-Dark algorithms (Table I).

The absence of these post-processing algorithms are the
subject of our study: our goal is to see how much each
algorithm contributes to differences which can be seen in the
batch and streaming datasets. We examined Hole-Filling and
found it rarely activates, so we do not consider it further.

II-D Relevance to other active outage detection systems
The direct results of our work are specific to comparing

Trinocular’s batch and streaming implementations. There are
no other existing works on NRT outage detection and thus,
we focus on similar outage detection systems. However, our
general approach of comparing similar algorithms can also
be used to evaluate other Trinocular-like implementations of
outage detection using active probing.

We compare batch and streaming versions of Trinocular.
They are implemented by the same research group, and are
intended to provide near-identical results, although within the
limitation of near-real-time reporting for streaming. Our com-
parison of batch and streaming show that small algorithmic
differences change the outcomes, particularly for some blocks.

We are aware of at least two independent implementations
of Trinocular-like active outage detection; one is in IODA [10].
IODA uses Trinocular-inspired algorithms for active prob-
ing [7], but it reports results every 10 minutes. It is unclear if
IODA integrates results from multiple locations, or if it uses
all of the algorithms in Trinocular (see Table I). Given its
emphasis on near-real-time reporting, it seems unlikely that
IODA identifies Gone-Dark blocks or includes algorithms like
FBS and LABR added later to improve accuracy for sparse
blocks [5].

Although we have not compared to alternate implementa-
tions, the differences we observe here suggest that independent
implementations done from published papers are likely to
diverge in even larger ways. They suggest the importance of
directly comparing outcomes with the goal of converging on
the most accurate estimate of the true condition of networks.

These results also suggest the need to understand where
different measurement systems reach different conclusions,
possibly indicating one system is wrong, or indicating le-
gitmate ambiguity in what can be observed. We explore this
ambiguity in our examination of partial outages [5].

III. COMPARISON

We next compare the accuracy of batch and streaming
Trinocular and evaluate the effects of algorithmic differences.

III-A Datasets and Metrics
We evaluate existing batch and streaming data over 8

days, from 2021-02-26 to 2021-03-06 using publicly available
data [31], [32]. This timeframe was selected because it was the
most recent streaming data available at the time. Additionally,
we believe this is a representative sample as it lasts longer than
a week and outages are relatively rare. Figure 1 shows the steps
of batch processing, and Table I shows the algorithms that
batch and streaming each employ. We compare the accuracy
of streaming relative to batch as our best measurement of truth.

Table II shows possible outcomes of comparison. A block’s
status is always in exactly one of three states: up, down,
or unknown. In addition to agreement and disagreement, we
identify singleton and uncovered as outcomes when one or
neither can confirm the block’s status.

Metrics: When comparing accuracy, one can compare
outage durations or specific events. We generally prefer to
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streaming report
ba

tc
h

re
po

rt
up unknown down

up agreement singleton disagreement
unknown singleton uncovered singleton
down disagreement singleton agreement

TABLE II: Possible outcomes of comparison.

compare outage durations rather than events, because minor
differences in algorithms can easily create many differing
events, magnifying small differences.

We normalize outage durations in terms of block-seconds
per block-day (bs/bd). Block-seconds captures duration a
block in each of the states listed in Table II: agreement,
disagreement, singleton, or uncovered. Block-days capture the
total possible time: 5,233,827 unique blocks by 8 days. We
normalize block-seconds by block-days to compute bs/bd.

By normalizing, bs/bd captures the mean number of seconds
of difference, a number that has physical meaning independent
of how many blocks we measure (per block), and reduced
to a meaningful scale (per day). With an 86,400 s day, we
know that 10 bs/bd is a small amount, and 3,600 bs/bd is
one hour of disagreement. An alternative to bs/bd is to count
any differences as a different event. We do not count events,
because it weighs a trivial, one-second difference as much as
a day- or week-long difference.

We also evaluate the number of unique blocks that show any
differences, to identify if differences are pervasive or rare.

III-B Visualizing an Example Disagreement
Before we quantify differences between batch and stream-

ing, we first visualize a small example. We visualized all
outages in our study period, then selected outages for two
networks, each affecting more than 20 blocks, in Figure 3.

In the visualization (Figure 3), the top left and middle
images show outages that batch and streaming each report. In
the images, each horizontal line is a /24 block, colored when
it is unreachable, and white when it is reachable. Blocks are
grouped by similarity of timing of all batch outages seen over
the entire quarter [15]. Outages are colored by geolocation
of the blocks that are unreachable, mapping hue to longitude
and brightness (see our library [2] and a description [20]).
The result is that shades of light green are in east Asia, while
South America is different pinks. Block geolocation is from
MaxMind GeoLite [17], and organizations are from Whois.

We first consider the 23 pink blocks in the middle of the
batch and streaming figures, where two 5-hour outages are
separated by a 5.5 h period of reachability. (Specific addresses
are given in §A.) The first pink outage, marked (br-1), starts at
2021-03-02t07:00Z, and the second, (br-2), at about t18:00Z.
This outage occurs in AS263015 G7 Telecom Ltda, in Bahia,
Brazil and affects 23 /24 blocks in 5 different /16.

The second example outage is in green, marked (kr), with
an outage starting at 2021-03-02t08:00Z and lasting for 240
minutes. This outage occurs in AS17858 LG POWERCOMM,
in Seoul, South Korea, affecting 27 /24 blocks in 5 different
/16 (listed in the appendix). (We chose these examples arbi-
trarily after looking at many; they are similar to others.)

Comparing batch and streaming: Visually, the top left
and middle images in Figure 3 look similar, but the streaming
side has a number of long outages (horizontal lines at (long-1))
that do not occur in batch.

We highlight smaller differences in the bottom images. On
the bottom left, we show times when batch is down but
streaming is up, and on the bottom right, the opposite. In both
of the bottom graphs, colored areas show outages occurring in
the above dataset that do not appear in the other. The primary
difference we see in the bottom difference-graphs are that the
beginnings of batch outages are earlier than those in streaming,
for both the Brazilian and Korean outages, and the ends of
the Korean outage last longer in streaming. We also see the
short Brazilian outage around hour 38, labeled (br-3), occurs
only in streaming and not in batch. Finally, although the long
horizontal (labeled (long-1)) outages appear in streaming and
not batch, they do not appear in the batch-up/streaming-down
difference. We explain how these differences occur due to
algorithmic choices in batch and streaming, next.

III-C How different are batch and streaming?
We expect that differences in the algorithms applied in

Table I will produce differences in the outages reported by
batch and streaming. Because streaming implements a subset
of the algorithms, we expect it will be less accurate—we want
to know how much the accuracy “cost” of timely results is:
how different are batch and streaming? Does that difference
disproportionately affect certain types of blocks?

Another perspective is that we have added algorithms to
detect outages over time to address problems as we [1] and
others [23] discovered them. Since streaming implements only
the core Trinocular algorithm and omits these additions, we
expect differences to address the specific cases they identified.
This also implies that we expect batch and streaming will agree
for the majority of time.

III-D Overall Agreement Rate
III-D1 Overall Similarity: We find that batch and stream-

ing are in agreement for 72,829.28 bs/bd, or 84% of
each day (fraction: 0.8449, Table III, Cell a, Cell b). This
data confirms our hypothesis that, regardless of differing
algorithms, batch and streaming agree on block status for the
majority of time. This agreement shows that both batch and
streaming are similar for the majority of blocks and conditions,
even with just core algorithms. We explore agreement further
in §III-D2.

We find that batch and streaming produce differing
up/down results only 0.2% of the time (about 178.50 bs/bd
Table III, Cell f), specifically 0.002071 fraction of the time
(Table III, Cell g). This type of disagreement occurs in 0.05682
(Table III, Cell h) fraction of unique blocks, indicating that
only a small number of blocks are affected by disagreements.
We will explore these disagreements further in §III-D3.

In addition to disagreements where batch and streaming
reach different conclusions, there are two other cases where
only one has a conclusion: singletons occur because either
batch or streaming does not report when the other does, and
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Fig. 3: Visual representation of outages from 2021-03-01T22:00Z to 2021-03-03T20:00Z from batch and streaming datasets.

Block Status Events Total Time Unique Normalized Fraction Fraction Fraction Non- Root
( Block- Blocks Time of Time of Unique Agreement Transient Cause

Seconds) (bs/bd) Blocks Time Disagr.
Total Duration 3,852,661,900,000

Covered Duration 19,464,390 3,609,321,639,731 5,233,827 86,201.78 1.000 1.000
Agreement 6,516,996 3,049,406,768,513 4,668,538 72,829.28a 0.8449b 0.8920 1.000

Batch-up, Streaming-up 6,207,295 3,038,033,977,803 4,666,558 72,557.66 0.8417c 0.8916 0.9963
Batch-down, Streaming-down 309,701 11,372,790,710 139,739 271.62d 0.003151 0.02670 0.003730e

Disagreement 1,704,019 7,473,715,613 297,373 178.50f 0.002071g 0.05682h

Transient 251,184i 81,682,109 128,454 1.95j 0.00002262k 0.02454l

Batch-up, Streaming-down 187,963 61,884,831 111,849 1.48 0.00001717 0.02137
Batch-down, Streaming-up 63,221 19,797,278 50,900 0.47 0.000005452 0.009725

Non-transient 1,452,835 7,392,033,504 244,419 176.55m 0.002048n 0.04670o 1.000
Batch-up, Streaming-down 1,215,907 6,160,159,217 210,812 147.12p 0.001707 0.04028 0.8333q FBS
Batch-down, Streaming-up 236,928 1,231,874,287 113,237 29.42r 0.0003413 0.02164 0.1666s

Singleton 11,204,260 552,149,122,098 5,233,827 13,187.03t 0.1530u 1.000
Batch-up 9,568,835 121,933,463,217 4,629,220 2,912.15v 0.03378w 0.8845x

Batch-down 55,162 521,384,397 47,319 12.45y 0.0001444z 0.009041aa

Streaming-up 408,819 16,228,286,159 166,942 387.58 0.004496 0.03190
Streaming-down 1,171,444 413,465,988,325 700,588 9874.85 0.1146 0.1339 LABR/G.D.

Uncovered 39,115 292,033,507 32,515 6.98ab 0.00008097 0.006213

TABLE III: Fraction of total time in seconds of block decision status with original post-processing algorithms applied.

uncovered time arises when neither batch nor streaming report.
Together, singletons and uncovered time are responsible for the
remainder (about 15.8%) of the 16% of non-agreement time
not due to disagreements.

Specifically, singletons account for 3.7 h per day, approxi-
mately 74× the bs/bd of actual disagreements. This indicates
that reporting differences are the primary source of most non-
agreement time. We show singletons are a direct result of
the application of LABR and Gone-Dark algorithms in §IV-B
and §IV-C. Uncovered time, on the other hand, contributes
much less, approximately 0.1 minutes per block-day (Table III,
Cell ab). This relatively small daily fraction is likely a result

of startup differences between batch and streaming.

III-D2 Are there differences in agreements?: The majority
of time (84%) both batch and streaming agree that the block is
up or down. We expect that the majority of these cases report
a block as reachable since the Internet is generally reliable §I.
A large quantity of down agreements would indicate that there
is widespread presence of outages during this period (such as
during the Covid-19 pandemic [27]).

Batch and streaming report that a block is up for 0.9963
(Table III, Cell c) of agreement time, and report the block
down for 0.003730 (Table III, Cell e) fraction of agreement
time. This data validates our hypothesis and confirms prior
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results that outages are relatively rare occurrences, occuring
much less than 1% of the time (§I, and [19], [23]).

We also observe that agreement that the block is down is not
very common, accounting for 271.62 bs/bd (Table III, Cell d),
which makes sense as outages are quite rare.

III-D3 How often and why do batch and streaming dis-
agree?: Disagreements account for a tiny percentage of time
(about 0.2%), yet they can provide valuable information on
the role the algorithms that comprise outage detection play.

There are two types of disagreements: transient and non-
transient. Transient disagreements are defined as those last-
ing less than one round (11 minutes), because such brief
disagreements occur due to different probing times when
measuring outage start and end. Transient disagreements are
fairly common (251,184 events (Table III, Cell i)), but account
for little time because they are, by definition transient (short
lasting). Additionally, we see transient disagreements in about
2.5% of unique blocks (Table III, Cell l), consistent with prior
observations that only a few blocks fail the main Trinocular
algorithms [4] although those few blocks produce many incor-
rect events [23]. Such measurement outages are expected in
any measurement system; we discuss their causes in §III-F.

We classify disagreements longer than one Trinocular round
as non-transient. Non-transient disagreements must indicate
differences in algorithmic post-processing; we expect them to
occur and study them to understand the roles the different
Trinocular algorithms play. We expect non-transient disagree-
ments to occur in relatively few blocks because both batch
and streaming use the same Trinocular algorithms for common
outage cases. We confirm this hypothesis, as non-transient
disagreements occur in only 4.6% of blocks (Table III, Cell o).

When examining non-transients, we expect that non-
transient disagreements will only account for a small fraction
of total time §III-C. We find that batch and streaming experi-
ence non-transient disagreements for 176.55 bs/bd or 0.002048
fraction of time (Table III, Cell m, Cell n). This validates our
hypothesis and demonstrates that non-transient disagreements
are likely due to algorithm activation on edge cases §III-C.

III-E Batch is more responsive than streaming

Overall block up-time is larger for batch than for streaming.
Obviously, the time that they agree is the same, but when we
look at non-transient disagreements, batch-up/streaming-down
is 5× larger than batch-down/streaming-up (Table III, Cell p
and Table III, Cell r). In addition, 3% of overall time is batch-
up singletons (more than the small 0.0045 fraction of time
that is streaming-up singletons), and large fraction (11%) of
overall time is streaming-down singletons (Table III, Cell t).

The trend that batch is more responsive than streaming is
because batch-only processing uses three algorithms (FBS,
LABR, and Gone-Dark) to correct mistaken down-time to
either up or non-responsiveness [4]. Of these algorithms, FBS
changes a down report to up, resulting in a batch-up/streaming-
down disagreement. LABR and Gone-Dark change down
to unknown, making it a streaming singleton. Since these
algorithms change down to up or unknown and none change to

down, we would expect batch to have a greater number of up
decisions than streaming. Therefore, we hypothesize that the
majority of non-transient disagreements will be where batch
reports a block as up, while streaming reports a block as down.

To put these values into context of non-transient disagree-
ments, we now only consider non-transient disagreement val-
ues. We find that batch and streaming report that a block
is up for 0.8333 (Table III, Cell q) fraction of non-transient
disagreement time, while they report that a block is down for
0.1666 (Table III, Cell s) fraction of non-transient disagree-
ment time. Thus, we were correct that the majority of non-
transient disagreements are batch-up, streaming-down. This
skew can be seen in Figure 3 where there are far more lines in
the batch-up/streaming-down image. It indicates that a large
percentage of non-transient disagreements are explained by
algorithms correcting block decisions to up. This result is
positive, showing the algorithms correct a relatively small
number of edge cases.

We explore the sources of different disagreements in §IV.

III-F Accounting for Timing

Trinocular actively probes about 5M IPv4 networks every 11
minutes from six independent sites [19], and combining these
results can lead to timing differences that are typically smaller
than one round. Trinocular makes no attempt to synchronize
probing between sites, and although each has the same target
list, they start at different times and run at different rates
because sites typically see different responses. Both batch and
streaming merge observations from different sites, and apply
the precision improvement algorithm to maximize sensitivity,
reexamining responses that occur in the same round by assum-
ing the last positive response and the first positive response are
the most accurate timing bounding an outage. Each separate
observer also “votes” to resolve when some sites consider the
block reachable or not, but batch can retroactively adjust the
outage start time, while streaming cannot.

These algorithmic differences in batch and streaming result
in short-term timing differences in outage start and end time—
we call these transient differences. Such differences are always
less than 11 minutes, since all sites should complete probing
sometime in each 11-minute window. We next look at the
effects of these transient differences to isolate significant, long-
term disagreements between batch and streaming. We expect
transient differences to be present, but not very large.

We identify transient disagreements in Table III, and see
that they account for 1.95 bs/bd and 0.002% of overall time
(Table III, Cell j, Cell k).

This data confirms our hypothesis that transient differences
are small. They reflect the cost of the finite precision present in
any real-world measurement system. We therefore ignore these
small differences and focus on larger algorithmic differences
in the next section.

IV. EFFECTS OF BATCH-SPECIFIC ALGORITHMS

While batch and streaming agree the majority of the time
(about 84%, Table III, Cell b), we see disagreements about
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Block Status Unique Evts. w/Diff. Fract. Non- Single-
Blocks Count transients tons

Samples 50
Difference Event 50 488ac 1.0

Transient 23 43 0.1
Batch-up, Streaming-down 21 33
Batch-down, Streaming-up 8 9

Non-transient 40 249 0.5ad 1.0
Batch-up, Streaming-down 32ae 200 0.80af

Batch-down, Streaming-up 23 49 0.20
Singleton 50ag 196 0.4ah 1.0

Batch Singleton 46ai 86
Batch-up 44 77 0.39
Batch-down 8 9 0.05
Streaming Singleton 31 110

Streaming-up 10 31 0.16
Streaming-down 21 79 0.40

LABR 18 75aj

Gone-Dark 4 4ak

TABLE IV: Event differences in 50 sample blocks.

0.2% (Table III, Cell g) of the time, even after we account for
minor timing differences (§III-F). These differences are due
to additional algorithms that run only in the batch system.

To understand where these algorithms are used and why,
we next examine a random selection of 50 blocks in batch
and streaming, and look at specific events where that block
shows differences between them. Table IV classifies the 488
differences in these 50 blocks (Table IV, Cell ac). (We look at
specific events rather than blocks because a single block can
be affected by different algorithms at different times.) This is
why the number of unique blocks at each block status does
not sum to 50, as various types of difference events may be
present in the same blocks at different times.

IV-A Full-Block Scanning: Handling Sparse Blocks
We first look to events where batch is up and streaming is

down in Table IV. These differences are due to the Full-Block
Scanning (FBS) algorithm.

FBS is designed to correct false outages in low-activity
blocks [4]. False outages occur in a low-activity block because
it is easy to probe several unoccupied (or non-responsive)
addresses and conclude the block appears unreachable, a false
outage due to an incorrect conclusion from Bayesian inference.
FBS addresses this condition by detecting low-activity blocks
based on estimates of long-term activity, then subjecting such
blocks to a second requirement before concluding they are out.
For such blocks, even if basic Trinocular concludes the block
appears down, FBS withholds judgement until all addresses
(the “full block”) have been scanned with a negative result
before concluding an outage is legitimate. Since Trinocular
limits how many addresses are scanned per round (up to 16),
the FBS check can take several rounds after the block is
tentatively declared as down. In batch mode, if any of those
rounds show activity, the block is retroactively marked as
reachable and the apparent outage is never reported. Streaming
model currently lacks the ability to go back in time to fix a
false outage, so it does not run the FBS algorithm. For this
reason, FBS runs only in batch mode, and FBS-detected blocks
can result in batch-up/streaming-down disagreements.

FBS accounts for all batch-up/streaming-down disagree-
ments because it is the only algorithm that converts down re-

sults to up (LABR and Gone-Dark convert down to unknown).
In Table IV we see that about 40% (Table IV, Cell ad) of
the events are non-transient batch-up/streaming-down. These
events occur in 32 blocks (Table IV, Cell ae). We confirmed
that 34 of the 50 sample blocks with errors, and 30 of these
32 blocks with this error, have long-term low-availability. (We
measure availability as the probability any expected responsive
address responds, the A value [19]. These blocks have A <
0.2.) This observation affirms that FBS accounts for 80% of the
non-transient difference events that we see (Table IV, Cell af).
Furthermore, of the differing algorithms, FBS can be attributed
as the largest source of decision reversals.

We see the impact of FBS in Figure 3. The outage la-
beled (br-3) appears in the streaming (top middle) and batch-
up/streaming-down (bottom right) images, but not in the batch
image (top left), demonstrating that streaming originally found
the block as down but FBS reverted it to up.

IV-B LABR: From False Outages to Singletons

Next, we will examine the streaming-down singleton cate-
gory and identify which and how many are due to LABR.

The LABR algorithm handles blocks with only one or two
active addresses [4]. In a block with only one active address,
a computer reboot or packet loss make the block appear to
be inactive. Originally, Trinocular refused to report statistics
for blocks with 15 or fewer active addresses. LABR proposes
accepting such blocks as up when they respond, but mapping
a non-response of a block with a single active address to
unknown. (When the block has multiple active addresses, it
can be handled without LABR.)

LABR runs only in batch Trinocular, where it maps lone-
address blocks from outages to unknown. In streaming, these
events are recorded as outages. When comparing batch and
streaming, “unknown” is neither up nor down, so LABR
creates singletons, with batch not reporting and streaming
down.

Singletons have a large effect: accounting for 13,187.03
bs/bd (Table III, Cell t), 15% of overall time (Table III, Cell u),
and 40% (Table IV, Cell ah) of events. Additionally, they
are present in all 50 sample blocks (Table IV, Cell ag). The
examples in Figure 3 labeled (long-1) show how such a large
amount of block-time can accumulate in this category: these
lone-address blocks are often non-responsive for a long time.

To identify LABR, we studied streaming-down singletons
and record where there was 1 or less active IP addresses. We
find that LABR is responsible for 75 of the 79 streaming-down
events (Table IV, Cell aj). This observation affirms that LABR
accounts for the majority of streaming-down singleton events
that we see.

LABR was designed to smooth over short-term uncer-
tainties, however, while analyzing these blocks, we noticed
relatively large durations, often lasting days. It is worth noting
that this does appear to be a bug in LABR, but does not
drastically impact our results.

We believe that LABR accounts for most of the differences
labeled (long-1) in Figure 3—these long-term outages in
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Block Status Events Total Time Unique Normalized Fraction Fraction Fraction Non- Root
( Block- Blocks Time of Time of Unique Agreement Transient Cause

Seconds) (bs/bd) Blocks Time Disagr.
Total Duration 3,852,661,900,000

Covered Duration 20,399,975 3,726,365,651,765 5,233,827 88,997.15 1.000 1.000
Agreement 7,019,912 3,358,727,610,933 5,117,036 80,216.82 0.9013 0.9777 1.000

Batch-up, Streaming-up 6,207,295 3,038,033,977,803 4,666,558 72,557.66 0.8153 0.8916 0.9045
Batch-down, Streaming-down 812,617 320,693,633,130 616,403 7,659.16 0.08606 0.1178 0.09548

Disagreement 1,729,930 8,531,482,027 311,422 203.76 0.002290 0.05951
Transient 253,961 82,590,945 130,889 1.97 0.00002214 0.02501

Batch-up, Streaming-down 187,963 61,884,831 111,849 1.48 0.00001663 0.02137
Batch-down, Streaming-up 65,998 20,706,114 53,549 0.50 0.000005618 0.01023

Non-transient 1,475,969 8,448,891,082 256,924 201.79 0.002267 0.04909 1.000
Batch-up, Streaming-down 1,215,907 6,160,159,217 210,812 147.12 0.001653 0.04028 0.7291 FBS
Batch-down, Streaming-up 260,062 2,288,731,865 128,782 54.66 0.0006142 128,782 0.2709

Singleton 11,623,398 254,739,432,142 5,233,827 6,083.97 0.06836 1.000
Batch-up 9,568,835 121,933,463,217 4,629,220 2,912.14 0.03272 0.8845
Batch-down 1,000,802 13,490,303,275 529,059 322.19 0.003620 0.1011
Streaming-up 384,213 15,170,519,745 148,604 362.32 0.004071 0.02839
Streaming-down 669,548al 104,145,145,905 224,122 2,487.31 0.02795 0.04282 LABR (long-2)

Uncovered 26,735 221,980,758 22,011 5.30 0.00005955 0.004206

TABLE V: Fraction of total time in seconds of block decision status with retroactive Gone-Dark applied to streaming.

streaming (top middle) are not outages in batch (top left),
and do not appear as differences in batch-up/streaming-down
because batch cannot confirm they are up.

IV-C Gone-Dark: Long-Term Outages

Finally, we will explain why the remaining streaming-down
singletons are due to application of Gone-Dark [1].

The Gone-Dark algorithm serves to handle blocks with
long-term unresponsiveness. Trinocular would originally map
these blocks to non-responsive, or down, wasting valuable time
and resources sending probes to these blocks. Instead, Gone-
Dark maps these blocks to unknown and only begins probing
again when the census denotes that it is active (every 2–
3 months). We expect this algorithm only to affect a small
number of blocks, since long term outages are uncommon.

Similar to LABR, Gone-Dark turns batch-down events to
unknown. As a result, we further examine streaming-down
singletons and the duration of the events to identify application
of Gone-Dark. Table IV shows that Gone-Dark is applied to
4 out of 50 sample blocks, and is responsible for 4 of 79
streaming-down events (Table IV, Cell ak).

As described in §IV-B, when looking at Figure 3, we expect
the majority of outages labeled (long-1) to be a result of LABR
rather than Gone-Dark. This is because Gone-Dark is only
applied when an outage lasts longer than one week. However,
there are a few outages that started before or ended after the
time period displayed in these images, making it possible that
a few are due to Gone-Dark.

To verify this hypothesis, we reversed the application of the
Gone-Dark algorithm on batch by changing blocks labeled as
unknown to batch-down. We expect this to cause an increase in
the number of batch-down/streaming-down agreement events
and a decrease in the number of streaming-down singleton
events. As shown in Table V, our hypothesis is correct:
the number of batch-down/streaming-down agreement events
increased by 38% and the number of streaming-down singleton
events decreased by 43% (Table V, Cell al). This suggests
that while Gone-Dark did contribute to the occurrence of
streaming-down singleton events, LABR, the only other algo-

rithm that produces streaming-down singletons, is the source
of more than half of them (the remaining 57%).

We choose to visualize this difference in batch and compare
them to the original batch and streaming images in Figure 3.
We can see at (long-2) that there are additional long outages
that appear in the batch image where Gone-Dark is not applied
(top right) that are not present in the original batch image
where Gone-Dark is applied (top left). Not all long outages
are “brought back”, such as the magenta outage below (long-
1) in the streaming image. This is because their absence is due
to LABR, which is not remedied when we “unapply” Gone-
Dark.

We can also verify that Gone-Dark was correctly “unap-
plied” as each of the newly appeared long outages touch either
the right- or left-hand border of the image. By touching the
border of the image, these outages likely last longer than the
time period shown, and in the case of Gone-Dark, they last
longer than one week.

IV-D What is the cause of batch singletons?

We finally consider batch singletons. Batch singletons in-
dicate that the streaming record was originally marked as
unknown, yet there is some algorithmic difference that leads
batch to have enough information to report a decision. This
could happen if multiple sites are behind in reporting either
because it is slow or has a large burst of changes. Since
streaming’s purpose is to run in near-real-time, there is a limit
on how much time it can wait on any site which has fallen
behind. In streaming Trinocular, this limit is set to 3 probing
intervals or 33 minutes. If any sites are still behind after this
wait, the decision is made on the data available from the sites
that are current. Batch does not experience this problem as it
does not have to sync streaming in real time. Thus, batch has
all data available for all the sites from the start to generate
either a batch-down or batch-up decision.

We find that batch singletons account for 3% of overall time
and 2,924.60 bs/bd (Table III, Cell v, Cell y, Cell z, Cell w).
These findings indicate that sites become out-of-sync for a
small portion of time, although often, as they occur in 89%
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of unique blocks and account for almost half of all events
(Table III, Cell x, Cell aa).

V. IMPLICATIONS AND FUTURE DIRECTIONS

The goal of our paper was to compare two outage de-
tection systems with different goals: NRT streaming strives
to provide reasonable answers quickly, with batch processing
using months of data to provide the most accurate possible
answers. Even though both systems are implemented by the
same group and use the same core algorithms, the ability
to see months of data allows batch processing to implement
additional algorithms (see Table I).

While a comparison seems straightforward, it is compli-
cated for several reasons. First, both systems are careful to
report results when confident, while omitting results when
observations are uncertain, making “no comparison possible”
(singleton reporting) a possible outcome alongside agree and
disagree (see Table II). Second, alignment of observations
and processing results in slightly different timing (§III-F),
and failing to account for these differences produces transient
differences (differences that reflect measurement imprecision)
rather than meaningful differences.

Overall Implications: Our overall conclusion is that both
systems are quite similar with a tiny 0.2% overall dis-
agreement (177 s per day) when both systems report. This
extremely small difference is a reasonable tradeoff to provide
both near-real-time and highest quality results.

The work also emphasizes where we should expect dif-
ferences. Both batch and streaming report “unknown” when
they cannot reach a conclusion with confidence, and about
15% of time only one system is confident (nearly 3.7 hours per
day!). For most of this time (2.7 hours), only streaming reports
down, while another 0.8 hours batch reports up, so streaming
slightly over-reports outages in cases where batch confirms
reachability or lack of enough information. The implication
is that streaming results need to be used with care, and batch
results should be employed where accuracy is critical. For
example, streaming is ideal for reporting what is happening
now, but batch should be used to assess improvements in
overall reliability.

Implications for batch: Our study supports the need to
continue batch processing for highest accuracy. Although
the batch-up/streaming-down case is tiny across the whole
Internet (only 147 bs/bd, about a 2% error), this error is
significant for specific blocks. This problem was highlighted
when one considers disagreements by event rather than by
time, and the initial analysis [23] prompted the additional al-
gorithms currently in batch [4]. It also highlights the challenge
of distinguishing outages due to failures from long-term ISP
changes, something the Gone-Dark algorithm, and more recent
ISP Availability Sensing [6] do.

Implications for NRT streaming: This work also shows
the need for NRT streaming for rapid results to support
operational uses that cannot wait. We confirm that streaming
is quite close to batch, at least for the overall network. Our

work also shows where one should be skeptical of streaming’s
claims.

An important implication for streaming is the need to sup-
port post-facto result correction. We have considered reporting
initial results in streaming, then later going back and correcting
those results as we gain a longer perspective. Such a change
requires the ability to “undo” claims in the database storing
streaming results.

Implications for other systems: Our result confirms the
need to carefully validate independent implementations,
even those that use the same conceptual algorithms. Minor
differences in implementation will result in different outcomes,
and if those differences are concentrated on certain blocks,
one must understand the implications to be able to trust the
results of new systems. This work suggests an ongoing need
to validate outage detection systems against public data. As
one example, to our knowledge, while IODA’s active probing
uses an independent re-implementation of Trinocular’s core
algorithms, without the results of a quantitative comparison we
cannot know how much effect any implementation differences
have on IODA accuracy.

Implications for the evolution of outage detection: Finally,
our work shows the results of a decade of work on outage
detection [19], [21], [1], [4], [6] by multiple groups [19],
[25], [23], [12]. As the approach of active outage detection
has matured, we have added algorithms to improve handling
of additional cases (Table I). To the extent that streaming rep-
resents the core algorithms from 2013 and batch captures the
algorithms as of 2020, our comparison confirms the role those
additions play in handling corner cases. Our analysis here
does not consider the most recent proposals from 2024 [6],
but shows the need to track the evolving state-of-the-art to
provide the best possible accuracy. It also motivates the need
to back-port new algorithms to streaming systems.

VI. CONCLUSION

Several outage detection systems exist today. We compared
two with a common heritage, one providing near-real-time
streaming results, and the other using batch processsing with
algorithms to improve accuracy. We found broad agreement
(about 84%) between the two. Explicit disagrements are quite
rare, less than 0.2% of the observation time, but 15% of
the time only one system reports because the other cannot
confidently state a conclusion. Our results show that streaming
can provide mostly correct responses quickly, but batch pro-
cessing with all algorithms is important to provide the highest
accuracy. Our work shows the many details that must be
considered to emphasize meaningful differences in conclusion
rather than measurement details, showing the importance of
careful validation and tracking of state-of-the-art approaches.
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APPENDIX

These are the IP addresses associated with the blocks
visualized in Figure 3:

Brazilian Blocks (pink)

170.0.212.0
170.0.213.0
170.0.214.0
170.0.215.0
170.83.252.0
170.83.253.0
170.83.254.0
170.83.255.0
177.137.120.0
177.137.121.0
177.137.122.0
177.137.123.0
177.137.124.0
177.137.126.0
177.137.127.0
186.227.177.0
186.227.179.0
186.227.180.0
186.227.181.0
186.227.182.0
186.227.183.0
190.83.94.0
190.83.95.0

South Korean Blocks (green)

115.139.76.0 122.47.10.0
116.44.62.0 122.47.68.0
116.44.158.0 124.58.176.0
116.45.80.0 124.58.200.0
122.36.44.0 124.58.224.0
122.44.210.0 179.186.185.0
122.44.224.0 122.45.170.0
122.44.240.0 122.45.202.0
122.44.246.0 122.45.234.0
122.45.224.0 122.45.244.0
122.45.230.0 122.46.20.0
122.46.36.0 122.47.32.0
122.46.82.0 122.47.40.0
122.47.4.0
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