Application-Based Collision Avoidance in Wireless Sensor Networks

Thanos StathopoulosJr

John Heidemann

Rahul Kapur]L

Deborah Estlrin]L

Lixia Zhaung]L

'i' UCLA, Department of Computer Science

TUSC, Information Sciences Institute

T I
{thanos,rkapur,destrin,lixia}@cs.ucla.edu, johnh@isi.edu

Abstract

Wireless sensor networks are characterized by col-
lections of small, low-power nodes that collect informa-
tion about the physical world. Concurrent transmissions
caused by the well-known hidden terminal problem re-
sult in collisions and packet corruption. Since corrupted
packets must be retransmitted, collisions add an addi-
tional burden to the already energy constrained system. In
this paper, we present an application-based approach to
collision avoidance. We propose two specific algorithms;
the first one follows TCP’s congestion avoidance algo-
rithm and adjusts the transmission rate when a collision
occurs, while the second one shifts packet transmission
times to minimize collisions. We evaluated both algo-
rithms through simulations and our results show that our
approach can reduce the number of collision-induced re-
transmissions by a factor of 8 and the energy consump-
tion by up to 50%.

1. Introduction

Wireless sensor networks consist of collections of
small, low-powered nodes that interface or interact
with the physical environment. Once deployed sensor
networks are expected to operate for extended peri-
ods of time without any human intervention. Substan-
tial research effort has been directed toward increas-
ing network lifetime by reducing radio communication,
the largest source of energy drain.

In general, collisions on wireless networks can be a
major source of increased latency and packet retrans-
mission. When collisions occur on energy constrained
wireless networks, extra latency and retransmissions
equate to excess energy consumption. On the mote
platform, energy is at a premium, therefore collision

avoidance can increase the overall lifetime of the net-
work.

Current sensor network solutions attempt to solve
the collision problem in the MAC layer, by either using
TDMA [11] or an RT'S/CTS mechanism [13]. However,
MAC-layer solutions cannot easily exploit application-
specific knowledge—mnor do they attempt to. Given a
particular class of applications, a collision avoidance
mechanism that takes advantage of domain-specific
knowledge can supplement and augment the perfor-
mance of the MAC layer.

In developing a collision avoidance scheme it is ben-
eficial to partition wireless communication into two
types: single-packet and multi-packet. In single-packet
communication, previous packet arrivals provide no in-
formation about future ones; in essence, arrivals are
random. In multi-packet communication the existence
of a ‘next’ packet is inferred by definition. There is
now a correlation between previous arrivals and future
ones. It is in this communication space that a general
heuristic can be applied for collision avoidance. In this
paper we explore various approaches to application-
layer collision avoidance. Qur algorithms are specifi-
cally targeted for applications with multi-packet com-
munication. We have used Multihop Over-the-Air Pro-
gramming (MOAP) [10], a code distribution mecha-
nism specifically targeted for Mica2 nodes [6], as a sam-
ple application on which to develop our algorithms.

Our design focuses on two methods. In the informed
TCP-like approach, the receiver informs the source of
a collision-induced loss. The source then reacts by mul-
tiplicatively decreasing its transmission rate. If no col-
lisions are detected, then the source can increase its
rate, thereby achieving lower latency over a static ap-
proach. In the phase offset approach, the source trans-
mits at a constant rate. The receiver records packet ar-
rivals and attempts to calculate the largest silent period

between two consecutive packet transmissions. When a
collision occurs, the receiver passes that information to
the source which then changes its transmission phase
to match the largest silent period.

We compare and evaluate our algorithms using sim-
ulations. We show that, compared to a base case, in
which sources transmit as fast as possible, our meth-
ods can decrease the number of collision-induced lost
packets a factor of 8 and reduce additional energy con-
sumption on the source by 50%.

2. Problem Description

In the MOAP dissemination protocol, code is
first injected into the network from a specific node,
called the original source, and then disseminated on
a neighborhood-by-neighborhood basis. A neighbor-
hood is a collection of nodes sharing a common broad-
cast domain. A publish-subscribe mechanism is used
to initiate the code transfer. Once a receiver ac-
quires the entire code image, it attempts to become a
source by sending publish messages. Each node inter-
ested in receiving the new code will reply with a sub-
scribe message. A node will not disseminate the code
any further if it has no subscribers. This ripple-like dis-
semination guarantees that, in the absence of a per-
manent network partition, the new code will reach all
the nodes.

Even though MOAP tries to minimize source over-
lap by requiring sources to have at least one subscriber
in order to be active, some of the neighborhoods can
still partially overlap in both space and time. The re-
ceivers located in the overlap area will receive data
from their primary source while overhearing transmis-
sions from other background sources. The primary and
background sources for these receivers may not be in
transmission range of each other, however they create
packet collisions at the receivers. Consequently, these
corrupted data packets lead to retransmissions.

In resource-constrained wireless sensor net-
works, packet transmissions are among the most
energy-demanding operations (approximately 20uAh
per packet [9]). Thus one effective means to reduce en-
ergy consumption is to reduce collisions. Collisions
can be reduced by slowing down packet trans-
missions; however doing so will also extend the
code dissemination completion time. Radio listen-
ing time, while not as energy consuming as packet
transmissions, still incurs a non-negligible cost, ex-
cept in special cases where an energy-aware MAC like
S-MAC [13] is used. Generally speaking, however, re-
ducing the completion time of the code transfer op-
eration can also lead to energy savings. Furthermore,

the network is for all practical purposes considered in-
operable while the code update is in progress, since
its primary function—collecting data from the physi-
cal world—cannot be accomplished. This adds another
reason for reducing the completion time.

Traditionally, collision avoidance and recovery falls
into the MAC protocols. TDMA-based MAC protocols
avoid collisions imposing a deterministic transmission
schedule; however they require communications among
all the sources for coordination, which can induce both
higher latency and energy consumption. Contention-
based protocols which are currently used in sensor net-
works [5] [13] sense the channel for ongoing communi-
cation before transmitting. This can avoid certain col-
lisions near the sender, but cannot avoid collisions at a
receiver which can hear sources that are not in range
of each other, i.e. the hidden terminal effect. An exist-
ing solution to the hidden terminal problem is the use
of RTS/CTS messages to reserve the channel [13] [1].
The RTS/CTS approach assumes symmetric channels
and is only applicable for point to point communica-
tions. Broadcast communication and the presence of
asymmetric links—which are common in wireless sen-
sor networks [12] [2]—renders this approach infeasible.
Since MOAP uses broadcasts in order to reduce the
number of transmissions, the RT'S/CTS mechanism is
not directly applicable for collision avoidance.

By exploiting domain specific knowledge that is only
available to the application (and not to lower layers,
like the MAC layer), we can design a collision avoid-
ance scheme that can potentially be quite more effi-
cient that a more generic, lower-layer mechanism. This
design approach, although discouraged in larger net-
works like the Internet, is becoming the norm in wire-
less sensor networks. In the presence of resource con-
straints and unreliable links, it is considered acceptable
to trade off generality for efficiency.

In the rest of this paper we develop application-
specific solutions to reduce both energy consumption
and code dissemination completion time through colli-
sion avoidance.

3. Collision Avoidance

A simple and straightforward approach to reduce
collisions is to use a probabilistic scheme. Time is parti-
tioned into large epochs, in which each source randomly
chooses a time to send. Since the epoch is sufficiently
large compared to the packet send time, the probabil-
ity of any two sources choosing overlapping send times
is small. MOAP currently uses such a scheme.

By definition, each source can send only one packet
per epoch. Therefore, latency is directly proportional

to the size of the epoch. A sufficiently large epoch for
a small network is much different than for a large net-
work. In essence this scheme is not adaptive to the net-
work environment.

An adaptive solution should try to decrease latency
when possible but also react to collisions as they occur.
Ideally, it should lower the probability of future col-
lisions without significantly increasing latency or the
number of retransmissions.

Adaptive collision schemes can be categorized into
two types: source-based and receiver-based. In the
source-based approach, there is no explicit feedback
sent to the source from the receiver, except for that
which is defined as a part of the protocol. An example
of a source-based approach is Van Jacobson’s TCP con-
gestion avoidance [7]. TCP congestion avoidance uses
the TCP protocol’s duplicate ACKS and timeouts to
infer network congestion and react to it.

The receiver-based approach allows the receiver to
send feedback to the sender for the explicit purpose of
reacting to collisions. As the receiver discovers perti-
nent information for collision avoidance, it transmits
that information to the source. XCP [8], in which the
network explicitly sends congestion information back
to the source, is an example of a receiver-based ap-
proach.

3.1. Source-Based Collision Avoidance

Congestion avoidance on a packet switching network
is similar to collision avoidance in a wireless network. In
both cases the source throttles its data rate in the pres-
ence of an anomaly (congestion or collision). In colli-
sion avoidance, throttling the data rate changes the ar-
rival period of the data packets, so any reoccurring col-
lisions due to overlapping periods will be avoided. Also,
in slowing down the source, heavy background traffic
at the receiver is allowed to dissipate. This latter re-
sult implicitly assumes that all source traffic has a fi-
nite length and that after some time the background
sources will eventually stop.

In the case of TCP congestion control, the design
implicitly assumes that any packet loss is due to con-
gestion. This assumption does not hold in wireless sys-
tems; data can be lost at the receiver from either col-
lisions or link loss. Link loss encompasses a variety of
reasons for packet corruption such as reflections, envi-
ronmental changes, radio orientation, fading etc. Our
assertion is that the source should not react to link
losses since they are non-deterministic and outside the
source’s control. On the other hand collisions can be
avoided if the source takes specific action. Since our
source-based approach does not distinguish between

link losses and collision losses, we expect this partic-
ular scheme to be very sensitive to link quality. We
call this method wuninformed TCP-like collision avoid-
ance.

3.2. Receiver-Based Collision Avoidance

As discussed above, the MOAP protocol al-
ready sends NACKs to the source to inform it about
lost packets. If the receiver can distinguish be-
tween collision-induced losses and link losses then
the source can use this information to make a bet-
ter decision on whether to decrease the data rate
or not. We call this method informed TCP-like col-
lision avoidance and note that its performance de-
pends on the accuracy of the collision detection
scheme.

If we assume that all sources transmit packets at the
same rate 1/T—that is, during the time frame T, ev-
ery active source sends a packet—then the receiver can
also monitor packet arrivals from all sources and detect
large periods of inactivity within a given time frame.
If a packet loss due to collision occurs, the receiver can
send the information about the ‘largest silent period’ to
its primary source. The source can then try to transmit
at those specific times, so as to minimize the chances
of further collisions. In essence, the source is trying to
interleave its transmissions with background transmis-
sions, while still keeping a constant data rate. We call
this method Phase-offset collision avoidance.

4. Required Functionality

For both the Informed TCP-like and the Phase-
offset methods, we need to add some extra functional-
ity to both senders and receivers. Specifically, we need
to be able to detect collisions, estimate the variation
in the transmission times of packets and calculate the
largest silent period between two consecutive packet ar-
rivals.

4.1. Collision Detection

Determining collisions at the receiver is not as
straightforward as just checking for corrupted pack-
ets, since corruption can be due to both link losses and
collisions. Also since the packet is corrupted we can-
not always inspect it to determine its origin. There-
fore, the only thing we can infer is that a loss oc-
curred.

Ideally, the receiver would know exactly when each
source’s packets arrived. If multiple packets were to
arrive at the same time, the receiver could determine

o

2 2]

Figure 1. Collision detection at the receiver. Source
S5 transmits at ¢ = 1 and informs the receiver that the
next transmission will be at ¢ = 7. Source S; trans-
mits at ¢ = 4 and informs the receiver that the next
transmission will occur at ¢ = 7. If at least one cor-
rupted packet arrives at ¢t = 7, the receiver infers that
a collision occurred.

that a collision occurred and inform its source. The
ideal solution can be approximated by adding a small
amount of determinism to the protocol. In many ap-
plications, the source will send a packet, and then set
a timer to schedule the next transmission. If we deter-
mine the next transmission time before sending the cur-
rent packet, we can add this information in the payload,
thus informing the receiver when to approximately ex-
pect the next packet. Since every source follows the
same rules, the receiver can construct an arrival time-
line for all the sources it can overhear. If the primary
source and any background source(s) indicate that they
will arrive at approximately the same time in the fu-
ture, we can hypothesize that any corrupted packet
that arrives at that time is the result of a collision.
Figure 1 depicts this situation.

A CSMA MAC includes a backoff mechanism to
avoid collisions. This mechanism can add a non-
deterministic delay between the time at which the
source passes the packet to the MAC layer and starts
its timer and when the receiver receives the packet
and builds its relative time offset. The source can
send the wvariance together with the transmission in-
terval to the receiver, to allow for a more accurate
estimation of the next packet’s arrival time. We dis-
cuss packet transmission time and variance calcula-
tions in section 4.2.

The transmission interval and the transmission vari-
ance define a range over which the next packet may ar-
rive. Collisions are now determined by the overlap of

multiple time ranges. Since packets can arrive at any
time in the range, it is possible that though ranges over-
lap a collision may not occur. Thus, the collision de-
tection model cannot be used to accurately predict fu-
ture collisions. It can only be used for post-facto colli-
sion detection.

Based on the above, a lost packet is classified as a
collision-induced loss if, by the end of expected arrival
time plus the transmission variance, the following has
occurred:

e No data packet from the primary source has ar-

rived.

e The arrival timeline showed an overlap between
the primary source’s arrival time and a back-
ground source’s arrival time.

e At least one corrupted packet was received.

We note that our collision detection mechanism is
an estimator—it doesn’t always guarantee a correct re-
ply. If a source’s packet does not arrive when expected,
we can only say that it collided with some probabil-
ity, since we are dealing with ranges as well as incom-
plete information. It may be possible that a detected
collision was predicted to collide with another source,
but was actually corrupted due to increased noise lev-
els (link loss). Our estimator would then produce a false
positive.

If no packet is received at the expected time and no
other source was known to transmit at that time, then
the packet is assumed to have been lost due to radio
propagation. However, if other sources were expected
to transmit at that time, the packet’s fate is unknown:
it could have been lost due to radio propagation or a
collision. If the collision occurs in the preamble or the
start symbol, then the receiver will not be able to lock
on to the sender and no packet will be received. This
would lead to a false negative.

Finally, the estimator is only as good as the arrival
timeline built at the receiver. If any source’s packets are
lost then the information those packets hold about fu-
ture arrival times will not be visible to the receiver. In
this case the receiver may incorrectly mark a collision
as a link loss. The correctness of our collision detec-
tion scheme is directly proportional to the link quality
between the receiver and its surrounding sources.

4.2. Transmission Time

When a packet arrives at the receiver, the transmis-
sion time (which includes propagation delay and MAC
transmission delay) is implicitly included. If we assume
that there are no variations in the transmission time,
then packets originating from a source every 7}, sec-
onds would be received at the receiver at T, + T}, sec-

400 F ‘ ‘ Sample +
Mean -
Mean + 4*variance -

Time (ms)

Packet number

Figure 2. Transmission time variations at the source.
The experiment consisted of two nodes. The primary
source (node 1) transmits as fast as possible, while the
background source (node 2) transmits every 530ms.
The link quality between the two nodes was approxi-
mately 60%.

onds, where Ty, is the transmission time (mote radios
have very small ranges, therefore propagation time is
negligible).

In reality, the transmission time is not constant. The
receiver can wait for a small amount of time after the
expected reception time expires, in order to allow for
transmission time variations. This additional time, or
‘guardband’ can be pre-configured based on experimen-
tal observations. But a statically assigned value can-
not adapt to arbitrary network loads [7]. We thus turn
again to TCP for a solution.

The source calculates the transmission time of each
packet it sends, by subtracting the transmission start
timestamp from the transmission end timestamp. This
sample is then used to update the wvariance of the
transmission time. The calculation is the same as the
one used to estimate the TCP retransmission timeout
(RTO) [7]. The value of the variance is sent to the
receiver together with the expected time of the next
transmission.

The receiver now sets its expected reception timer to
T, +4v, where v is the variance reported by the source,
and T}, is the expected arrival time of the next packet.

4.3. Largest Silent Period Detection

Consider a scenario where two sources are transmit-
ting at constant periods T and T,. We assume that
channel utilization is low, so the aggregate rate is not
high enough to saturate the channel. Hidden terminal
collisions happen when the actual transmission times
T,z, and T},, are overlapping. Since the utilization is

Figure 3. Changing the phase of a transmission while
keeping the rate constant can lead to collision avoid-
ance.

low, we can avoid the overlap (and thus collisions) while
keeping the rates constant, by adjusting the phase at
which the source’s transmissions happen.

The receiver can provide the source with the neces-
sary information by calculating the largest time differ-
ence between two consecutive packet arrivals, within a
given time period. Since the entire system is clocked off
of the source’s transmission period, this is also the pe-
riod used for the calculation of the time difference. We
also take into account corrupted packets. Even though
those packets are not useful from the application’s per-
spective, they are still an indication that the channel is
busy at that particular point in time, so they shouldn’t
be ignored. Figure 3 shows an example of the phase off-
set calculation.

5. Implementation

We implemented our designs using TinyOS [5], since
motes are MOAP’s target platform. Our application
sends a series of packets from the source to the re-
ceiver in sequential order. Each packet contains a se-
quence number, the next transmission time and the cal-
culated variance.

The receiver uses a bitmap to store successful packet
receptions. Every time a packet arrives from the pri-
mary source, the receiver sets a timer based on the
next expected transmission time plus any variation de-
fined by the guardband. A packet loss is discovered if no
packet arrives by the end of transmission time. At this
point the receiver scans the bitmap for the first miss-
ing packet. It then sends a NACK to its source. The
source will retransmit requested packets before send-
ing any new packets.

120

100 - L
80
60 -

40

Al

Base Uninf-TCP Inf-TCP Phase-rand Phase-single

Percentage of retransmissions

Figure 4. Percentage of retransmissions for each
method, with two sources transmitting 200 packets.
The single frequency phase offset method was very
closetothetheoretical minimumof20%. Thebasecase
was the worst, incurring a penalty of almost 100%.

5.1. Uninformed TCP-like Collision Avoid-
ance

Our implementation of source-based collision avoid-
ance follows the general design of TCP congestion
avoidance. The initial transmission period of the pri-
mary source is 500ms. For each data packet that is suc-
cessfully received, the source will additively increase its
data rate, using the rate-based formula described in [7]
with a = 10.

For each data packet that is lost at the receiver,
the source will multiplicatively decrease its data rate.
Since MOAP uses NACKs to notify the source of losses,
they are used to trigger the multiplicative decrease. To
avoid cases where synchronized sources stay synchro-
nized even after the multiplicative decrease, a random
floating-point number between 1.5 — 1.9 is used.

5.2. Informed TCP-like Collision Avoid-
ance

The source will react much like it did in the unin-
formed TCP-like model. The initial transmission pe-
riod is again 500ms. For each successful packet sent,
the source will again additively increase its data rate.
For each packet lost the source will now distinguish if
the loss was due to link loss or collision. The source will
multiplicatively decrease its data rate only when the re-
ceiver indicates the loss is due to collision but will take
no action on link losses. To inform the source about a
possible collision, we have extended the NACK pack-
ets to include a ‘collision’ flag.

500

Time(seconds)

ol B H T

Base Uninf-TCP Inf-TCP Phase-rand Phase-single

Figure 5. Timerequired for the primary source to com-
plete its transmission, with two sources sending 200
packets. The base case is the fastest. The phase off-
set methods and informed-TCP are evenly matched,
the latter slightly faster in some cases, due to its adap-
tive properties. The uninformed-TCP is approximately
five times slower than the base case.

5.3. Phase-Offset Collision Avoidance

We again use the NACK mechanism to pass the
information back to the source from the receiver. In
the absence of NACK packets, the source implicitly as-
sumes that everything is working properly, since no re-
ceivers complain. An arriving NACK will now include
a time offset indicating the largest silent period time.
When the source receives the NACK, it will set a timer
for this particular offset. After that timer expires, it will
resume its regular transmission, at its constant rate.

6. Evaluation

In order to evaluate the performance of our algo-
rithms, we used the EmStar framework [3] and Em-
TOS [4]. EmTOS allows development of NesC applica-
tions in the resource-rich environment of a 32-bit plat-
form. EmStar includes a packet-level simulator which
provides different channel models. For our simulations,
we used an empirical channel model, collected from the
ceiling array in our lab [2].

6.1. Two Sources, Single Receiver

We initially compared the performance of our al-
gorithms using a simple, three-node setup. The first
node was the primary source, the second was the re-
ceiver and the third one was the background source.
The nodes were arranged in a line. The link quality be-
tween nodes 1 and 2 (primary source and receiver) and

140

120

80

60 -

i

Base Uninf-TCP Inf-TCP Phase-rand Phase-single

Additional energy required (uAh)

Figure 6. Additional energy requirements, on the pri-
mary source, for each method. Single-period phase off-
setwasthebestsinceithadfewretransmissionsandwas
also among the fastest to complete. Uninformed-TCP
was the worst, due toits very long completion time.

nodes 2 and 3 was approximately 80%. The link qual-
ity between the two sources was approximately 50%.
The sources in all cases sent 200 packets. The packet
size was 150 bytes. All results were averaged over 10
experimental runs. Error bars on the figures represent
95% confidence intervals.

In both TCP-like cases, the background source
transmits at a constant period that is initially ran-
domly selected from 500-2500ms. In the phase off-
set case, we used two different setups. The first
one (phase-rand) was equivalent to the TCP-like
cases. The second one (phase-single) had the back-
ground source transmit at the same rate as the
primary source (500ms), but with a random ini-
tial starting time. Intuitively, the second case would
provide better results. The reason is that if the fre-
quencies of the two sources are not integer multiples
of each other, the largest silent period will not be con-
stant; rather, it will keep shifting as one frequency
drifts into another. If a collision occurs and is de-
tected, there is little guarantee that the new phase
offset will be collision-free.

For this particular set of experiments, we also imple-
mented a ‘base’ case, in which each source sent pack-
ets as fast as possible (back-to-back). We expect this to
produce the fastest completion time, but also have the
largest number of collision-induced retransmissions.

We first compare the different methods in terms of
number of required retransmissions. As Figure 4 shows,
the single-period phase offset was very close to 20%—
the expected number of retransmission in the absence
of collisions, since the link quality was 80%. The base
case was the worst, since operating at or close to the

120 T T
Phase Offset-single period ———1
Phase Offset-random periods =

100 | Informed TCP-random periods &7 |

60 - q

40

Percentage of retransmissions

20

Number of sources

Figure 7. Percentage of retransmissions at the pri-
mary source versus number of total sources. Single-
periodphaseoffset givesthebestresults, whilerandom-
periods phase offset has the worst performance.

channel capacity leads to a large number of hidden ter-
minal collisions. Collision avoidance schemes were thus
able to reduce the number of retransmissions by al-
most a factor of 8.

The reason why uninformed-TCP performed so well
in reducing retransmissions can be seen in Figure 5.
The completion time of uninformed-TCP was so large,
that the background source, which transmits at a con-
stant rate, had already finished its transmissions. The
uninformed-TCP method, unable to distinguish be-
tween collisions or link losses, was backing off on each
NACK received. Consequently, for a significantly large
period of time, only the primary source was (slowly)
transmitting. All losses for that time were due to radio
propagation, not collisions. The other methods had al-
most equivalent results, with the exception of the base
case which was the fastest.

By combining the results for latency and number of
retransmissions, we can obtain the additional energy
requirements that each method incurs. In our calcula-
tions, we used the values reported in [9] (20.000nAh
to transmit a packet and 1.250nAh per millisecond for
idle listening). From Figure 2 we see that the mini-
mum transmission time per packet is approximately
120ms. We therefore used that value for our calcula-
tions and assumed that transmission times are con-
stant. We also assumed that when the node was not
transmitting, it was idle and thus used the ‘idle listen-
ing’ value for those periods of time. This however ig-
nores the cost of packet reception which is not equal to
the idle listen cost. In that sense, our results are more
optimistic.

We calculated the total energy usage on the primary
source node and then subtracted the energy needed to

700

Phase Offsét-single period lil

Phase Offset-random periods ===
600 - Informed TCP-random periods =7 4

500 -
400

300

Time (seconds)

200

100 -

Number of sources

Figure 8. Timerequired for the primary source tocom-
plete its transmission, versus number of total sources.
Initially, informed-TCP and random-periods phase off-
set have the best performance. However, random-
periods phase offset scales poorly as the number of
sources increases. The other two methods have good
scaling properties.

transmit 200 packets back-to-back—the optimal energy
usage for all cases. The results are shown in Figure 6.
The single-period phase offset had the best perfor-
mance, since it had the smallest number of retransmis-
sions and was one of the fastest methods. Uninformed-
TCP had the worst performance. Even though it was
among the best in terms of additional retransmissions,
it took so long to complete that the idle listen energy
consumption had a large negative impact. Phase off-
set and informed-TCP were able to reduce the addi-
tional energy penalty by almost 50% compared to the
base case.

6.2. Multiple Sources, Single Receiver

The second set of experiments involved studying
the behavior of the three better-performing methods—
informed TCP and the two phase-offset variants—as
the number of background sources increases. The place-
ment of the initial three nodes, used in the previous set
of the experiments remained the same. Extra sources
were added in random locations within a 10-by-10 me-
ter square. We run experiments with 2, 4, 6 and 8
sources.

For this particular experimental setup, we changed
the single-period phase offset slightly; the transmission
period of all sources was now 800ms. With each packet
transmission taking approximately 120ms, this variant
of phase offset can theoretically accommodate up to
seven non-overlapping sources. In practice, since we
don’t care about background source overlap (only over-

300

Phase Offsét-single period —
Phase Offset-random periods =-==22

250 | Informed TCP-random periods &7 |

200 | 1
150 8

100 - -

Additional energy required (uAh)

50

Number of sources

Figure 9. Additional energy requirements on the pri-
mary source, versus number of total sources. Single-
period phase offset again gives the best performance,
followed by informed TCP.

laps with the primary source can cause important data
loss on the receiver), more sources can be accommo-
dated. The random-period variant and the informed-
TCP case had a transmission period of 500ms.

The results, in terms of number of retransmissions,
completion time and energy cost are shown in Fig-
ures 7, 8 and 9 respectively. Again, as in the two-
source case, the single-period phase offset gives the
best results. However, the random-periods phase off-
set now performs much worse, especially as the num-
ber of sources increases to eight. Even though the chan-
nel isn’t necessarily over-utilized (since sources trans-
mit at random periods), the ‘frequency drift’ effect is
very pronounced. In effect, phase-offset cannot find a
solution that will be valid for a long period of time.

Even though the single-period phase offset per-
formed the best in all cases, we noticed a significant in-
crease in the number of retransmissions when the num-
ber of sources increases to eight from six. This indicates
that the channel is reaching capacity and that a fur-
ther increase in the number of sources will be detri-
mental to the performance of the phase-offset method.
Informed-TCP performed adequately, degrading grace-
fully as the number of sources increases.

Therefore, if one can design the system to pick the
right frequency and make every node take the same fre-
quency constant, phase-offset is the best method to use.
If a system does not have a commonly agreed upon fre-
quency, or is highly dynamic, then the informed-TCP
method is preferred.

7. Conclusions And Future Work

In resource-constrained wireless sensor networks,
collisions can be a major cause of packet retransmis-
sions and hence increased energy consumption. Tradi-
tional MAC-layer solutions solve the problem only to
certain extent and have rather limited applicability. In
this paper we take advantage of inherent multi-packet
communication in our specific application of code dis-
semination to develop two application-based solutions
to collision avoidance: a TCP-like method that uses col-
lision detection as an input signal to adjust transmis-
sion rate, and a 'phase-offset’ method that shifts packet
transmission time within a given time frame to min-
imize collisions. Simulation results show that both of
our solutions can significantly reduce the number of re-
transmissions and energy usage.

Our results indicate that if the system character-
istics, such as the maximum number of concurrent
sources, are known, one can pick a common transmis-
sion period to accommodate all the sources. In this
case, the phase offset method is very effective at re-
ducing collisions. In cases where sources transmit us-
ing different periods, the informed-TCP method, which
can adapt to network dynamics, can be used to effec-
tively reduce collisions.

As part of our ongoing effort, we plan to do sev-
eral additional experiments that would provide further
insight and confidence on the performance of our algo-
rithms:

Running experiments with multiple sources and mul-
tiple receivers. Multiple receivers may lead to different
feedbacks to each source, this is another interesting as-
pect that we need to investigate.

Running experiments with real hardware. Every simu-
lator model, no matter how accurate can still not match
reality. We therefore plan to run experiments with real
hardware, using our ceiling array.

Further exploration of the design space. We are look-
ing into combining the phase-offset method with the
informed-TCP method by using the latter to adjust
the common time frame period while using the for-
mer to shift each source’s transmission time within the
time frame.

Integrating the most appropriate solution in MOAP.
Since MOAP was the driving application for our work,
we plan on integrating our final collision avoidance so-
lution into it to improve its performance.

References

[1] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang.
MACAW: A Media Access Protocol for Wireless LAN’s.

2]

(4]

(6]

(10]

(11]

(12]

(13]

In ACM SIGCOMM 199/, pages 212225, London, UK,
August 31-September 2 1994.

A. Cerpa, N. Busek, and D. Estrin. SCALE: A tool
for Simple Connectivity Assessment in Lossy Environ-
ments. Technical report, CENS-TR-21, September
2003.

L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ra-
manathan, and D. Estrin. Emstar: a software environ-
ment for developing and deploying wireless sensor net-
works. In Proceedings of the 2004 USENIX Technical
Conference, Boston, MA, 2004. USENIX Association.
L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson,
D. Estrin, E. Osterweil, and T. Schoellhammer. Tools for
deployment and simulation of heterogeneous sensor net-
works. In Proceedings of SenSys 2004, November 2004.
J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proceedings of the Ninth International Con-
ference on Arhitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-I1X), pages 93—
104, Cambridge, MA, USA, November 2000. ACM.

C. T. Inc.
datasheet,
http://www.xbow.com/products/product_pdf_files
/datasheets /wireless/6020-0042-03_a_mica2.pdf.

V. Jacobson. Congestion avoidance and control. ACM
Computer Communication Review; Proceedings of the
Sigcomm ’88 Symposium in Stanford, CA, August, 1988,
18, 4:314-329, 1988.

D. Katabi, M. Handley, and C. Rohrs. Internet conges-
tion control for future high bandwidth-delay product en-
vironments, 2002.

Mica2 wireless measurement system

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and
J. Anderson. Wireless sensor networks for habitat mon-
itoring. In Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications,
pages 88—-97. ACM Press, 2002.

T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks.
Technical Report CENS-TR-30, University of Califor-
nia, Los Angeles, Center for Embedded Networked Com-
puting, November 2003.

T. van Dam and K. Langendoen. An adaptive energy-
efficient mac protocol for wireless sensor networks. In
Proceedings of the first international conference on Em-
bedded networked sensor systems, pages 171-180. ACM
Press, 2003.

A. Woo, T. Tong, and D. Culler. Taming the under-
lying challenges of reliable multihop routing in sensor
networks. In Proceedings of the first international con-
ference on Embedded networked sensor systems, pages
14-27. ACM Press, 2003.

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In Proceed-
ings of IEEE INFOCOM, 2002.

