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Abstract-Data dissemination in sensor networks requires four 

components: resource discovery, route establishment, packet 
forwarding, and route maintenance. Resource discovery can be 
the most costly aspect if meta-data does not exist to guide the 
search. Geographic routing can minimize search cost when 
resources are defined by location, and hash-based techniques 
like data-centric storage can make searching more efficient, 
subject to increased storage cost. In general, however, flooding is 
required to locate all resources matching a specification. In this 
paper, we propose BARD, Bayesian-Assisted Resource 
Discovery, an approach that optimizes resource discovery in 
sensor networks by modeling search and routing as a stochastic 
process. BARD exploits the attribute structure of diffusion and 
prior routing history to avoid flooding for similar queries. BARD 
models attributes as random variables and finds routes to 
arbitrary value sets via Bayesian estimation. Results of 
occasional flooded queries establish a baseline probability 
distribution, which is used to focus additional queries. Since this 
process is probabilistic and approximate, even partial matches 
from prior searches can still reduce the scope of search.  We 
evaluate the benefits of BARD by extending directed diffusion 
and examining control overhead with and without our Bayesian 
filter. These simulations demonstrate a 28% to 73% reduction in 
control traffic, depending on the number and locations of 
sources and sinks. 
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I. INTRODUCTION 
 
Data dissemination in wireless sensor networks requires 

four components: resource discovery, route establishment, 
packet forwarding, and route maintenance. Resource 
discovery consists of finding data that is relevant to the 
application. The other three components are referred to 
collectively as routing. In IP and ad hoc routing, resource 
discovery is layered on top of routing. A good deal of work 
has been done to improve the efficiency of the route 
establishment component of data dissemination in wireless 
networks. DSR [12]  and AODV [17]   utilize  cached  routing 
information to limit overhead by deferring route 
establishment until existing route segments are no longer 
valid. Reinforcement Learning has been used in ad-hoc 
networks to forward data on links that are part of the shortest 
path to a destination address [1]. Data-centric protocols, like 
directed diffusion [11], combine resource discovery with the  
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route establishment function of routing. For resource 
discovery, there are numerous schemes to limit cost.  We 
divide them into five classes: data-centric storage, in-network 
aggregation, geographic-assist, target tracking, and 
probabilistic. We evaluate related work in Section VIII. Most 
of these schemes work well in their intended environments; 
however, each of these approaches is designed for a 
specialized application or class of application. We would 
instead prefer a general technique that puts to use prior 
routing information to constrain flooding. 
 

A unique characteristic of our approach is that it exploits 
the attribute-based routing present in diffusion. IP-based 
schemes route only on the IP address. They can easily cache 
and reuse routes to prior addresses. By contrast, data-centric 
routing exposes application-level information in the form of 
attributes, combining routing and resource discovery. 
Attribute-based routing precludes simple route caching 
because even minor changes in the attributes mean that prior 
routes fail to match, rendering simple caching inapplicable. 
Other resource discovery schemes have exposed limited 
application-specific information. For example, DCS/GHT 
hashes attributes to physical location [18]. Database 
techniques use application-specific in-network caching to 
support aggregation [16, 22]. Geographic approaches use 
physical coordinates to limit flooding [2, 24]. IDSQ has 
applied information-driven collaborative signal processing to 
target tracking by tightly integrating application-specific 
attributes with routing [26].  

 
Unlike this prior work that focuses on specific 

optimizations or applications, BARD is a general technique 
that adapts to whatever attributes are currently in use in a 
sensor network. BARD is not a new resource discovery or 
routing algorithm. Rather, it is an orthogonal approach that 
exploits correlations inherent in sensor network applications 
in order to limit exhaustive searches for resources by 
underlying data dissemination techniques. Correlations in 
sensor networks can exist for many reasons – such as 
geography, target tendencies, node topography, sink location, 
reliability patterns, inactive regions, density, or aggregation 
hierarchies.  

 
Our goal is to provide a generic mechanism to exploit 

application specific information, exposed through attributes to 
limit routing overhead. Our approach exploits probabilistic 
approaches and reasoning approaches from artificial 
intelligence [19]. We model a real world problem in terms of 
a belief agent operating over a set of random variables. The 
belief agent chooses whatever action has the highest 
probability of achieving success. 



 
 

Figure 1 
Sample simulation layout to model a complex example consisting 
of a target moving on a diagonal path through the simulation field. 

 
We model route discovery in diffusion as a distributed 

problem in which each node is a belief agent that must select 
a subset of links on which to forward route discovery 
messages. The agent must periodically engage in an 
exhaustive search for resources in order to maintain a 
probability distribution and to locate singular real-time events. 

 
Consider, for example, a sensor network tracking vehicles 

moving along a road, as in Figure 1. A naïve approach to 
query for vehicles along the road would periodically query all 
sensors. Alternatively, if the location of the road were known, 
queries could be geographically limited. As another 
alternative, specific applications might track individual 
vehicles as they moved on the road. Instead, we aim to 
automatically observe, within diffusion, that a class of queries 
is looking for vehicles that elicit responses from sensors near 
the road, and automatically infer the location of the road over 
time based on query response history. This general approach 
is similar to reinforcement learning techniques where it has 
been applied to general routing, but without application-
specific information [1]. Explicit representations of belief 
have also been exploited in the context of specific sensor 
network applications [26]. To our knowledge, we are the first 
to propose integration of application-influenced learning at a 
generic routing level. 

 
The contribution of this paper is to improved efficiency in 

diffusion data dissemination protocols via Bayesian-Assisted 
Resource Discovery. BARD currently takes the form of a 
“filter” for directed diffusion [9]. The BARD filter observes 
the control traffic generated by the underlying diffusion 
routing algorithm, does statistical analysis of that traffic, and 
routinely “squelches” a large percentage of control traffic that 
diffusion intends to be flooded. BARD must periodically 
flood in order to maintain a probability distribution and to 
locate singular real-time events, but the flooding interval is 
much less frequent than in standard diffusion. 

II. BAYESIAN ESTIMATION AND RESOURCE DISCOVERY 
 
The resource discovery algorithm presented in this paper 

relies on the Bayesian method of statistical inference [21]. 
Bayesian estimation relies on a prior probability distribution 
f(θ), where θ is a random variable for which we have a prior 
distribution given a set of prior conditions, which are also 
random variables. Those same conditions, examined in a 
current sample, can be combined with f(θ) to compute a new 
distribution that predicts the likelihood of various values of θ 
given the “evidence” of the current sample. 

 
 In our algorithm, θ is a set of links to neighboring nodes, 

which will be considered as candidates for the forwarding of 
resource discovery traffic. The “current sample” is a query 
posted by a sink to the network. Diffusion queries consist of 
attribute-operator-value tripletts that delineate information of 
interest to a data sink. The “prior conditions” are the bounded 
histories of what attributes and values have been discovered 
in the past by routing through each neighbor. Bayes’ theory 
provides a mechanism to calculate the likelihood that a 
particular hypothesis is true, given the current state of events  
(i.e. the evidence) and the prior distribution. Our hypothesis is 
simply: “is this node likely to lead us to a path between a 
resource provider (source) and a resource consumer (sink)?” 
The prior distribution is the per-neighbor history, bounded by 
a window of time, relating neighbors to the resource 
attributes. The evidence is the attribute set contained in the 
query. 
 

We now demonstrate the derivation of a Bayesian estimate 
in the context of a sink seeking out sources with seismic and 
accoustic readings above some threshold. Suppose that sensor 
network “node X” has four neighbors: N1 through N4. We 
assume that node X has previously resorted to flooding to 
locate resources for queries related to seismic and accoustic 
data, keeping track of the frequency with which each neighbor 
provided a path to every resource attribute. Node X would 
like to limit flooding by exploring only those neighbors that 
are more likely to deliver seismic and acoustic sensor readings 
above the application-prescribed values.   

 
Because we wish to express the prior probabilities in 

question as a sample space, we could divide the sample space 
into several mutually exclusive events N1, N2, N3, … , Nk  
(one for each neighbor), and two pieces of evidence: seismic 
and acoustic. The expression of this as a sample space yields a 
three-dimensional joint probability distribution such as that 
depicted in Figure 2 (see top of next page). Unfortunately, 
joint probability distributions are difficult to maintain because 
their size grows exponentially with each added random 
variable. The primary advantage of using Bayes’ Rule is that 
it can dynamically calculate conditional probabilities to a 
great deal of precision without maintaining a complete joint 
probability distribution when certain conditions hold, as noted 
below [19].  
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 Figure 2 
A sample space consisting of mutually exclusive Node events, and 

conditionally independent events Seismic &Acoustic. 
 
Node X is looking for neighbors that can provide both 

seismic and acoustic sensor data (i.e. event S∩A). We want to 
answer the question: what is the probability that a given 
neighbor is a constituent part of the desired composite event? 
The contribution of a prior history is that it helps to predict 
which neighbors will most likely provide certain resources in 
present time when correlations exist in the sensor network. 
The following formula expresses the probability that neighbor 
N3 has sound and acoustic sensor data available, i.e. S∩A 
occurred, given a joint distribution: 
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Bayes’ formula allows us to simplify the above equation 

when events S and A are conditionally independent. Evidence 
variables that are dependent in the joint, can be conditionally 
independent relative to the hypothesis variable if they are both 
a direct result of that variable. If we know that N3 leads to S, 
the fact that N3 also leads to A is irrelevant to the conditional 
calculation of S (i.e. P[S⏐N3] = P[S⏐N3∩A]). The following 
formula is the Bayes’ estimate for neighbor N3 with Seismic 
and Acoustic as our combined evidence: 
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The normalizing constant α is equal to the constrained 

sample space 1/P[S∩A] (i.e. the denominator of eq. (1)).  This 
constrained space is calculated trivially by exploiting the fact 
that it can be converted into the following conditional terms:  
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The interested reader can consult [19] for an in-depth 
explanation of the calculation of the normalizing constant. 

 

III. BARD AND DIRECTED DIFFUSION 
 
The effort to use Bayesian estimates to limit flooding 

during resource discovery, requires an understanding  of how 
diffusion routing algorithms utilize flooding. The initial 
diffusion algorithm is now called two-phase pull diffusion [8]. 
In two-phase pull, interest messages that describe the 
attributes of desired data are flooded from a sink to all nodes. 
“Exploratory data” is then reverse-flooded from sources 
which have data matching the attributes. When the 
Exploratory data arrives at a sink, high quality (i.e., low 
latency) paths are “reinforced” by control messages unicast 
from  a sink toward sources. The high-quality routes provide 
efficient (single path) data transfer for a period of time. 
Interests are periodically flooded to re-establish reinforced 
paths, in order to cope with changing network conditions. 
Therefore, two-phase pull has two flooding stages involved in 
resource discovery and path establishment.   
 

Two more recent versions of diffusion are push and one-
phase pull [8]. In push diffusion, sinks have interests that are 
held locally, rather than flooded. Resource discovery in push 
consists of sources finding paths to interested sinks via 
exploratory data flooding and reverse-path reinforcement. 
One-phase pull diffusion only floods interest messages. Data 
from sources travels along the reverse path of the lowest 
latency interest arrivals.  One phase pull thus eliminates 
exploratory traffic flooding. The primary difference between 
push and pull (one or two-phase) is the direction of resource 
discovery via flooding. One-phase pull employs sink-to-
source resource discovery and push uses source-to-sink 
resource discovery. Although Bayesian methods can be used 
to limit flooding in either direction, push provides fertile 
ground for BARD development because it is simpler in 
implementation than either the original diffusion routing 
algorithm or one-phase pull. All of the experiments presented 
in this paper were run over push diffusion. Push diffusion 
works well for applications, such as tracking, where many 
sensors are looking for data to publish, but actuations are 
relatively rare. As future work we plan to modify BARD to 
limit flooding in one-phase pull and two-phase pull diffusion. 
 

IV. BARD FUNCTIONAL DESCRIPTION 
 
Bayesian-Assisted Resource Discovery limits flooding in 

push diffusion via the application of Bayesian methods of 
estimation to predict what nodes to forward route discovery 
messages to. In push diffusion, route discovery packets are 
simply data packets, which are periodically marked as 
exploratory and flooded. When an exploratory data packet 
reaches a sink, the sink sends a positive reinforcement 
message along the reverse path toward the source. 
Intermediate nodes typically receive multiple copies of the 
exploratory route discovery packet (once from each 
neighbor). The intermediate nodes use a heuristic, such as 
latency, to select a single neighbor to forward the positive 
reinforcement to. Once a reinforced path from source to sink 



is established, subsequent data packets are unicast along that 
path until the next “exploratory interval.” When there are 
multiple sinks, a non-redundant distribution tree is formed 
between sinks and source. BARD spends some time building 
a per-attribute reinforcement history based on flooded 
exploratory data traffic and reinforcement messages. Once a 
sufficient mass of history is collected, BARD attempts to limit 
flooding by forwarding exploratory traffic only to neighbors 
that are likely to yield reinforcements.  In diffusion, data is 
exchanged when sources publish data whose attributes 
logically match those subscribed to by sinks. BARD employs 
the same matching rules when comparing resource-discovery 
packet content to reinforcement history. The goal is to predict 
what neighboring nodes have the greatest probability of 
yielding a working connection. 

 
There are two primary functions that the BARD filter must 

provide in order to achieve its goal of efficient resource 
discovery: ongoing maintenance of the prior distribution and 
flooding limitation. First, BARD must collect statistical 
information about which neighbors have provided effective 
routes for data from sources to sinks.  In doing so, it must 
“dissect” the routing attributes in a packet so that each routing 
attribute’s history is maintained separately, because 
subsequent traffic flow may have a limited degree of 
intersection with current traffic. Periodically BARD refreshes 
the reinforcement history by permitting flooding, to cope with 
changing conditions in the network. Therefore BARD 
maintains a sliding window of history, discarding the oldest 
entries as the window moves forward. Periodic flooding also 
guarantees that low probability events will be sensed, albeit at 
a reduced fidelity. The second primary function of BARD is 
to suppress flooding based on collected history. This function 
of BARD employs Bayesian methods of estimation to assign 
probabilities to outgoing links in order to predict which links 
will yield a positive result during route discovery. Nodes 
whose Bayesian estimate falls beneath a calculated threshold 
will not have resource discovery messages forwarded to them. 
We call this function limited routing. The ratio of actual 
flooding to limited routing dictates the efficiency achieved by 
BARD as well as the latency of its response to change. 
Tuning the ratio represents a configurable trade-off between 
real-time responsiveness and energy savings. 

 
V. BARD IMPLEMENTATION DETAILS 

 
There are three elemental pieces that make up the BARD 

filter:  a history gathering routine that is called whenever data 
is flooded, a flooding limitation routine that is called to 
constrain flooding, and a Bayesian module that calculates 
probabilities in support of flooding limitation (see Figure 3). 
A helpful concept in describing how the BARD filter interacts 
with push diffusion is that of an exploratory epoch. An 
exploratory epoch in diffusion begins when data is tagged as 
exploratory (to be flooded) by a source. The exploratory 
epoch is the maximum time interval during which data is 
unicast over a reinforced path. 

Push Diffusion
Routing Filter

Bayes Probability Calcutation

BARD Filter Post-Processing
(Flooding Limitation)

BARD Filter Pre-Processing
(History)

 
 

Figure 3 
Depiction of Bayesian Filter in relation to Push Diffusion 

 
BARD restricts flooding during a fixed ratio of exploratory 

epochs. The ratio, which is configurable, represents a trade-
off between efficiency and real-time response to changing 
network conditions. By default, BARD restricts flooding 
during four out of five exploratory epochs declared by push. 
This ratio represents a moderation between economy and real-
time response. In order to establish a minimal prior 
distribution when there is no history, BARD allows flooding 
for three exploratory epochs in a row. BARD limits the 
flooding of push exploratory messages by converting 
broadcast addresses to specific unicast addresses. Statistically, 
the best candidates to forward exploratory data to are those 
which have some history of providing positive reinforcement 
for the particular set of attributes contained in the exploratory 
data packet. 

 
To support the flooding limitation function, BARD adds a 

unique attribute to every exploratory data packet that 
emanates from a push diffusion source. This attribute 
indicates whether the packet is going to be fully flooded or 
subject to limited routing. The attribute travels with the packet 
as it is forwarded through the network. BARD pre-processing 
at a source node, therefore, controls how often an exploratory 
epoch is allowed to flood.  As mentioned above, this is 
currently set to 1/5th of exploratory epochs. Users can achieve 
greater efficiency by decreasing the ratio and better response 
to change by increasing it. Applications that are more entropic 
will require more frequent refreshing of the history. 

 
The statistics gathering function of the BARD pre-filter 

maintains the prior distribution used by the post-filter during 
limited flooding.  BARD keeps track of how many positive 
reinforcements arrive from each neighbor per flooded 
exploratory data. The reinforcement statistics are kept on both 
a per-neighbor and per-attribute basis. Statistics are held in a 
rotating buffer, configurable in terms of time. Buffer size 
delineates the history window over which BARD operates. 
Larger windows demonstrate less hysteresis. The maintenance 
of per-attribute statistics allows BARD to deal with a varying 



 degree of intersection in the attribute sets generated by 
different push sources. In order to enable attribute matching 
for attribute quantities that are not strictly identical (such as 
GT or LT), BARD requires that the subscription data from 
sinks be provided in the positive reinforcement.  Push does 
not currently provide this data. Our prototype implementation 
therefore uses a simpler matching scheme that considers only 
attribute equality and not range query matching.  We are in 
the process of extending the reinforcement information to 
allow complete matching. 

 
The single purpose of the post-processing section of the 

BARD filter is to limit the flooding of exploratory data 
packets to a subset of neighbors. Neighbors are chosen that 
have demonstrated a historical probability of providing 
reinforced paths from sinks to sources for the attribute set 
contained in the exploratory packet. Because the 
reinforcement history is kept on a per-attribute basis, it is 
possible to construct probabilities incrementally using 
multiple pieces of “evidence” and Bayesian estimation. The 
computational costs of Bayesian estimation are negligible in 
Stargate class nodes, and we are investigating porting to 
motes. 

 
In order to identify the subset of neighbors that  will 

receive resource discovery packets, during limited-flooding, 
BARD uses thresholding. The threshold is the minimum 
Bayesian probability that must be achieved by a given 
neighbor in order to have a resource discovery packet 
forwarded to it.  If the threshold is set too high, BARD may 
not find a route from source to sink, and if the threshold is set 
too low BARD efficiency will unnecessarily deteriorate. The 
appropriate threshold for forwarding is a function of three 
variables:  

 
Fan-Out – the number of neighbors that can 

symmetrically communicate with a node. 
Error Rate – the percentage of received 

packets to packets sent. 
Number of Sources – the number of sources 

that are generating data traffic.  
 

Dense topologies and multiple active sources produce 
multiple neighbors with moderate probabilities rather than 
fewer high-probability neighbors. Higher error rates dilute 
probabilities through reinforcement packet loss. 

 
The following empirical formula, derived by observing 

how  each component affected the number of alternate routes 
(in simulation), represents thresholds that resulted in delivery 
rates equal to or better than simple push: 
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S is number of sources, d is the degree or fan out, and e is 
the error rate. The right hand side represents the reduction in 
threshold required to keep pace with an increasing error rate. 
The left hand side represents the graceful decay when 
multiple sources activate for a single event. The reciprocal of 
this formula yields the projected number of alternate routes. 
For example, with 10 neighbors, a single source, and an error 
rate of .05, the threshold would be .25 and the number of 
viable alternate routes within 50 minutes (the default history 
window of the BARD filter) would be 4. Precisely how 
thresholding influences efficiency vs. reliability is part of 
future work. 

 
VI. ANALYSIS 

 
Bayesian estimation techniques rely on the existence of a 

prior distribution. BARD collects information periodically via 
flooding so as to establish and maintain this prior distribution 
for reuse during periods of limited routing.  If we assume that 
BARD will successfully identify the “corridor” of alternate 
routes between source and sink, then we can predict the 
amount of traffic we expect to be generated during limited 
routing. We know the amount of control traffic generated by 
push diffusion during route discovery. Each node broadcasts 
the exploratory message exactly one time, and then a single 
route is reinforced.  If we have a square grid with nodes 
evenly spaced and a source and sink at diagonally opposite 
corners, then the cost of routing in bytes per event is simply: 
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where n is the number of nodes,  ft is the number of 
exploratory intervals per time t, x is the number of bytes in an 
exploratory packet, and eventst is the number of events 
occurring in time t.  The term n  represents the cost of the 
positive reinforcement. We can actually simplify Equation (5) 
because when push diffusion floods exploratory data, the first 
exploratory packet to arrive at the sink will double as an 
actual data packet.  Thus the n  term represents useful data 
transfer rather than overhead and can be deleted, yielding: 
 
                            teventsnxtf                                    (6) 

 
BARD, operating in steady state (as configured for this 
paper), floods 1/5 as often as push. We can express this cost 
per event as: 
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where a is the number of alternate routes that the BARD filter 
identifies during limited routing and h is the average hop 



count of those routes.  We decrement a for the same reason 
we removed n  in Equation (6). As we add more sources, 
or increase the error rate, we expect a to grow as the 
reciprocal of (4).  If we wish to express the percentage gain 
that BARD should have over push, we can simplify our 
calculation: 
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Equation (8) was used to set expectations for the experiments 
outlined in the next section. Equation (4), derived in 
preliminary experiments, was used in subsequent experiments 
to set thresholds. 

 
VII. EXPERIMENTAL RESULTS 

 
In order to quickly evaluate the efficiency and potential of 

Bayesian-Assisted Resource Discovery, we designed a series 
of experiments run primarily in simulation. Simulation 
allowed us to quickly and systematically explore a multi-
dimensional problem space in a manner that is impractical 
with an actual testbed. The simulation test environment 
employed was ns-2 [3], version 2.26. Most experiments 
varied an individual aspect of an n-dimensional problem 
space. The varied aspects were: number of nodes, density of 
nodes, number of sources, number of sinks, send rate, and 
error rate. We focused on metrics that we believed would be 
most affected by BARD. A simulation experiment was also 
performed to approximate the advantage that BARD might 
bring to a  complex “real-world” application.  

 
We also conducted an experiment on an actual testbed that 

incorporated several aspects of our simulations. The testbed 
that we used consisted of Stayton nodes. These are small form 
factor systems running Linux over a 32-bit Intel embedded 
processor, with 64M of SDRAM, and 32M of flash memory. 
They are fitted with a multi- channel radio capable of 38.4 
Kbaud. Radio range can be modified to enable multi-hop 
experiments. 

 
We conducted our ns-2 experiments running multiple 

simulations over randomly generated node patterns. For each 
pair of data points in an experiment, we ran simple push 
diffusion with and without the BARD filter over ten random 
topologies and averaged the results. Additionally, we 
calculated and plotted 95% confidence intervals. The 
experiments run without the BARD filter used unfettered push 
diffusion, which flooded exploratory traffic for resource 
discovery. The BARD filter maintained a per-neighbor, per-
attribute reinforcement history over  the window of 
exploratory epochs in order to predict where to route 
exploratory packets during limited routing. We did not 
compare BARD to other data dissemination techniques 
because it is an optimization rather than a protocol. We expect 
the relative gains achieved over diffusion to be representative 

of the gains possible over other resource discovery 
algorithms. We expressed results in terms of control byte 
transmissions required for resource discovery normalized by 
the number of events that generated traffic in the simulation 
(i.e. whenever a source decides to send). We collected these 
numbers by instrumenting the simulation code to log resource 
discovery related transmissions with unique tags. We then 
processed the logs via awk scripts, which used the tags and 
byte counts to summarize transmission activity. 

 
For ns-2 node placement we modified an existing topology-

generator program [8] to create random topologies of 
progammable size. The generator has useful options such as 
approximate corner placements of sources and/or sinks in 
order to maximize the distance (hop count) between data 
producers and consumers. The generator allowed for any 
randomly or strategically placed sources and sinks. The 
intermediate nodes for simulation experiments were placed 
entirely at random. The generator tests node patterns for 
connectedness given the radio range. If sources and sinks 
cannot communicate with each other, the generator scraps the 
topology and generates another.  

 
Software loaded above the MAC layer in each experiment 

included the diffusion filter core, the diffusion  push routing 
filter, the BARD filter (employed when using BARD), and 
simple source and sink apps. For ns-2 experiments, we used 
the 802-11 MAC layer provided in ns-2 with a retry count of 
4. For all ns-2 experiments the radius of the radio range was 
39.6 meters. Our testbed experiment used the SMAC link 
layer [23] with a retry count of 3. For all experiments, routing 
was based on three attribute keys: motion, sound, and target 
type.   

 
A. Performance as node count increases 

 
The first experiment was aimed at quantifying the savings 

achievable with BARD as the number of nodes increases 
while density remains the same. The size of the simulation 
area was increased with node count, such that the average 
node density was held constant at 10.9 neighbors. The 
selected density insured a high probability of network 
connectivity, despite random node placement.  A single 
source and sink were placed at the greatest diagonal distance 
apart in the simulation field.  The node count was varied from 
25 to 100. A 128 byte packet was sent every 20 seconds from 
the source.  Flooding was performed once per 60-second 
epoch by push and once every 5 minutes by BARD, after 3 
initial flooding epochs to establish a prior history.  

 
Our expectations for this experiment, based on equation (8), 

were a 45% improvement running with 25 nodes and a 53% 
improvement at 100 nodes. Because the dominant term in our 
calculation is the node count we expected approximately 
linear growth for both BARD and push. Because BARD 
allows flooding 1/5 as often as simple push, we expected less 
slope for BARD. 



 
 

Figure 4 
Control bytes per event required to transfer 180 packets of 128 bytes each 

diagonally from source to sink using BARD Routing vs. simple Push Routing 
with a variable number of nodes. 

 
The graph in Figure 4 depicts the results, along with 95% 

confidence levels.  At 25 nodes BARD averaged 386 B/event 
while simple push averaged 1027 B/event. This represents a 
62% improvement by BARD. At 100 nodes BARD averaged 
1320 B/event while simple push averaged 4100 B/event, a 
68% improvement by BARD.  More importantly, the average 
rate of increase (slope) for BARD from 50 to 100 nodes is 
4.25 times less than the growth rate for simple push. The 
results of this experiment were better than predicted. Log 
analysis showed that the savings exceeded analysis because of 
a progressively greater limitation of alternate routes by BARD 
as the simulation progressed. When diffusion establishes new 
routes at the beginning of an exploratory epoch, it does not 
immediately retire previously used routes. Only when routes 
consistently display greater latency than their alternatives, are 
they retired.  Therefore data is often replicated on multiple 
paths by diffusion. BARD established fewer alternate routes 
than simple push as time passed. 

 
B. Performance as node density increases 

 
Changes in density affect BARD in two ways. First, higher 

density increases the number of alternate routes, and second 
nodes involved in viable routes are a smaller percentage of 
total node count. To understand these tradeoffs we varied 
density from 10 to 50 nodes in the average neighborhood. 
(although nodes are randomly placed, we computed 
approximate density analytically by assuming a nominal radio 
range of 39.6 meters and uniformly distributed sensors, 
ignoring edge effects). We expected that BARD would 
achieve greater savings than in the first experiment. The 
rational was that having a smaller proportion of total node 
count involved in routing would dominate results. The results, 
shown in Figure 5, validated these expectations. At 10 nodes 
per area (25 nodes), BARD required 62% less control traffic 
than simple push. At 49.3 nodes per area (100 nodes), BARD 
required 73% less control traffic. 

 
 

Figure 5 
Control bytes per event required to transfer 180 packets of 128 bytes each 
from source to sink using BARD vs. simple Push with increasing density 

 
C. Varying the number of sources 

 
This experiment compares the performance of BARD to 

unmodified push when multiple randomly positioned sources 
are generating data. We wished to establish the efficiency 
with which BARD could locate multiple resources. The 
number of sources was varied from one to five. A single sink 
received all of the traffic generated by the sources. Each 
source generated exploratory packets every 60 seconds, which 
were filtered with limited routing in the case of the BARD. 
Our expectation for this experiment was that the percentage of 
savings incurred by BARD would lessen as the number of 
sources increased. We assumed that as more sources became 
active, more nodes would necessarily become involved in 
routing thus decreasing BARD’s efficiency. The graph in 
Figure 6 shows that with a single source BARD averaged 703 
control B/event, and simple push averaged 1928 bytes. This 
represents 63% improvement by BARD. With 5 sources 
BARD averaged 3607 control B/event and simple push 
averaged 8454 B/event, a 54% improvement by BARD.  

 

 
 

Figure 6 
Control byte transmissions per event required to transfer 90 packets of 128 
bytes each from a variable number of sources to a single sink using BARD 

Routing vs. simple Push Routing 



 
 

Figure 7 
Control byte transmissions per event required to transfer 90 packets 

of 128 bytes each from a single source to a variable number 
of sinks using BARD Routing vs. simple Push Routing 

 
 
In effect, the percentage of improvement decreases with 

source count. Log analysis showed that in the case of multiple 
sources, BARD must discover more routes per event. We can 
speculate that if every node in the network became a source 
with equal frequency and evenly distributed over time, the 
performance of BARD vs. unmodified push diffusion would 
be indistinquishable. 
 
D. Varying the number of sinks 

 
This experiment compares the performance of BARD to 

unmodified push diffusion when multiple sinks are interested 
in the same events generated by a single source.  Because 
push diffusion does not flood interest messages, like two-
phase pull, the expectation was that adding sinks with a 
constant number of sources (in this case 1) would have a 
linear growth rate that is relatively flat. For each sink, we 
expected adding n * bytes/pkt because each sink sends its 
own positive reinforcement.  The BARD filter does not 
influence the activity of the underlying push filter when it 
comes to positive reinforcements. BARD only squelches 
exploratory traffic. With a single source, the relative 
improvement provided by BARD should be consistent.  

 
The results for this experiment are summarized in Figure 7. 

As can be seen in the figure, the slopes of both lines are 
nearly identical, varying by less than 10%.  BARD was 
approximately 60% more efficient than push.  If we had 
chosen to use one-phase pull as the underlying routing 
protocol and used BARD to limit the flooding of interests, we 
would expect this graph to look more like Figure 6. In one-
phase pull sinks initiate flooding of interests in order to do 
resource discovery; therefore adding more sinks has a similar 
effect to adding more source in push diffusion. 
 

 
 

Figure 8 
Total and control byte overhead per event for BARD Routing vs. simple 

Push Routing with an increasing send rate. 
 
E. Increasing the send frequency 

 
What happens when the cost of moving data along 

discovered paths becomes the major overhead in a sensor net 
application? In this experiment we increase the frequency 
with which data is sent from a single source to a sink in field 
of 50 nodes, and measure total overhead per event (includes 
data traffic) as well as the control overhead. The simulation 
time was 1 hour, and the send rate was varied from 1 to 30 
messages/minute. Our expectation was that the control byte 
overhead for push vs. BARD would begin to converge at 
higher send rates due to amortization across an increased 
number of events.  The plot is shown in Figure 8. As 
predicted, the control byte overhead for push approaches that 
of BARD at 30 packets/minute (84 B/event for BARD and 
219 B/event for push). For a single packet/minute, total and 
control B/event are nearly identical because every packet is 
exploratory (1875 B/event for BARD and 5952 B/event for 
push). A surprising result was that total overhead did not 
demonstrate greater convergence. Although total savings with 
BARD lessened with send rate, it didn’t converge with push 
very rapidly after 10 packets/min. As observed in the 1st 
experiment, BARD provides an unexpected benefit over 
unmodified push because fewer alternate data paths are 
maintained over time. Diffusion doesn’t immediately retire 
older data paths when new ones are established. BARD 
reduces the number of alternate paths that carry redundant 
data. 

 
F. Sensitivity to transmission error 
 

In this experiment we wished to investigate what influence 
packet loss has on the reliability of BARD modified routing. 
We employed a simulation space that includes 50 nodes at a 
density of 10 nodes per radio area with a single source and 
sink placed at approximately diagonally opposite corners. We  



 
 

Figure 9 
Percentage of packets sent that successfully arrived at a sink given various 

error rates using BARD Routing vs. simple Push Routing 
 
incrementally increased the error rate by modifying the error 
model in ns-2. Our expectation was that BARD would show 
greater loss than unmodified push as the error rate increased. 
The rationale was that the reduction of flooding would result 
in the discovery of fewer viable routes. The error rate was 
varied from5% to 40%. Previous studies [25] have 
demonstrated that error rates as high as 40% are present 
between some nodes in a sensor network, albeit rarely at 
adjacent nodes. A network with a 40% error rate between all 
adjacent nodes would be fairly useless. Flooding reduces the 
negative effects of transmission errors. Diffusion nodes 
forward exploratory data that has not been flooded previously.  
If the average node in a sensor network has 9 neighbors, then 
the broadcast from any of these neighbors could be considered 
the “first” broadcast if earlier ones are lost. This situation is 
equivalent to having 9 retries, rather than the 3 or 4 provided 
by the MAC layer. When error rates are high, even unicast 
transmissions, such as positive reinforcements, can suffer 
poor end-to-end reliability. The results for this experiment are 
summarized in Figure 9.  As predicted, the decay in the end-
to-end delivery rate is worse for BARD than simple push for 
global error rates in excess of 10%. 
 

  There are two curious aspects to the graph in Figure 9. 
The first is the stepwise decay in the BARD end-to-end 
delivery rate for rates greater than 25%.  Log analysis showed 
that this was related to entire exploratory epochs being lost 
when positive reinforcements don’t make it from sink to 
source. This resulted in an effective quantization of the curve 
that we would expect.  The other interesting aspect is the high 
variance. This is to be expected under high entropy 
conditions. 

 
G. Complex “real world” scenerio 

 
We selected previous scenarios to systematically explore 

the effects of BARD. In this section we consider a more 
complex scenario to approximate how we see BARD might 
be used in practice. Consider a sensor field deployed to track  

 
Figure 10 

Control byte overhead per event for target tracking 
application for BARD Routing vs. simple Push Routing when sink 

is diagonal from target route vs. in-line with target route 
 

vehicles. In our experiment, vehicles typically follow a 
common path - perhaps a road. Refer back to Figure 1 for a 
depiction of a single instance of the experiment. The target 
target follows a diagonal road from upper left to lower right 
of the sensor network. As the target passes by nodes near the 
diagonal, they are triggered to generate traffic. A lone sink 
reinforces the traffic from all transmitting nodes (sources).  
We initially ran the experiment with the sink diagonally 
opposite of the imaginary path. Sources did not transmit in 
response to a timer expiration.  Instead, a“trigger method” 
was added to each node, which was activated whenever the 
target was within 10 meters. The trigger method, when 
invoked, forced the transmission of source data. The target 
was modeled as an ns- 2 application that woke up 
monotonically and calculated its location according to a pre-
determined velocity. Nodes near the current location of the 
target were sent a trigger message so that they would generate 
traffic. The topology generator employed in the previous 
experiments was used to generate topologies, so that 
performance could be averaged over 10 different random 
node placements (excluding sink positioning).  
 

Our expectation for this experiment was that the reduction 
in control traffic realized by BARD would not be as dramatic 
as in earlier experiments. The rationale was that BARD would 
need to maintain a network of paths from the sink to the 
diagonal that would encompass half of the simulation area 
used by simple push flooding. Because BARD floods 1/5 as 
often as push, we estimated a savings in the range of 40% of 
the overhead incurred by simple push (i.e. 1/2*4/5). Results 
for this experiment are summarized in the left half of the bar 
graph in Figure 10 (at the top of the next page).  BARD 
performance was approximately 28% better than simple push, 
slightly worse than expected. Because the sources along the 
diagonal were angularly separated relative to the sink and 
multiple paths existed to each source, some links were used 
multiple times during exploratory epochs. 



 
 

Figure 11 
Stayton Testbed Topology 

 
We then speculated that we could improve on the relative 

performance of BARD vs. simple push by placing the sink in 
the lower right corner of the simulation area.  This would put 
the active sources somewhat in-line with the sink, thus 
creating fewer alternatives for the limited routing function of 
BARD.  The mean for these simulations is shown on the right 
half of Figure 10.  Notice that the efficiency of straight push 
is virtually unchanged, whereas the improvement by BARD 
over push goes from 28% to 47%. We expect that 
environments with completely random target movement 
would not benefit similarly from BARD. BARD’s improved 
efficiency in this experiment is the result of spatial correlation 
resulting from the road. 

 
H. Testbed experiment 

 
Although we found it convenient to explore the problem 

space relevant to diffusion / BARD via ns-2, we also wanted 
to deploy BARD in an actual testbed. Past experience has 
taught us that actual testbed experiments often result in 
unanticipated problems, which require design revisions. In 
this case we had available a testbed of 10 Stayton nodes, 
described at the start of this section. The deployment of the 
testbed is shown in Figure 11. Testbed topology was chosen 
to bring out the difference in using BARD given the limited 
number of nodes. The testbed consisted of a “fat” end in 
which nodes had multiple neighbors and a “thin” end in which 
nodes had a single neighbor on each side. The sink placement 
was just to the right of the  middle of the testbed. This 
allowed us to ascertain if BARD was capable of eliminating a 
non-productive segment of the network from attempts to find 
resources. The node to which we attached the source had the 
highest neighbor count and the greatest number of possible 
paths to the sink. Five 30 minute runs were performed with 
this configuration and the control traffic was counted for each 
run. The mean control traffic per event and confidence 
intervals are plotted in Figure 12, along with results from an 
ns-2 experiment patterned identically (i.e. matching topology, 
connectivity, send rate, etc…). 

 
Bayesian assisted routing was 38% more efficient on 

average than simple push routing. This was in line with 
expectations.  We expected the nodes on the right hand side of 
the testbed to be contacted by BARD approximately 40% as 
often as they would be by simple push. This is a reflection of 
the initial 3 data epochs used by BARD to build a prior  

 
Figure 12 

Control byte overhead per event for Stayton testbed experiment - BARD 
Routing vs. simple Push Routing 

 
distribution, followed by infrequent flooding by BARD to 
maintain the distribution. We expected BARD to limit the 
number of paths on the left hand side of the testbed to those 
which displayed the least latency. Because broadcast packets 
do not have ARQ in SMAC, the neighbors that heard the 
initial exploratory packet transmission from the source varied 
with time, which resulted in a variance of the exact paths 
maintained by BARD. Typically BARD maintained one or 
two paths on the left hand side. In every case BARD found a 
path from source to sink. Although our testbed was of limited 
size, this experiment nonetheless validated that our simulation 
results were consistent with results in a real-world test 
environment. 
 

VIII. RELATED WORK 
 
The work surveyed for this paper can be partitioned into six 

groups: route caching, geographic-assist, probabilistic 
forwarding, in-network aggregation, data-centric storage, and 
target tracking. Some techniques are strictly routing related, 
others address resource discovery, and some encompass both 
aspects of data dissemination. 

 
Route caching is a proven method for flooding-limitation in 

ad-hoc networks that employ addressed-based routing. DSR 
[12] and AODV [17] avoid flooding via route caching and on-
demand (non-periodic) route discovery. A probabilistic 
technique for adaptive routing, which has been used in ad-hoc 
networks, is reinforcement learning [1], wherein nodes learn 
the probabilities that their neighbors will provide the shortest 
path to a given address. Approaches from addressed-based 
protocols cannot be directly applied to attribute-based routing 
because the state space is extremely large and grows 
exponentially in the number of attributes used for routing. 
Additionally, multiple nodes may be able to satisfy any given 
resource request. Finally, such techniques are of limited 
benefit when slight variations in attributes preclude matches. 
We instead adopt Bayesian-based filtering to allow partial 
matches. 



When resources can be bound to geographical coordinates 
and sensor network nodes are geographically aware,  several 
algorithms provide efficient scalable  solutions to the problem 
of flooding. Both GPSR [13] and GEAR [24] exploit 
geography by greedily forwarding route discovery packets to 
individual neighbors that are closer to a target location.  The 
primary advantage of  BARD over purely geographic methods 
is its ability to exploit non-geographic aspects of a problem 
domain when accomplishing resource discovery. 
Additionally, sinks often don’t know where sources reside 
initially (or vice verse). 

 
Gossiping is a resource discovery technique that was 

developed in the context of networked databases [4], and 
subsequently applied to ad hoc routing in wireless networks 
[7].  The basic idea in gossiping is to forward route discovery 
messages with some pre-configured probability geared to the 
average degree (fan-out) of the network. BARD can adapt to 
skewed situations better, wherein some large segment of the 
network is not generating any interesting traffic. Rumor 
Routing [2] is a technique to limit flooding that can work with 
data-based routing and attribute-based queries. Events from 
sources and queries from sinks are propagated along 
approximate straight lines that are likely to intersect. The 
caching of event descriptions (attribute tuples) in rumor is 
similar to the caching of per-attribute probabilities in BARD.  

 
There are a large number of algorithms that limit flooding 

in sensor networks via in-network aggregation. This principle 
is loosely related to earlier work on clustering [15]. 
Aggregating data from multiple sensor nodes results in a 
reduced cost of accessing that data when the path to the 
aggregated data is either known or local updates percolate the 
aggregated data up an implicit hierarchy towards an active 
sink. Both SPIN [14] and COUGAR [22] form on-the-fly 
clustered hierarchies in which upper layers have partially 
aggregated information collected from lower layers.  

 
DCS/GHT (Data-Centric Storage in Sesnornets with 

Geographic Hash Tables) [18] requires an underlying 
geographic routing layer in order to perform in-network 
aggregation. All data with the same “name” (which could be 
an attribute tuple) is stored at the same node. The node is 
selected by hashing the name into geographic coordinates. It 
is appropriate for situations in which the same limited set of 
long-standing queries persists in a stable network. The cost of 
DCS is that preemptively moving data to hash sites can be 
expensive if the data is never accessed. By contrast, data-
centric routing places the burden of search on queries, and 
BARD helps reduce that cost. 

 
IDSQ is a collaborative signal and information processing 

(CSIP) algorithm with applications to target tracking [26]. In 
IDSQ, leader nodes collect sensor readings from successive 
neighbors in order to increase target belief state and select the 
next leader that optimizes the amount of information gained. 
Although BARD and IDSQ both use Bayes’ formula and limit 

flooding, they are very different techniques. IDSQ is 
customized for and tightly integrated with a particular target 
tracking application, while BARD can improve any running 
application that exposes correlation through attribute-based 
communication. IDSQ tracks a single target, while BARD is 
independent of the number of targets. Whereas IDSQ directly 
uses sensor readings to derive a belief distribution of 
information quality, BARD uses routing information to 
ascertain the quality of gradients toward desired data. It is 
possible that a best-performing algorithm would combine 
BARD and IDSQ, using BARD for initial target location and 
IDSQ to efficiently track the target once located. 

 
Other target-tracking techniques include Spatio-temporal 

Multicast [10] and FRESH [5]. Spatio-temporal Multicast in 
Sensor Networks predicts target path and establishes a 
“delivery zone” that has direction and velocity along the 
predicted path. FRESH is intended for mobile ad-hoc 
networks where flooding is triggered frequently due to node 
movement, and geographical information is not available. In 
FRESH, nodes forward route discovery traffic only to nodes 
that have more recently encountered the target. If BARD were 
configured to use time as the only attribute with which to 
calculate its probabilities, it would be similar to FRESH. 

 
Most of the flooding limitation techniques sited in this 

section focus on a particular aspect of resource discovery 
related to the applications that they support. For example: 
GEAR uses geographical location in Euclidean space, and 
FRESH uses temporal information. Data aggregation 
methods, like DCS/GHT aggregate information to assigned 
nodes, assuming that the savings incurred for queries 
outweighs the on-going cost of aggregation for storage.  
Effectively, each algorithm is capable of limiting the flooding 
associated with resource discovery for a particular class of 
application. The advantage of BARD is its generality. BARD 
can predict viable routes using any number or type of 
attributes in an environment where multiple routes alternate in 
their effectiveness to reach target data. BARD is also capable 
of efficient resource discovery when the possible set of 
queries can’t be quantized into a set of small cardinality. 

 
IX. FUTURE WORK 

 
Our initial results have motivated us to further explore the 

potential of Bayesian-Assisted Resource Discovery.  Foremost 
we wish to run more experiments over a real sensor network 
with a greater number of nodes. Experience has taught us that 
testbeds bring out race conditions, implosions, and correlated 
error conditions. We also need to explore trade offs related to 
the frequency with which BARD floods to update its prior 
distribution (i.e. efficiency vs. real-time response). The 
influence of thresholding on efficiency and timeliness needs 
to be explored further. Additionally, BARD needs to be 
expanded to work with pull diffusion. We also wish to 
examine the potential of BARD to cope with “attribute 
intersection.” The initial test results presented in this paper 



did not explore cases where multiple sinks are interested in 
different events that have incomplete overlap in terms of 
attribute matching.  We believe that coping with such 
situations is a distinguishing aspect of the future potential of 
BARD. Finally, we are planning to develop guaranteed 
resource discovery as an enhancement to underlying data 
dissemination protocols. Efficiency and reliability are 
covariant aspects of resource discovery. In order to satisfy a 
broad spectrum of application requirements, we believe that 
guarantees related to resource discovery must be made 
available. 

 
X. CONCLUSIONS 

 
In our investigation into the application of Bayesian 

estimation techniques to limit flooding during route discovery 
we demonstrated that significant savings are available in 
terms of control traffic per event.  Savings depend on the 
amount of traffic correlation in the application and the 
location of the data consumer. With completely uniform 
traffic distribution BARD will not help. When traffic is 
correlated, however, BARD can automatically discover and 
exploit that correlation even if it is not explicitly known to the 
application or user. Savings by BARD are proportional to the 
degree of correlation in the traffic. We demonstrated savings 
from 28% to 73%, depending on factors such as target 
location and placement of the data consumer. Applications 
requiring the utmost real-time response should not use 
BARD. BARD uses occasional flooding to be responsive to 
network change and previously unseen events. The level of 
real-time response is configurable. The primary benefit of 
BARD is the pruning of repeated resource discovery traffic 
across links that are not providing routes to interesting data. It 
is adaptable to a broad range of queries and event types. As a 
diffusion filter it can be easily added to existing applications 
that are running (push) diffusion. BARD can be adapted to 
optimize other data dissemination techniques that 
exhaustively search for resources. 
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