
Appearing in the 24th IEEE INFOCOM Conference Proceedings.
Miami, Florida, USA. March 13-17, 2005.

BARD: Bayesian-Assisted Resource Discovery In Sensor Networks
Fred Stann, John Heidemann

Abstract-Data dissemination in sensor networks requires four

components: resource discovery, route establishment, packet
forwarding, and route maintenance. Resource discovery can be
the most costly aspect if meta-data does not exist to guide the
search. Geographic routing can minimize search cost when
resources are defined by location, and hash-based techniques
like data-centric storage can make searching more efficient,
subject to increased storage cost. In general, however, flooding is
required to locate all resources matching a specification. In this
paper, we propose BARD, Bayesian-Assisted Resource
Discovery, an approach that optimizes resource discovery in
sensor networks by modeling search and routing as a stochastic
process. BARD exploits the attribute structure of diffusion and
prior routing history to avoid flooding for similar queries. BARD
models attributes as random variables and finds routes to
arbitrary value sets via Bayesian estimation. Results of
occasional flooded queries establish a baseline probability
distribution, which is used to focus additional queries. Since this
process is probabilistic and approximate, even partial matches
from prior searches can still reduce the scope of search. We
evaluate the benefits of BARD by extending directed diffusion
and examining control overhead with and without our Bayesian
filter. These simulations demonstrate a 28% to 73% reduction in
control traffic, depending on the number and locations of
sources and sinks.

Index terms - System design, Network measurements,

Simulations, Experimentation with real networks/Testbeds

I. INTRODUCTION

Data dissemination in wireless sensor networks requires

four components: resource discovery, route establishment,
packet forwarding, and route maintenance. Resource
discovery consists of finding data that is relevant to the
application. The other three components are referred to
collectively as routing. In IP and ad hoc routing, resource
discovery is layered on top of routing. A good deal of work
has been done to improve the efficiency of the route
establishment component of data dissemination in wireless
networks. DSR [12] and AODV [17] utilize cached routing
information to limit overhead by deferring route
establishment until existing route segments are no longer
valid. Reinforcement Learning has been used in ad-hoc
networks to forward data on links that are part of the shortest
path to a destination address [1]. Data-centric protocols, like
directed diffusion [11], combine resource discovery with the

This work was supported by DARPA under grant DABT63-99-1-0011 as part
of the SCAADS project, and was also made possible in part due to support
from Intel Corporation and Xerox Corporation. John Heidemann is also
partially supported through the NSF Division of Civil and Mechanical
Systems, grant number E01-CMS-0112665. Fred Stann and John Heidemann
are with USC/Information Sciences Institute, 4676 Admiralty Way, Marina
Del Rey, CA, USA E-mail: fstann@usc.edu, johnh@isi.edu.

route establishment function of routing. For resource
discovery, there are numerous schemes to limit cost. We
divide them into five classes: data-centric storage, in-network
aggregation, geographic-assist, target tracking, and
probabilistic. We evaluate related work in Section VIII. Most
of these schemes work well in their intended environments;
however, each of these approaches is designed for a
specialized application or class of application. We would
instead prefer a general technique that puts to use prior
routing information to constrain flooding.

A unique characteristic of our approach is that it exploits
the attribute-based routing present in diffusion. IP-based
schemes route only on the IP address. They can easily cache
and reuse routes to prior addresses. By contrast, data-centric
routing exposes application-level information in the form of
attributes, combining routing and resource discovery.
Attribute-based routing precludes simple route caching
because even minor changes in the attributes mean that prior
routes fail to match, rendering simple caching inapplicable.
Other resource discovery schemes have exposed limited
application-specific information. For example, DCS/GHT
hashes attributes to physical location [18]. Database
techniques use application-specific in-network caching to
support aggregation [16, 22]. Geographic approaches use
physical coordinates to limit flooding [2, 24]. IDSQ has
applied information-driven collaborative signal processing to
target tracking by tightly integrating application-specific
attributes with routing [26].

Unlike this prior work that focuses on specific

optimizations or applications, BARD is a general technique
that adapts to whatever attributes are currently in use in a
sensor network. BARD is not a new resource discovery or
routing algorithm. Rather, it is an orthogonal approach that
exploits correlations inherent in sensor network applications
in order to limit exhaustive searches for resources by
underlying data dissemination techniques. Correlations in
sensor networks can exist for many reasons – such as
geography, target tendencies, node topography, sink location,
reliability patterns, inactive regions, density, or aggregation
hierarchies.

Our goal is to provide a generic mechanism to exploit

application specific information, exposed through attributes to
limit routing overhead. Our approach exploits probabilistic
approaches and reasoning approaches from artificial
intelligence [19]. We model a real world problem in terms of
a belief agent operating over a set of random variables. The
belief agent chooses whatever action has the highest
probability of achieving success.

Figure 1
Sample simulation layout to model a complex example consisting
of a target moving on a diagonal path through the simulation field.

We model route discovery in diffusion as a distributed

problem in which each node is a belief agent that must select
a subset of links on which to forward route discovery
messages. The agent must periodically engage in an
exhaustive search for resources in order to maintain a
probability distribution and to locate singular real-time events.

Consider, for example, a sensor network tracking vehicles

moving along a road, as in Figure 1. A naïve approach to
query for vehicles along the road would periodically query all
sensors. Alternatively, if the location of the road were known,
queries could be geographically limited. As another
alternative, specific applications might track individual
vehicles as they moved on the road. Instead, we aim to
automatically observe, within diffusion, that a class of queries
is looking for vehicles that elicit responses from sensors near
the road, and automatically infer the location of the road over
time based on query response history. This general approach
is similar to reinforcement learning techniques where it has
been applied to general routing, but without application-
specific information [1]. Explicit representations of belief
have also been exploited in the context of specific sensor
network applications [26]. To our knowledge, we are the first
to propose integration of application-influenced learning at a
generic routing level.

The contribution of this paper is to improved efficiency in

diffusion data dissemination protocols via Bayesian-Assisted
Resource Discovery. BARD currently takes the form of a
“filter” for directed diffusion [9]. The BARD filter observes
the control traffic generated by the underlying diffusion
routing algorithm, does statistical analysis of that traffic, and
routinely “squelches” a large percentage of control traffic that
diffusion intends to be flooded. BARD must periodically
flood in order to maintain a probability distribution and to
locate singular real-time events, but the flooding interval is
much less frequent than in standard diffusion.

II. BAYESIAN ESTIMATION AND RESOURCE DISCOVERY

The resource discovery algorithm presented in this paper

relies on the Bayesian method of statistical inference [21].
Bayesian estimation relies on a prior probability distribution
f(θ), where θ is a random variable for which we have a prior
distribution given a set of prior conditions, which are also
random variables. Those same conditions, examined in a
current sample, can be combined with f(θ) to compute a new
distribution that predicts the likelihood of various values of θ
given the “evidence” of the current sample.

 In our algorithm, θ is a set of links to neighboring nodes,

which will be considered as candidates for the forwarding of
resource discovery traffic. The “current sample” is a query
posted by a sink to the network. Diffusion queries consist of
attribute-operator-value tripletts that delineate information of
interest to a data sink. The “prior conditions” are the bounded
histories of what attributes and values have been discovered
in the past by routing through each neighbor. Bayes’ theory
provides a mechanism to calculate the likelihood that a
particular hypothesis is true, given the current state of events
(i.e. the evidence) and the prior distribution. Our hypothesis is
simply: “is this node likely to lead us to a path between a
resource provider (source) and a resource consumer (sink)?”
The prior distribution is the per-neighbor history, bounded by
a window of time, relating neighbors to the resource
attributes. The evidence is the attribute set contained in the
query.

We now demonstrate the derivation of a Bayesian estimate
in the context of a sink seeking out sources with seismic and
accoustic readings above some threshold. Suppose that sensor
network “node X” has four neighbors: N1 through N4. We
assume that node X has previously resorted to flooding to
locate resources for queries related to seismic and accoustic
data, keeping track of the frequency with which each neighbor
provided a path to every resource attribute. Node X would
like to limit flooding by exploring only those neighbors that
are more likely to deliver seismic and acoustic sensor readings
above the application-prescribed values.

Because we wish to express the prior probabilities in

question as a sample space, we could divide the sample space
into several mutually exclusive events N1, N2, N3, … , Nk
(one for each neighbor), and two pieces of evidence: seismic
and acoustic. The expression of this as a sample space yields a
three-dimensional joint probability distribution such as that
depicted in Figure 2 (see top of next page). Unfortunately,
joint probability distributions are difficult to maintain because
their size grows exponentially with each added random
variable. The primary advantage of using Bayes’ Rule is that
it can dynamically calculate conditional probabilities to a
great deal of precision without maintaining a complete joint
probability distribution when certain conditions hold, as noted
below [19].

Node N4

Node N3

Node N2

Node N1

AcousticSeism ic

 Figure 2
A sample space consisting of mutually exclusive Node events, and

conditionally independent events Seismic &Acoustic.

Node X is looking for neighbors that can provide both

seismic and acoustic sensor data (i.e. event S∩A). We want to
answer the question: what is the probability that a given
neighbor is a constituent part of the desired composite event?
The contribution of a prior history is that it helps to predict
which neighbors will most likely provide certain resources in
present time when correlations exist in the sensor network.
The following formula expresses the probability that neighbor
N3 has sound and acoustic sensor data available, i.e. S∩A
occurred, given a joint distribution:

][

]3[]3|[
]|3[

ASP

NPNASP
ASNP

∩

∩
=∩ (1)

Bayes’ formula allows us to simplify the above equation

when events S and A are conditionally independent. Evidence
variables that are dependent in the joint, can be conditionally
independent relative to the hypothesis variable if they are both
a direct result of that variable. If we know that N3 leads to S,
the fact that N3 also leads to A is irrelevant to the conditional
calculation of S (i.e. P[S⏐N3] = P[S⏐N3∩A]). The following
formula is the Bayes’ estimate for neighbor N3 with Seismic
and Acoustic as our combined evidence:

=∩]|3[ASNP α (2)]3|[]3|[]3[NAPNSPNP

The normalizing constant α is equal to the constrained

sample space 1/P[S∩A] (i.e. the denominator of eq. (1)). This
constrained space is calculated trivially by exploiting the fact
that it can be converted into the following conditional terms:

]3|[]3|[]3[NAPNSPNP +

 (3)]3|![]3|![]3[! NAPNSPNP

The interested reader can consult [19] for an in-depth
explanation of the calculation of the normalizing constant.

III. BARD AND DIRECTED DIFFUSION

The effort to use Bayesian estimates to limit flooding

during resource discovery, requires an understanding of how
diffusion routing algorithms utilize flooding. The initial
diffusion algorithm is now called two-phase pull diffusion [8].
In two-phase pull, interest messages that describe the
attributes of desired data are flooded from a sink to all nodes.
“Exploratory data” is then reverse-flooded from sources
which have data matching the attributes. When the
Exploratory data arrives at a sink, high quality (i.e., low
latency) paths are “reinforced” by control messages unicast
from a sink toward sources. The high-quality routes provide
efficient (single path) data transfer for a period of time.
Interests are periodically flooded to re-establish reinforced
paths, in order to cope with changing network conditions.
Therefore, two-phase pull has two flooding stages involved in
resource discovery and path establishment.

Two more recent versions of diffusion are push and one-
phase pull [8]. In push diffusion, sinks have interests that are
held locally, rather than flooded. Resource discovery in push
consists of sources finding paths to interested sinks via
exploratory data flooding and reverse-path reinforcement.
One-phase pull diffusion only floods interest messages. Data
from sources travels along the reverse path of the lowest
latency interest arrivals. One phase pull thus eliminates
exploratory traffic flooding. The primary difference between
push and pull (one or two-phase) is the direction of resource
discovery via flooding. One-phase pull employs sink-to-
source resource discovery and push uses source-to-sink
resource discovery. Although Bayesian methods can be used
to limit flooding in either direction, push provides fertile
ground for BARD development because it is simpler in
implementation than either the original diffusion routing
algorithm or one-phase pull. All of the experiments presented
in this paper were run over push diffusion. Push diffusion
works well for applications, such as tracking, where many
sensors are looking for data to publish, but actuations are
relatively rare. As future work we plan to modify BARD to
limit flooding in one-phase pull and two-phase pull diffusion.

IV. BARD FUNCTIONAL DESCRIPTION

Bayesian-Assisted Resource Discovery limits flooding in

push diffusion via the application of Bayesian methods of
estimation to predict what nodes to forward route discovery
messages to. In push diffusion, route discovery packets are
simply data packets, which are periodically marked as
exploratory and flooded. When an exploratory data packet
reaches a sink, the sink sends a positive reinforcement
message along the reverse path toward the source.
Intermediate nodes typically receive multiple copies of the
exploratory route discovery packet (once from each
neighbor). The intermediate nodes use a heuristic, such as
latency, to select a single neighbor to forward the positive
reinforcement to. Once a reinforced path from source to sink

is established, subsequent data packets are unicast along that
path until the next “exploratory interval.” When there are
multiple sinks, a non-redundant distribution tree is formed
between sinks and source. BARD spends some time building
a per-attribute reinforcement history based on flooded
exploratory data traffic and reinforcement messages. Once a
sufficient mass of history is collected, BARD attempts to limit
flooding by forwarding exploratory traffic only to neighbors
that are likely to yield reinforcements. In diffusion, data is
exchanged when sources publish data whose attributes
logically match those subscribed to by sinks. BARD employs
the same matching rules when comparing resource-discovery
packet content to reinforcement history. The goal is to predict
what neighboring nodes have the greatest probability of
yielding a working connection.

There are two primary functions that the BARD filter must

provide in order to achieve its goal of efficient resource
discovery: ongoing maintenance of the prior distribution and
flooding limitation. First, BARD must collect statistical
information about which neighbors have provided effective
routes for data from sources to sinks. In doing so, it must
“dissect” the routing attributes in a packet so that each routing
attribute’s history is maintained separately, because
subsequent traffic flow may have a limited degree of
intersection with current traffic. Periodically BARD refreshes
the reinforcement history by permitting flooding, to cope with
changing conditions in the network. Therefore BARD
maintains a sliding window of history, discarding the oldest
entries as the window moves forward. Periodic flooding also
guarantees that low probability events will be sensed, albeit at
a reduced fidelity. The second primary function of BARD is
to suppress flooding based on collected history. This function
of BARD employs Bayesian methods of estimation to assign
probabilities to outgoing links in order to predict which links
will yield a positive result during route discovery. Nodes
whose Bayesian estimate falls beneath a calculated threshold
will not have resource discovery messages forwarded to them.
We call this function limited routing. The ratio of actual
flooding to limited routing dictates the efficiency achieved by
BARD as well as the latency of its response to change.
Tuning the ratio represents a configurable trade-off between
real-time responsiveness and energy savings.

V. BARD IMPLEMENTATION DETAILS

There are three elemental pieces that make up the BARD

filter: a history gathering routine that is called whenever data
is flooded, a flooding limitation routine that is called to
constrain flooding, and a Bayesian module that calculates
probabilities in support of flooding limitation (see Figure 3).
A helpful concept in describing how the BARD filter interacts
with push diffusion is that of an exploratory epoch. An
exploratory epoch in diffusion begins when data is tagged as
exploratory (to be flooded) by a source. The exploratory
epoch is the maximum time interval during which data is
unicast over a reinforced path.

Push Diffusion
Routing Filter

Bayes Probability Calcutation

BARD Filter Post-Processing
(Flooding Limitation)

BARD Filter Pre-Processing
(History)

Figure 3
Depiction of Bayesian Filter in relation to Push Diffusion

BARD restricts flooding during a fixed ratio of exploratory

epochs. The ratio, which is configurable, represents a trade-
off between efficiency and real-time response to changing
network conditions. By default, BARD restricts flooding
during four out of five exploratory epochs declared by push.
This ratio represents a moderation between economy and real-
time response. In order to establish a minimal prior
distribution when there is no history, BARD allows flooding
for three exploratory epochs in a row. BARD limits the
flooding of push exploratory messages by converting
broadcast addresses to specific unicast addresses. Statistically,
the best candidates to forward exploratory data to are those
which have some history of providing positive reinforcement
for the particular set of attributes contained in the exploratory
data packet.

To support the flooding limitation function, BARD adds a

unique attribute to every exploratory data packet that
emanates from a push diffusion source. This attribute
indicates whether the packet is going to be fully flooded or
subject to limited routing. The attribute travels with the packet
as it is forwarded through the network. BARD pre-processing
at a source node, therefore, controls how often an exploratory
epoch is allowed to flood. As mentioned above, this is
currently set to 1/5th of exploratory epochs. Users can achieve
greater efficiency by decreasing the ratio and better response
to change by increasing it. Applications that are more entropic
will require more frequent refreshing of the history.

The statistics gathering function of the BARD pre-filter

maintains the prior distribution used by the post-filter during
limited flooding. BARD keeps track of how many positive
reinforcements arrive from each neighbor per flooded
exploratory data. The reinforcement statistics are kept on both
a per-neighbor and per-attribute basis. Statistics are held in a
rotating buffer, configurable in terms of time. Buffer size
delineates the history window over which BARD operates.
Larger windows demonstrate less hysteresis. The maintenance
of per-attribute statistics allows BARD to deal with a varying

 degree of intersection in the attribute sets generated by
different push sources. In order to enable attribute matching
for attribute quantities that are not strictly identical (such as
GT or LT), BARD requires that the subscription data from
sinks be provided in the positive reinforcement. Push does
not currently provide this data. Our prototype implementation
therefore uses a simpler matching scheme that considers only
attribute equality and not range query matching. We are in
the process of extending the reinforcement information to
allow complete matching.

The single purpose of the post-processing section of the

BARD filter is to limit the flooding of exploratory data
packets to a subset of neighbors. Neighbors are chosen that
have demonstrated a historical probability of providing
reinforced paths from sinks to sources for the attribute set
contained in the exploratory packet. Because the
reinforcement history is kept on a per-attribute basis, it is
possible to construct probabilities incrementally using
multiple pieces of “evidence” and Bayesian estimation. The
computational costs of Bayesian estimation are negligible in
Stargate class nodes, and we are investigating porting to
motes.

In order to identify the subset of neighbors that will

receive resource discovery packets, during limited-flooding,
BARD uses thresholding. The threshold is the minimum
Bayesian probability that must be achieved by a given
neighbor in order to have a resource discovery packet
forwarded to it. If the threshold is set too high, BARD may
not find a route from source to sink, and if the threshold is set
too low BARD efficiency will unnecessarily deteriorate. The
appropriate threshold for forwarding is a function of three
variables:

Fan-Out – the number of neighbors that can

symmetrically communicate with a node.
Error Rate – the percentage of received

packets to packets sent.
Number of Sources – the number of sources

that are generating data traffic.

Dense topologies and multiple active sources produce
multiple neighbors with moderate probabilities rather than
fewer high-probability neighbors. Higher error rates dilute
probabilities through reinforcement packet loss.

The following empirical formula, derived by observing

how each component affected the number of alternate routes
(in simulation), represents thresholds that resulted in delivery
rates equal to or better than simple push:

()
(05.8.

0 24/

1
−−∑ + ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
e

S
Sd

) (4)

S is number of sources, d is the degree or fan out, and e is
the error rate. The right hand side represents the reduction in
threshold required to keep pace with an increasing error rate.
The left hand side represents the graceful decay when
multiple sources activate for a single event. The reciprocal of
this formula yields the projected number of alternate routes.
For example, with 10 neighbors, a single source, and an error
rate of .05, the threshold would be .25 and the number of
viable alternate routes within 50 minutes (the default history
window of the BARD filter) would be 4. Precisely how
thresholding influences efficiency vs. reliability is part of
future work.

VI. ANALYSIS

Bayesian estimation techniques rely on the existence of a

prior distribution. BARD collects information periodically via
flooding so as to establish and maintain this prior distribution
for reuse during periods of limited routing. If we assume that
BARD will successfully identify the “corridor” of alternate
routes between source and sink, then we can predict the
amount of traffic we expect to be generated during limited
routing. We know the amount of control traffic generated by
push diffusion during route discovery. Each node broadcasts
the exploratory message exactly one time, and then a single
route is reinforced. If we have a square grid with nodes
evenly spaced and a source and sink at diagonally opposite
corners, then the cost of routing in bytes per event is simply:

()

tevents
xnn

tf
+

∗ (5)

where n is the number of nodes, ft is the number of
exploratory intervals per time t, x is the number of bytes in an
exploratory packet, and eventst is the number of events
occurring in time t. The term n represents the cost of the
positive reinforcement. We can actually simplify Equation (5)
because when push diffusion floods exploratory data, the first
exploratory packet to arrive at the sink will double as an
actual data packet. Thus the n term represents useful data
transfer rather than overhead and can be deleted, yielding:

 teventsnxtf (6)

BARD, operating in steady state (as configured for this
paper), floods 1/5 as often as push. We can express this cost
per event as:

()

tevents

xahtfnxtf 15/45/1 −+
 (7)

where a is the number of alternate routes that the BARD filter
identifies during limited routing and h is the average hop

count of those routes. We decrement a for the same reason
we removed n in Equation (6). As we add more sources,
or increase the error rate, we expect a to grow as the
reciprocal of (4). If we wish to express the percentage gain
that BARD should have over push, we can simplify our
calculation:

()()

ntf

ahntf 15451
1

−+
− (8)

Equation (8) was used to set expectations for the experiments
outlined in the next section. Equation (4), derived in
preliminary experiments, was used in subsequent experiments
to set thresholds.

VII. EXPERIMENTAL RESULTS

In order to quickly evaluate the efficiency and potential of

Bayesian-Assisted Resource Discovery, we designed a series
of experiments run primarily in simulation. Simulation
allowed us to quickly and systematically explore a multi-
dimensional problem space in a manner that is impractical
with an actual testbed. The simulation test environment
employed was ns-2 [3], version 2.26. Most experiments
varied an individual aspect of an n-dimensional problem
space. The varied aspects were: number of nodes, density of
nodes, number of sources, number of sinks, send rate, and
error rate. We focused on metrics that we believed would be
most affected by BARD. A simulation experiment was also
performed to approximate the advantage that BARD might
bring to a complex “real-world” application.

We also conducted an experiment on an actual testbed that

incorporated several aspects of our simulations. The testbed
that we used consisted of Stayton nodes. These are small form
factor systems running Linux over a 32-bit Intel embedded
processor, with 64M of SDRAM, and 32M of flash memory.
They are fitted with a multi- channel radio capable of 38.4
Kbaud. Radio range can be modified to enable multi-hop
experiments.

We conducted our ns-2 experiments running multiple

simulations over randomly generated node patterns. For each
pair of data points in an experiment, we ran simple push
diffusion with and without the BARD filter over ten random
topologies and averaged the results. Additionally, we
calculated and plotted 95% confidence intervals. The
experiments run without the BARD filter used unfettered push
diffusion, which flooded exploratory traffic for resource
discovery. The BARD filter maintained a per-neighbor, per-
attribute reinforcement history over the window of
exploratory epochs in order to predict where to route
exploratory packets during limited routing. We did not
compare BARD to other data dissemination techniques
because it is an optimization rather than a protocol. We expect
the relative gains achieved over diffusion to be representative

of the gains possible over other resource discovery
algorithms. We expressed results in terms of control byte
transmissions required for resource discovery normalized by
the number of events that generated traffic in the simulation
(i.e. whenever a source decides to send). We collected these
numbers by instrumenting the simulation code to log resource
discovery related transmissions with unique tags. We then
processed the logs via awk scripts, which used the tags and
byte counts to summarize transmission activity.

For ns-2 node placement we modified an existing topology-

generator program [8] to create random topologies of
progammable size. The generator has useful options such as
approximate corner placements of sources and/or sinks in
order to maximize the distance (hop count) between data
producers and consumers. The generator allowed for any
randomly or strategically placed sources and sinks. The
intermediate nodes for simulation experiments were placed
entirely at random. The generator tests node patterns for
connectedness given the radio range. If sources and sinks
cannot communicate with each other, the generator scraps the
topology and generates another.

Software loaded above the MAC layer in each experiment

included the diffusion filter core, the diffusion push routing
filter, the BARD filter (employed when using BARD), and
simple source and sink apps. For ns-2 experiments, we used
the 802-11 MAC layer provided in ns-2 with a retry count of
4. For all ns-2 experiments the radius of the radio range was
39.6 meters. Our testbed experiment used the SMAC link
layer [23] with a retry count of 3. For all experiments, routing
was based on three attribute keys: motion, sound, and target
type.

A. Performance as node count increases

The first experiment was aimed at quantifying the savings

achievable with BARD as the number of nodes increases
while density remains the same. The size of the simulation
area was increased with node count, such that the average
node density was held constant at 10.9 neighbors. The
selected density insured a high probability of network
connectivity, despite random node placement. A single
source and sink were placed at the greatest diagonal distance
apart in the simulation field. The node count was varied from
25 to 100. A 128 byte packet was sent every 20 seconds from
the source. Flooding was performed once per 60-second
epoch by push and once every 5 minutes by BARD, after 3
initial flooding epochs to establish a prior history.

Our expectations for this experiment, based on equation (8),

were a 45% improvement running with 25 nodes and a 53%
improvement at 100 nodes. Because the dominant term in our
calculation is the node count we expected approximately
linear growth for both BARD and push. Because BARD
allows flooding 1/5 as often as simple push, we expected less
slope for BARD.

Figure 4
Control bytes per event required to transfer 180 packets of 128 bytes each

diagonally from source to sink using BARD Routing vs. simple Push Routing
with a variable number of nodes.

The graph in Figure 4 depicts the results, along with 95%

confidence levels. At 25 nodes BARD averaged 386 B/event
while simple push averaged 1027 B/event. This represents a
62% improvement by BARD. At 100 nodes BARD averaged
1320 B/event while simple push averaged 4100 B/event, a
68% improvement by BARD. More importantly, the average
rate of increase (slope) for BARD from 50 to 100 nodes is
4.25 times less than the growth rate for simple push. The
results of this experiment were better than predicted. Log
analysis showed that the savings exceeded analysis because of
a progressively greater limitation of alternate routes by BARD
as the simulation progressed. When diffusion establishes new
routes at the beginning of an exploratory epoch, it does not
immediately retire previously used routes. Only when routes
consistently display greater latency than their alternatives, are
they retired. Therefore data is often replicated on multiple
paths by diffusion. BARD established fewer alternate routes
than simple push as time passed.

B. Performance as node density increases

Changes in density affect BARD in two ways. First, higher

density increases the number of alternate routes, and second
nodes involved in viable routes are a smaller percentage of
total node count. To understand these tradeoffs we varied
density from 10 to 50 nodes in the average neighborhood.
(although nodes are randomly placed, we computed
approximate density analytically by assuming a nominal radio
range of 39.6 meters and uniformly distributed sensors,
ignoring edge effects). We expected that BARD would
achieve greater savings than in the first experiment. The
rational was that having a smaller proportion of total node
count involved in routing would dominate results. The results,
shown in Figure 5, validated these expectations. At 10 nodes
per area (25 nodes), BARD required 62% less control traffic
than simple push. At 49.3 nodes per area (100 nodes), BARD
required 73% less control traffic.

Figure 5
Control bytes per event required to transfer 180 packets of 128 bytes each
from source to sink using BARD vs. simple Push with increasing density

C. Varying the number of sources

This experiment compares the performance of BARD to

unmodified push when multiple randomly positioned sources
are generating data. We wished to establish the efficiency
with which BARD could locate multiple resources. The
number of sources was varied from one to five. A single sink
received all of the traffic generated by the sources. Each
source generated exploratory packets every 60 seconds, which
were filtered with limited routing in the case of the BARD.
Our expectation for this experiment was that the percentage of
savings incurred by BARD would lessen as the number of
sources increased. We assumed that as more sources became
active, more nodes would necessarily become involved in
routing thus decreasing BARD’s efficiency. The graph in
Figure 6 shows that with a single source BARD averaged 703
control B/event, and simple push averaged 1928 bytes. This
represents 63% improvement by BARD. With 5 sources
BARD averaged 3607 control B/event and simple push
averaged 8454 B/event, a 54% improvement by BARD.

Figure 6
Control byte transmissions per event required to transfer 90 packets of 128
bytes each from a variable number of sources to a single sink using BARD

Routing vs. simple Push Routing

Figure 7
Control byte transmissions per event required to transfer 90 packets

of 128 bytes each from a single source to a variable number
of sinks using BARD Routing vs. simple Push Routing

In effect, the percentage of improvement decreases with

source count. Log analysis showed that in the case of multiple
sources, BARD must discover more routes per event. We can
speculate that if every node in the network became a source
with equal frequency and evenly distributed over time, the
performance of BARD vs. unmodified push diffusion would
be indistinquishable.

D. Varying the number of sinks

This experiment compares the performance of BARD to

unmodified push diffusion when multiple sinks are interested
in the same events generated by a single source. Because
push diffusion does not flood interest messages, like two-
phase pull, the expectation was that adding sinks with a
constant number of sources (in this case 1) would have a
linear growth rate that is relatively flat. For each sink, we
expected adding n * bytes/pkt because each sink sends its
own positive reinforcement. The BARD filter does not
influence the activity of the underlying push filter when it
comes to positive reinforcements. BARD only squelches
exploratory traffic. With a single source, the relative
improvement provided by BARD should be consistent.

The results for this experiment are summarized in Figure 7.

As can be seen in the figure, the slopes of both lines are
nearly identical, varying by less than 10%. BARD was
approximately 60% more efficient than push. If we had
chosen to use one-phase pull as the underlying routing
protocol and used BARD to limit the flooding of interests, we
would expect this graph to look more like Figure 6. In one-
phase pull sinks initiate flooding of interests in order to do
resource discovery; therefore adding more sinks has a similar
effect to adding more source in push diffusion.

Figure 8
Total and control byte overhead per event for BARD Routing vs. simple

Push Routing with an increasing send rate.

E. Increasing the send frequency

What happens when the cost of moving data along

discovered paths becomes the major overhead in a sensor net
application? In this experiment we increase the frequency
with which data is sent from a single source to a sink in field
of 50 nodes, and measure total overhead per event (includes
data traffic) as well as the control overhead. The simulation
time was 1 hour, and the send rate was varied from 1 to 30
messages/minute. Our expectation was that the control byte
overhead for push vs. BARD would begin to converge at
higher send rates due to amortization across an increased
number of events. The plot is shown in Figure 8. As
predicted, the control byte overhead for push approaches that
of BARD at 30 packets/minute (84 B/event for BARD and
219 B/event for push). For a single packet/minute, total and
control B/event are nearly identical because every packet is
exploratory (1875 B/event for BARD and 5952 B/event for
push). A surprising result was that total overhead did not
demonstrate greater convergence. Although total savings with
BARD lessened with send rate, it didn’t converge with push
very rapidly after 10 packets/min. As observed in the 1st
experiment, BARD provides an unexpected benefit over
unmodified push because fewer alternate data paths are
maintained over time. Diffusion doesn’t immediately retire
older data paths when new ones are established. BARD
reduces the number of alternate paths that carry redundant
data.

F. Sensitivity to transmission error

In this experiment we wished to investigate what influence
packet loss has on the reliability of BARD modified routing.
We employed a simulation space that includes 50 nodes at a
density of 10 nodes per radio area with a single source and
sink placed at approximately diagonally opposite corners. We

Figure 9
Percentage of packets sent that successfully arrived at a sink given various

error rates using BARD Routing vs. simple Push Routing

incrementally increased the error rate by modifying the error
model in ns-2. Our expectation was that BARD would show
greater loss than unmodified push as the error rate increased.
The rationale was that the reduction of flooding would result
in the discovery of fewer viable routes. The error rate was
varied from5% to 40%. Previous studies [25] have
demonstrated that error rates as high as 40% are present
between some nodes in a sensor network, albeit rarely at
adjacent nodes. A network with a 40% error rate between all
adjacent nodes would be fairly useless. Flooding reduces the
negative effects of transmission errors. Diffusion nodes
forward exploratory data that has not been flooded previously.
If the average node in a sensor network has 9 neighbors, then
the broadcast from any of these neighbors could be considered
the “first” broadcast if earlier ones are lost. This situation is
equivalent to having 9 retries, rather than the 3 or 4 provided
by the MAC layer. When error rates are high, even unicast
transmissions, such as positive reinforcements, can suffer
poor end-to-end reliability. The results for this experiment are
summarized in Figure 9. As predicted, the decay in the end-
to-end delivery rate is worse for BARD than simple push for
global error rates in excess of 10%.

 There are two curious aspects to the graph in Figure 9.
The first is the stepwise decay in the BARD end-to-end
delivery rate for rates greater than 25%. Log analysis showed
that this was related to entire exploratory epochs being lost
when positive reinforcements don’t make it from sink to
source. This resulted in an effective quantization of the curve
that we would expect. The other interesting aspect is the high
variance. This is to be expected under high entropy
conditions.

G. Complex “real world” scenerio

We selected previous scenarios to systematically explore

the effects of BARD. In this section we consider a more
complex scenario to approximate how we see BARD might
be used in practice. Consider a sensor field deployed to track

Figure 10

Control byte overhead per event for target tracking
application for BARD Routing vs. simple Push Routing when sink

is diagonal from target route vs. in-line with target route

vehicles. In our experiment, vehicles typically follow a
common path - perhaps a road. Refer back to Figure 1 for a
depiction of a single instance of the experiment. The target
target follows a diagonal road from upper left to lower right
of the sensor network. As the target passes by nodes near the
diagonal, they are triggered to generate traffic. A lone sink
reinforces the traffic from all transmitting nodes (sources).
We initially ran the experiment with the sink diagonally
opposite of the imaginary path. Sources did not transmit in
response to a timer expiration. Instead, a“trigger method”
was added to each node, which was activated whenever the
target was within 10 meters. The trigger method, when
invoked, forced the transmission of source data. The target
was modeled as an ns- 2 application that woke up
monotonically and calculated its location according to a pre-
determined velocity. Nodes near the current location of the
target were sent a trigger message so that they would generate
traffic. The topology generator employed in the previous
experiments was used to generate topologies, so that
performance could be averaged over 10 different random
node placements (excluding sink positioning).

Our expectation for this experiment was that the reduction
in control traffic realized by BARD would not be as dramatic
as in earlier experiments. The rationale was that BARD would
need to maintain a network of paths from the sink to the
diagonal that would encompass half of the simulation area
used by simple push flooding. Because BARD floods 1/5 as
often as push, we estimated a savings in the range of 40% of
the overhead incurred by simple push (i.e. 1/2*4/5). Results
for this experiment are summarized in the left half of the bar
graph in Figure 10 (at the top of the next page). BARD
performance was approximately 28% better than simple push,
slightly worse than expected. Because the sources along the
diagonal were angularly separated relative to the sink and
multiple paths existed to each source, some links were used
multiple times during exploratory epochs.

Figure 11
Stayton Testbed Topology

We then speculated that we could improve on the relative

performance of BARD vs. simple push by placing the sink in
the lower right corner of the simulation area. This would put
the active sources somewhat in-line with the sink, thus
creating fewer alternatives for the limited routing function of
BARD. The mean for these simulations is shown on the right
half of Figure 10. Notice that the efficiency of straight push
is virtually unchanged, whereas the improvement by BARD
over push goes from 28% to 47%. We expect that
environments with completely random target movement
would not benefit similarly from BARD. BARD’s improved
efficiency in this experiment is the result of spatial correlation
resulting from the road.

H. Testbed experiment

Although we found it convenient to explore the problem

space relevant to diffusion / BARD via ns-2, we also wanted
to deploy BARD in an actual testbed. Past experience has
taught us that actual testbed experiments often result in
unanticipated problems, which require design revisions. In
this case we had available a testbed of 10 Stayton nodes,
described at the start of this section. The deployment of the
testbed is shown in Figure 11. Testbed topology was chosen
to bring out the difference in using BARD given the limited
number of nodes. The testbed consisted of a “fat” end in
which nodes had multiple neighbors and a “thin” end in which
nodes had a single neighbor on each side. The sink placement
was just to the right of the middle of the testbed. This
allowed us to ascertain if BARD was capable of eliminating a
non-productive segment of the network from attempts to find
resources. The node to which we attached the source had the
highest neighbor count and the greatest number of possible
paths to the sink. Five 30 minute runs were performed with
this configuration and the control traffic was counted for each
run. The mean control traffic per event and confidence
intervals are plotted in Figure 12, along with results from an
ns-2 experiment patterned identically (i.e. matching topology,
connectivity, send rate, etc…).

Bayesian assisted routing was 38% more efficient on

average than simple push routing. This was in line with
expectations. We expected the nodes on the right hand side of
the testbed to be contacted by BARD approximately 40% as
often as they would be by simple push. This is a reflection of
the initial 3 data epochs used by BARD to build a prior

Figure 12

Control byte overhead per event for Stayton testbed experiment - BARD
Routing vs. simple Push Routing

distribution, followed by infrequent flooding by BARD to
maintain the distribution. We expected BARD to limit the
number of paths on the left hand side of the testbed to those
which displayed the least latency. Because broadcast packets
do not have ARQ in SMAC, the neighbors that heard the
initial exploratory packet transmission from the source varied
with time, which resulted in a variance of the exact paths
maintained by BARD. Typically BARD maintained one or
two paths on the left hand side. In every case BARD found a
path from source to sink. Although our testbed was of limited
size, this experiment nonetheless validated that our simulation
results were consistent with results in a real-world test
environment.

VIII. RELATED WORK

The work surveyed for this paper can be partitioned into six

groups: route caching, geographic-assist, probabilistic
forwarding, in-network aggregation, data-centric storage, and
target tracking. Some techniques are strictly routing related,
others address resource discovery, and some encompass both
aspects of data dissemination.

Route caching is a proven method for flooding-limitation in

ad-hoc networks that employ addressed-based routing. DSR
[12] and AODV [17] avoid flooding via route caching and on-
demand (non-periodic) route discovery. A probabilistic
technique for adaptive routing, which has been used in ad-hoc
networks, is reinforcement learning [1], wherein nodes learn
the probabilities that their neighbors will provide the shortest
path to a given address. Approaches from addressed-based
protocols cannot be directly applied to attribute-based routing
because the state space is extremely large and grows
exponentially in the number of attributes used for routing.
Additionally, multiple nodes may be able to satisfy any given
resource request. Finally, such techniques are of limited
benefit when slight variations in attributes preclude matches.
We instead adopt Bayesian-based filtering to allow partial
matches.

When resources can be bound to geographical coordinates
and sensor network nodes are geographically aware, several
algorithms provide efficient scalable solutions to the problem
of flooding. Both GPSR [13] and GEAR [24] exploit
geography by greedily forwarding route discovery packets to
individual neighbors that are closer to a target location. The
primary advantage of BARD over purely geographic methods
is its ability to exploit non-geographic aspects of a problem
domain when accomplishing resource discovery.
Additionally, sinks often don’t know where sources reside
initially (or vice verse).

Gossiping is a resource discovery technique that was

developed in the context of networked databases [4], and
subsequently applied to ad hoc routing in wireless networks
[7]. The basic idea in gossiping is to forward route discovery
messages with some pre-configured probability geared to the
average degree (fan-out) of the network. BARD can adapt to
skewed situations better, wherein some large segment of the
network is not generating any interesting traffic. Rumor
Routing [2] is a technique to limit flooding that can work with
data-based routing and attribute-based queries. Events from
sources and queries from sinks are propagated along
approximate straight lines that are likely to intersect. The
caching of event descriptions (attribute tuples) in rumor is
similar to the caching of per-attribute probabilities in BARD.

There are a large number of algorithms that limit flooding

in sensor networks via in-network aggregation. This principle
is loosely related to earlier work on clustering [15].
Aggregating data from multiple sensor nodes results in a
reduced cost of accessing that data when the path to the
aggregated data is either known or local updates percolate the
aggregated data up an implicit hierarchy towards an active
sink. Both SPIN [14] and COUGAR [22] form on-the-fly
clustered hierarchies in which upper layers have partially
aggregated information collected from lower layers.

DCS/GHT (Data-Centric Storage in Sesnornets with

Geographic Hash Tables) [18] requires an underlying
geographic routing layer in order to perform in-network
aggregation. All data with the same “name” (which could be
an attribute tuple) is stored at the same node. The node is
selected by hashing the name into geographic coordinates. It
is appropriate for situations in which the same limited set of
long-standing queries persists in a stable network. The cost of
DCS is that preemptively moving data to hash sites can be
expensive if the data is never accessed. By contrast, data-
centric routing places the burden of search on queries, and
BARD helps reduce that cost.

IDSQ is a collaborative signal and information processing

(CSIP) algorithm with applications to target tracking [26]. In
IDSQ, leader nodes collect sensor readings from successive
neighbors in order to increase target belief state and select the
next leader that optimizes the amount of information gained.
Although BARD and IDSQ both use Bayes’ formula and limit

flooding, they are very different techniques. IDSQ is
customized for and tightly integrated with a particular target
tracking application, while BARD can improve any running
application that exposes correlation through attribute-based
communication. IDSQ tracks a single target, while BARD is
independent of the number of targets. Whereas IDSQ directly
uses sensor readings to derive a belief distribution of
information quality, BARD uses routing information to
ascertain the quality of gradients toward desired data. It is
possible that a best-performing algorithm would combine
BARD and IDSQ, using BARD for initial target location and
IDSQ to efficiently track the target once located.

Other target-tracking techniques include Spatio-temporal

Multicast [10] and FRESH [5]. Spatio-temporal Multicast in
Sensor Networks predicts target path and establishes a
“delivery zone” that has direction and velocity along the
predicted path. FRESH is intended for mobile ad-hoc
networks where flooding is triggered frequently due to node
movement, and geographical information is not available. In
FRESH, nodes forward route discovery traffic only to nodes
that have more recently encountered the target. If BARD were
configured to use time as the only attribute with which to
calculate its probabilities, it would be similar to FRESH.

Most of the flooding limitation techniques sited in this

section focus on a particular aspect of resource discovery
related to the applications that they support. For example:
GEAR uses geographical location in Euclidean space, and
FRESH uses temporal information. Data aggregation
methods, like DCS/GHT aggregate information to assigned
nodes, assuming that the savings incurred for queries
outweighs the on-going cost of aggregation for storage.
Effectively, each algorithm is capable of limiting the flooding
associated with resource discovery for a particular class of
application. The advantage of BARD is its generality. BARD
can predict viable routes using any number or type of
attributes in an environment where multiple routes alternate in
their effectiveness to reach target data. BARD is also capable
of efficient resource discovery when the possible set of
queries can’t be quantized into a set of small cardinality.

IX. FUTURE WORK

Our initial results have motivated us to further explore the

potential of Bayesian-Assisted Resource Discovery. Foremost
we wish to run more experiments over a real sensor network
with a greater number of nodes. Experience has taught us that
testbeds bring out race conditions, implosions, and correlated
error conditions. We also need to explore trade offs related to
the frequency with which BARD floods to update its prior
distribution (i.e. efficiency vs. real-time response). The
influence of thresholding on efficiency and timeliness needs
to be explored further. Additionally, BARD needs to be
expanded to work with pull diffusion. We also wish to
examine the potential of BARD to cope with “attribute
intersection.” The initial test results presented in this paper

did not explore cases where multiple sinks are interested in
different events that have incomplete overlap in terms of
attribute matching. We believe that coping with such
situations is a distinguishing aspect of the future potential of
BARD. Finally, we are planning to develop guaranteed
resource discovery as an enhancement to underlying data
dissemination protocols. Efficiency and reliability are
covariant aspects of resource discovery. In order to satisfy a
broad spectrum of application requirements, we believe that
guarantees related to resource discovery must be made
available.

X. CONCLUSIONS

In our investigation into the application of Bayesian

estimation techniques to limit flooding during route discovery
we demonstrated that significant savings are available in
terms of control traffic per event. Savings depend on the
amount of traffic correlation in the application and the
location of the data consumer. With completely uniform
traffic distribution BARD will not help. When traffic is
correlated, however, BARD can automatically discover and
exploit that correlation even if it is not explicitly known to the
application or user. Savings by BARD are proportional to the
degree of correlation in the traffic. We demonstrated savings
from 28% to 73%, depending on factors such as target
location and placement of the data consumer. Applications
requiring the utmost real-time response should not use
BARD. BARD uses occasional flooding to be responsive to
network change and previously unseen events. The level of
real-time response is configurable. The primary benefit of
BARD is the pruning of repeated resource discovery traffic
across links that are not providing routes to interesting data. It
is adaptable to a broad range of queries and event types. As a
diffusion filter it can be easily added to existing applications
that are running (push) diffusion. BARD can be adapted to
optimize other data dissemination techniques that
exhaustively search for resources.

REFERENCES

[1] J. Boyan and M. Littman. Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach. In Advances in Neural
Information Processing Systems, V6, pages 671-678., 1993.
[2] D. Bragansky, and D. Estrin. Rumor Routing for Sensor Networks. First
Workshop on Sensor Networks and Applications, pages 22-31, Sept, 2002.
[3] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in Network Simulation. IEEE Computer, V.33
(N. 5), pages 59-67, May 2000.
[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated
Database Maintenance. In Proc. ACM Symposium on Principles of
DistributedComputing, pages 1-12, 1987.
[5] H. Dubois-Ferrier, M. Grossglauser, and M. Vetterli. Age Matters:
Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter
Ages. In Proceedings of the 4th ACM International Symposium on Mobile
Ad-Hoc Networking, pages 257-266, Annapolis, Maryland, USA 2003
[6]Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.
Next Century Challenges: Scalable Coordination in Sensor Networks. In
Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, pages 263-270, Seattle Wash., Aug 1999.

[7] Zygmunt J. Haas, Joseph Y. Halpern, , and Li Li. Gossip-Based Ad Hoc
Routing. In IEEE INFOCOM, pages 1707-1716, June, 2002.
[8] John Heidemann, Fabio Silva, and Deborah Estrin. Matching Data
Dissemination Algorithms to Application Requirements. In Proceedings of
the ACM SenSys Conference, pp. 218-229. Los Angeles, California, USA,
ACM. November, 2003.
[9] John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padma
Haldar. Diffusion Filters as a Flexible Architecture for Event Notification in
Wireless Sensor Networks. USC/ISI Technical Report 2002-556
[10] Q. Huang, C. Lu, and G. Roman, Spatiotemporal Multicast in Sensor
Networks. In Proceedings of the ACM SenSys Conference, pp. 218-229. Los
Angeles, California, USA, ACM. November, 2003.
[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A
scalable and Robust Communication Paradigm for Sensor Networks. In
Proceedings of ACM/IEEE International Conference on Mobile Computing
and Networking, pages 56-67, Boston, MA, USA, August 2000. ACM.
[12] D. Johnson, and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. in Mobile Computing, pages 153-181. Kluwer Academic, 1996.
[13] Brad Karp, and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks. In Proceedings of the 6th Annual MOBICOM, pages
243-254, Boston, MA, 2002.
[14] J. Kulik, W Rabiner, and H. Balakrishnan. Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile Computing
and Networking, pages 174-185, Seattle, Washington, USA 1999
[15] C.R. Lin and M Gerla. Adaptive Clustering for Mobile Wireless
Networks. IEEE Journal on Selected Areas in Communications, 15(7): 1265-
1275, 1997.
[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: Tiny
AGregate Queries in Ad Hoc Sensor Networks. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation,
Boston, Massachusetts, USA, December 2002.
[17] C.E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector
Routing. In Proceedings of the Second IEEE WMCSA ‘99, pages 90-100
New Orleans, LA, Feb 1999.
[18] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and
F. Yu. Data-Centric Storage in Sensornets with GHT, A Geographic Hash
Table. In Mobile Networks and Applications (MONET), pages 427-442
Kluwer, 2003.
[19] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern
Approach Routing, Prentice Hall Inc., 1995. ISBN 0-13-103805-2.
[20] Ivan Stojmenovic and Xu Lin, Power aware localized routing in wireless
networks, IEEE Transaxtions on Parallel and Distributed Systems, 12(11):
1122-1133 , Nov. 2001
[21] R. Walpole, R. Meyers, S. Meyers. Probability and Statistics for
Engineers and Scientists, Prentice Hall Inc., 1998. ISBN 0-13-840208-6.
[22] Yong Yao and Johannes Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks. In SIGMOD, pages 9-18, 2002.
[23] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-efficient
MAC Protocol for Wireless Sensor Networks. In Proceedings of the IEEE
Infocom. pages 1567-1576. New York, NY, USA. June 2002.
[24] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and
Energy Aware Routing: a recursive data dissemination protocol for wireless
sensor networks. Technical Report TR-01-0032, University of California,
Los Angeles, Computer Science Department, 2001.
[25] J. Zhao, R. Govindan. Connectivity Study of a CSMA based Wireless
Network. Technical Report TR-02-774, USC/ISI, Los Angeles, CA, 2002.
[26] F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor
Collaboration for Tracking Applications. In IEEE Signal Processing
Magazine, 19(2):61-72, March 2002

http://www.isi.edu/%7Ejohnh/PAPERS/Heidemann03b.html
http://www.isi.edu/%7Ejohnh/PAPERS/Heidemann03b.html

	I. Introduction
	II. Bayesian Estimation and Resource Discovery
	III. BARD and Directed Diffusion
	IV. BARD Functional description
	V. BARD Implementation details
	VI. Analysis
	VII. Experimental results
	VIII. Related Work
	IX. Future Work
	X. CONCLUSIONS
	REFERENCES

