
 
Abstract-Data dissemination in sensor networks requires four 

components: resource discovery, route establishment, packet 
forwarding, and route maintenance. Resource discovery can be 
the most costly aspect if meta-data does not exist to guide the 
search. Geographic routing can minimize search cost when 
resources are defined by location, and hash-based techniques like 
data-centric storage can make searching more efficient, subject 
to increased storage cost. In general, however, flooding is 
required to locate all resources matching a specification. In this 
paper, we propose BARD, Bayesian-Assisted Resource Discovery, 
an approach that optimizes resource discovery in sensor 
networks by modeling search and routing as a stochastic process. 
BARD exploits the attribute structure of diffusion and prior 
routing history to avoid flooding for similar queries. BARD 
models attributes as random variables and finds routes to 
arbitrary value sets via Bayesian estimation. Results of occasional 
flooded queries establish a baseline probability distribution, 
which is used to focus additional queries. Since this process is 
probabilistic and approximate, even partial matches from prior 
searches can still reduce the scope of search.  We evaluate the 
benefits of BARD by extending directed diffusion and examining 
control overhead with and without our Bayesian filter. These 
simulations demonstrate a 28% to 73% reduction in control 
traffic, depending on the number and locations of sources and 
sinks. 
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I. INTRODUCTION 
 
Data dissemination in wireless sensor networks 

requires four components: resource discovery, route 
establishment, packet forwarding, and route 
maintenance. Resource discovery consists of finding 
data that is relevant to the application. The other three 
components are referred to collectively as routing. In IP 
and ad hoc routing, resource discovery is layered on top 
of routing. A good deal of work has been done to 
improve the efficiency of the route establishment 
component of data dissemination in wireless networks. 
DSR [12]  and AODV [17]   utilize  cached  routing 
information to limit overhead by deferring route 
establishment until existing route segments are no longer 
valid. Reinforcement Learning has been used in ad-hoc 
networks to forward data on links that are part of the 
shortest path to a destination address [1]. 
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Data-centric protocols, like directed diffusion [11], 
combine resource discovery with the route establishment 
function of routing. For resource discovery, there are 
numerous schemes to limit cost.  We divide them into 
five classes: data-centric storage, in-network 
aggregation, geographic-assist, target tracking, and 
probabilistic. We evaluate related work in Section VIII. 
Most of these schemes work well in their intended 
environments. However, each of these approaches is 
designed for a specialized application; we would instead 
prefer a general technique that exploits prior routing 
information to constrain flooding. 
 

A unique characteristic of our approach is that it 
exploits attribute-based routing present in diffusion. IP-
based schemes route only on the IP address. They can 
easily cache and reuse routes to prior addresses. By 
contrast, data-centric routing exposes application-level 
information in the form of attributes, combining routing 
and resource discovery. Attribute-based routing 
precludes simple route caching because even minor 
changes in the attributes mean that prior routes fail to 
match, rendering simple caching inapplicable. By 
contrast, some prior schemes have exposed limited 
application-specific information. For example, 
DCS/GHT [18] hashes attributes to physical location. 
Database techniques [16, 22] and diffusion [11] use 
application-specific in-network caching. Geographic 
approaches [2, 24]  use physical coordinates to limit 
flooding. Target tracking techniques, like 
Spatiotemporal Multicast [10], tightly integrate routing 
and tracking.  

 
Although each of these approaches is appropriate in 

their own context, none provide a general approach to 
limit flooding. Our goal is to provide a generic 
mechanism to exploit application specific information, 
exposed through attributes to limit routing overhead. Our 
approach exploits probabilistic approaches and 
reasoning approaches from artificial intelligence [19]. 
We model a real world problem in terms of a belief 
agent operating over a set of random variables. The 
belief agent chooses whatever action has the highest 
probability of achieving success. We model route 
discovery in diffusion as a distributed problem in which 
each node is a belief agent that must select a subset of 
links on which to forward route discovery messages. The 
agent must periodically flood in order to maintain a 
probability distribution and to locate singular real-time 
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Figure 1 
Sample simulation layout to model a complex example consisting 
of a target moving on a diagonal path through the simulation field. 

 
events, but the flooding interval is much less frequent 
than in diffusion. 

 
Consider, for example, a sensor network tracking 

vehicles moving along a road, as in Figure 1. A naïve 
approach to query for vehicles along the road would 
periodically query all sensors. Alternatively, if the 
location of the road were known, queries could be 
geographically limited. As another alternative, specific 
applications might track individual vehicles as they 
moved on the road. Instead, we aim to automatically 
observe, within diffusion, that a class of queries is 
looking for vehicles that elicit responses from sensors 
near the road, and automatically infer the location of the 
road over time based on query history. This general 
approach is similar to reinforcement learning techniques 
where it has been applied to general routing, but without 
application-specific information [1]. Explicit 
representations of belief have also been exploited in the 
context of specific sensor network applications [26]. To 
our knowledge, we are the first to propose integration of 
application-influenced learning at a generic routing 
level. 

 
The contribution of this paper to improved efficiency 

in diffusion data dissemination protocols is BARD, 
Bayesian-Assisted Resource Discovery. BARD takes the 
form of a wrapper around diffusion routing using 
“filters” [9]. The BARD filter observes the control traffic 
generated by the underlying diffusion routing algorithm, 
does statistical analysis of that traffic, and routinely 
“squelches” a large percentage of control traffic that was 
intended to be flooded. BARD must periodically flood in 
order to maintain a probability distribution and to locate 
singular real-time events, but the flooding interval is 
much less frequent than in diffusion. 

II. BAYESIAN ESTIMATION AND RESOURCE DISCOVERY 
 
The resource discovery algorithm presented in this 

paper relies on the Bayesian method of statistical 
inference [21]. Bayesian estimation relies on a prior 
probability distribution f(θ), where θ is a random 
variable for which we have a prior distribution given a 
set of prior conditions, which are also random variables. 
Those same conditions, examined in a current sample, 
can be combined with f(θ) to compute a new distribution 
that predicts the likelihood of various values of θ. In our 
algorithm, θ is a set of links to neighboring nodes, which 
will be considered as candidates for the forwarding of 
resource discovery traffic. The “conditions” are the 
attributes and corresponding values of the resources that 
exist in the application. In effect, Bayes’ theory provides 
a mechanism to calculate the likelihood that a particular 
hypothesis is true, given the current state of events and 
background evidence. Our hypothesis is simply: “is this 
node likely to lead us to a path between a resource 
provider (source) and a resource consumer (sink)?” The 
prior distribution is a history, collected over a window of 
time, relating neighbors to resource attributes. 
 

We now demonstrate the derivation of a Bayesian 
estimate in the context of a sink seeking out sources with 
seismic and accoustic readings above some threshold. 
Suppose that sensor network “node X” has four 
neighbors: N1 through N4. We assume that node X has 
previously resorted to flooding to locate resources for 
queries related to seismic and accoustic data, keeping 
track of the frequency with which each neighbor 
provided a path to every resource attribute. Node X 
would like to limit flooding by exploring only those 
neighbors that are more likely to deliver seismic and 
acoustic sensor readings above the application-
prescribed values.   

 
Because we wish to express the prior probabilities in 

question as a sample space, we could divide the sample 
space into several mutually exclusive events N1, N2, N3, 
… , Nk  (one for each neighbor), and two pieces of 
evidence: seismic and acoustic. The expression of this as 
a sample space yields a three-dimensional joint 
probability distribution such as that depicted in Figure 2 
(see top of next page). Unfortunately, joint probability 
distributions are difficult to maintain because their size 
grows exponentially with each added random variable. 
The primary advantage of using Bayes’ Rule is that it 
can dynamically calculate conditional probabilities to a 
great deal of precision without maintaining a complete 
joint probability distribution when certain conditions 
hold, as noted below [19].  
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 Figure 2 

A sample space consisting of mutually exclusive Node events, and 
conditionally independent events Seismic &Acoustic. 

 
Node X is looking for neighbors that can provide both 

seismic and acoustic sensor data (i.e. event S∩A). We 
want to answer the question: what is the probability that 
a given neighbor is a constituent part of the desired 
composite event? The contribution of a prior history is 
that it helps to predict which neighbors will most likely 
provide certain resources in present time. The following 
formula expresses the probability that neighbor N3 has 
sound and acoustic sensor data available, i.e. S∩A 
occurred, given a joint distribution: 
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Bayes’ formula allows us to simplify the above 

equation when events S and A are conditionally 
independent. Evidence variables that are dependent in 
the joint, can be conditionally independent relative to the 
hypothesis variable if they are both a direct result of that 
variable. If we know that N3 leads to S, the fact that N3 
also leads to M is irrelevant to the conditional 
calculation of S (i.e. P[SN3] = P[SN3∩M]). The 
following formula is the Bayes’ estimate for neighbor N3 
with Seismic and Acoustic as our combined evidence: 
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The normalizing constant α is equal to the constrained 

sample space 1/P[S∩A] (i.e. the denominator of eq. (1)).  
This constrained space is calculated trivially by 
exploiting the fact that it can be converted into the 
following conditional terms:  
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III. BARD AND DIRECTED DIFFUSION 
 
The effort to use Bayesian estimates to limit flooding 

during resource discovery, requires an understanding  of 
how specific diffusion routing algorithms utilize 
flooding. The initial diffusion algorithm is now called 
two-phase pull diffusion [8]. In two-phase pull, interest 
messages that describe the attributes of desired data are 
flooded from a sink to all nodes. “Exploratory data” is 
then reverse-flooded from sources which have data 
matching the attributes. When the Exploratory data 
arrives at a sink, high quality (i.e., low latency) paths are 
“reinforced” by control messages unicast from  a sink 
toward sources. The high-quality routes provide efficient 
(single path) data transfer for a period of time. Interests 
are periodically flooded to re-establish reinforced paths, 
in order to cope with changing network conditions. 
Therefore, two-phase pull has two flooding stages 
involved in resource discovery and path establishment.   
 
Two more recent versions of diffusion are push and one-
phase pull [8]. In push diffusion, sinks have interests 
that are held locally, rather than flooded. Resource 
discovery in push consists of sources finding paths to 
interested sinks via exploratory data flooding and 
reverse-path reinforcement. One-phase pull diffusion 
only floods interest messages. Data from sources travels 
along the reverse path of the lowest latency interest 
arrivals.  One phase pull thus eliminates exploratory 
traffic flooding. The primary difference between push 
and pull (one or two-phase) is the direction of resource 
discovery via flooding. One-phase pull employs sink-to-
source resource discovery and push uses source-to-sink 
resource discovery. Although Bayesian methods can be 
used to limit flooding in either direction, push provides 
fertile ground for BARD development because it is 
simpler in implementation than either the original 
diffusion routing algorithm or one-phase pull. All of the 
experiments presented in this paper were run over push 
diffusion. Push diffusion works well for applications, 
such as tracking, where many sensors are looking for 
data to publish, but actuations are relatively rare. As 
future work we plan to modify BARD to limit flooding 
in one-phase pull and two-phase pull diffusion. 
 

IV. BARD FUNCTIONAL DESCRIPTION 
 
Bayesian-Assisted Resource Discovery limits flooding 

in push diffusion via the application of Bayesian 
methods of estimation to predict what nodes to forward 
route discovery messages to. In push diffusion, route 
discovery packets are simply data packets, which are 
periodically marked as exploratory and flooded. When 
an exploratory data packet reaches a sink, the sink sends 



a positive reinforcement message along the reverse path 
toward the source. Intermediate nodes typically receive 
multiple copies of the exploratory route discovery packet 
(once from each neighbor). The intermediate nodes use a 
heuristic, such as latency, to select a single neighbor to 
forward the positive reinforcement to. Once a reinforced 
path from source to sink is established, subsequent data 
packets are unicast along that path until the next 
“exploratory interval.” When there are multiple sinks, a 
non-redundant distribution tree is formed between sinks 
and source. BARD spends some time building a per-
attribute reinforcement history based on exploratory data 
traffic and reinforcement messages. Once a sufficient 
mass of history is collected, BARD attempts to limit 
flooding by forwarding exploratory traffic only to 
neighbors that are likely to yield reinforcements.  In 
diffusion, data is exchanged when sources publish data 
whose attributes logically match those subscribed to by 
sinks. BARD employs the same matching rules when 
comparing resource-discovery packet content to 
reinforcement history. The goal is to predict what 
neighboring nodes have the greatest probability of 
yielding a working connection. 

 
There are two primary functions that the BARD filter 

must provide in order to achieve its goal of efficient 
resource discovery: ongoing maintenance of the prior 
distribution and flooding limitation. BARD must collect 
statistical information about which neighbors have 
provided effective routes for data from sources to sinks.  
In doing so, it must “dissect” the routing attributes in a 
packet so that each routing attribute’s history is 
maintained separately, because subsequent traffic flow 
may have a limited degree of intersection with current 
traffic Periodically BARD refreshes the reinforcement 
history by permitting flooding, to cope with changing 
conditions in the network. Therefore BARD maintains a 
sliding window of history, discarding the oldest entries 
as the window moves forward. Periodic flooding also 
guarantees that low probability events will be sensed, 
albeit at a reduced fidelity. The second primary function 
of BARD is to suppress flooding based on collected 
history. This function of BARD employs Bayesian 
methods of estimation to assign probabilities to outgoing 
links in order to predict which links will yield a positive 
result during route discovery. Nodes whose Bayesian 
estimate falls beneath a calculated threshold will not 
have resource discovery messages forwarded to them. 
We call this function limited flooding. The ratio of actual 
flooding to limited flooding dictates the efficiency 
achieved by BARD as well as the latency of its response 
to change. Tuning the ratio represents a configurable 
trade-off between real-time responsiveness and energy 
savings. 
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Figure 3 
Depiction of Bayesian Filter in relation to Push Diffusion 

 
V. BARD IMPLEMENTATION DETAILS 

 
There are three elemental pieces that make up the 

BARD filter:  a history gathering routine that is called 
whenever data is flooded, a flooding limitation routine 
that is called to constrain flooding, and a Bayesian 
module that calculates probabilities in support of 
flooding limitation (see Figure 3). A helpful concept in 
describing how the BARD filter interacts with push 
diffusion is that of an exploratory epoch. An exploratory 
epoch in diffusion begins when data is tagged as 
exploratory (to be flooded) by a source. The exploratory 
epoch is the maximum time interval during which data is 
unicast over a reinforced path. In general, BARD 
restricts flooding during four out of five exploratory 
epochs declared by push. As an optimization, BARD 
will allow flooding for three exploratory epochs in a row 
when there is no prior history. BARD limits the flooding 
of push exploratory messages by converting broadcast 
addresses to specific unicast addresses. Statistically, the 
best candidates to forward exploratory data to are those 
which have some history of providing positive 
reinforcement for the particular set of attributes 
contained in the exploratory data packet. 

 
To support the flooding limitation function, BARD 

adds a unique attribute to every exploratory data packet 
that emanates from a push diffusion source. This 
attribute indicates whether the packet is going to be fully 
flooded or subject to limited flooding. The attribute 
travels with the packet as it is forwarded through the 
network. BARD pre-processing at a source node, 
therefore, controls how often an exploratory epoch is 
allowed to flood.  Although this is currently set to 1/5th 
of exploratory epochs, it is configurable. Applications 
that are more entropic will require more frequent 
refreshing of the history. 

 



The statistics gathering function of the BARD pre-
filter maintains the prior distribution used by the post-
filter during limited flooding.  BARD keeps track of how 
many positive reinforcements arrive from each neighbor 
per flooded exploratory data. The reinforcement 
statistics are kept on both a per-neighbor and per-
attribute basis.  This allows BARD to deal with a 
varying degree of intersection in the attribute sets 
generated by different push sources. In order to enable 
attribute matching for attribute quantities that are not 
strictly identical (such as GT or LT), BARD requires 
that the subscription data from sinks be provided in the 
positive reinforcement.  Push does not currently provide 
this data. Our prototype implementation therefore uses a 
simpler matching scheme that considers only attribute 
equality and not complete matching.  We are in the 
process of extending the reinforcement information to 
allow complete matching. 

 
The single purpose of the post-processing section of 

the BARD filter is to limit the flooding of exploratory 
data packets to a subset of neighbors. Neighbors are 
chosen that have demonstrated a historical probability of 
providing reinforced paths from sinks to sources for the 
attribute set contained in the exploratory packet. Because 
the reinforcement history is kept on a per-attribute basis, 
it is possible to construct probabilities incrementally 
using multiple pieces of “evidence” and Bayesian 
estimation. 

 
In order to identify the subset of neighbors that  will 

receive resource discovery packets, during limited-
flooding, BARD uses thresholding. The threshold is the 
minimum Bayesian probability that must be achieved by 
a given neighbor in order to have a resource discovery 
packet forwarded to it.  If the threshold is set too high, 
BARD may not find a route from source to sink, and if 
the threshold is set too low BARD efficiency will 
unnecessarily deteriorate. The appropriate threshold for 
forwarding is a function of three variables:  

 
Fan-Out – the number of neighbors that can 

symmetrically communicate with a node. 
Error Rate – the percentage of received 

packets to packets sent. 
Number of Sources – the number of sources 

that are generating data traffic.  
 

Dense topologies and multiple active sources produce 
multiple neighbors with moderate probabilities rather 
than fewer high-probability neighbors. Higher error rates 
dilute probabilities through reinforcement packet loss. 

 
The following empirical formula, derived by 

observing how  each component affected the number of 

alternate routes (in simulation), represents thresholds 
that resulted in delivery rates equal to or better than 
simple push: 
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S is number of sources, d is the degree or fan out, and 

e is the error rate. The right hand side represents the 
reduction in threshold required to keep pace with an 
increasing error rate. The left hand side represents the 
graceful decay when multiple sources activate for a 
single event. The reciprocal of this formula yields the 
projected number of alternate routes. For example, with 
10 neighbors, a single source, and an error rate of .05, 
the threshold would be .25 and the number of viable 
alternate routes within 50 minutes (the history window 
of the BARD filter) would be 4. 

 
VI. ANALYSIS 

 
Bayesian estimation techniques rely on the existence 

of a prior distribution. BARD collects information 
periodically via flooding so as to establish and maintain 
this prior distribution for reuse during periods of limited 
routing.  If we assume that BARD will successfully 
identify the “corridor” of alternate routes between source 
and sink, then we can predict the amount of traffic we 
expect to be generated during limited routing. We know 
the amount of control traffic generated by push diffusion 
during route discovery. Each node broadcasts the 
exploratory message exactly one time, and then a single 
route is reinforced.  If we have a square grid with nodes 
evenly spaced and a source and sink at diagonally 
opposite corners, then the cost of routing in bytes per 
event is simply: 
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where n is the number of nodes,  ft is the number of 
exploratory intervals per time t, x is the number of bytes 
in an exploratory packet, and eventst is the number of 
events occurring in time t.  The term n  represents the 
cost of the positive reinforcement. We can actually 
simplify Equation (5) because when push diffusion 
floods exploratory data, the first exploratory packet to 
arrive at the sink will double as an actual data packet.  
Thus the n  term represents useful data transfer rather 
than overhead and can be deleted, yielding: 
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BARD, operating in steady state (as configured for this 
paper), floods 1/5 as often as push. We can express this 
cost per event as: 
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where a is the number of alternate routes that the BARD 
filter identifies during limited routing and h is the 
average hop count of those routes.  We decrement a for 
the same reason we removed n  in Equation (6). As 
we add more sources, or increase the error rate, we 
expect a to grow as the reciprocal of (4).  If we wish to 
express the percentage gain that BARD should have over 
push, we can simplify our calculation: 
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VII. EXPERIMENTAL RESULTS 

 
In order to quickly evaluate the efficiency and 

potential of Bayesian-Assisted Resource Discovery, we 
designed a series of experiments run primarily in 
simulation. Simulation allowed us to quickly and 
systematically explore a multi-dimensional problem 
space in a manner that is impractical with an actual 
testbed. The simulation test environment employed was 
ns-2 [3], version 2.26. Most experiments varied an 
individual aspect of an n-dimensional problem space. 
The varied aspects were: number of nodes, density of 
nodes, number of sources, number of sinks, send rate, 
and error rate.  A simulation experiment was also 
performed to approximate the advantage that BARD 
might bring to a  complex “real-world” application.  

 
We also conducted an experiment on an actual testbed 

that incorporated several aspects of our simulations. The 
testbed that we used consisted of Stayton nodes. These 
are small form factor systems running Linux over a 32-
bit Intel embedded processor, with 64M of SDRAM, and 
32M of flash memory. They are fitted with a multi- 
channel radio capable of 38.4 Kbaud. Radio range can be 
modified to enable multi-hop experiments. 

 
We conducted our ns-2 experiments running multiple 

simulations over randomly generated node patterns. For 
each pair of data points in an experiment, we ran simple 
push diffusion with and without the BARD filter over 
ten random topologies and averaged the results. 
Additionally, we calculated and plotted 95% confidence 
intervals.  We expressed results in terms of control byte 

transmissions required for resource discovery 
normalized by the number of events that generated 
traffic in the simulation (i.e. whenever a source decides 
to send). We collected these numbers by instrumenting 
the simulation code to log resource discovery related 
transmissions with unique tags. We then processed the 
logs via awk scripts, which used the tags and byte counts 
to summarize transmission activity. 

 
For ns-2 node placement we modified an existing 

topology-generator program [8] to create random 
topologies of progammable size. The generator has 
useful options such as optional corner placements of 
sources and/or sinks. This allowed for any randomly or 
strategically placed sources and sinks. The generator 
tests node patterns for connectedness given radio range. 
If sources and sinks cannot communicate with each 
other, the generator scraps the topology and generates 
another.  

 
Software loaded above the MAC layer in each 

experiment included the diffusion filter core, the 
diffusion  push routing filter, the BARD filter (when 
using BARD), and simple source and sink apps. For ns-2 
experiments, we used the 802-11 MAC layer provided in 
ns-2 with a retry count of 4. For all ns-2 experiments the 
radius of the radio range was 39.6 meters. Our testbed 
experiment used the SMAC link layer [23] with a retry 
count of 3. For all experiments, routing was based on 
three attribute keys: motion, sound, and target type.   

 
A. Performance as node count increases 

 
The first experiment was aimed at quantifying the 

savings achievable with BARD as the number of nodes 
increases while density remains the same. The size of the 
simulation area was increased with node count, such that 
the average node density was held constant at 10.9 
neighbors. The selected density insured a high 
probability of network connectivity, despite random 
node placement.  A single source and sink were placed at 
the greatest diagonal distance apart in the simulation 
field.  The node count was varied from 25 to 100. A 128 
byte packet was sent every 20 seconds from the source.  
Flooding was performed once per 60-second epoch by 
push and once every 5 minutes by BARD, after 3 initial 
flooding epochs to establish a prior history. Our 
expectations for this experiment, based on Equations (4) 
and (8), were a 45% improvement running with 25 nodes 
and a 53% improvement at 100 nodes. Because the 
dominant term in our calculation is the node count we 
expected approximately linear growth for both BARD 
and push. Because BARD allows flooding 1/5 as often 
as simple push, we expected less slope for BARD. 



  
Figure 4 

Control bytes per event required to transfer 180 packets of 128 bytes each 
diagonally from source to sink using BARD Routing vs. simple Push Routing 

with a variable number of nodes. 
 

The graph in Figure 4 depicts the results, along with 
95% confidence levels.  At 25 nodes BARD averaged 
386 B/event while simple push averaged 1027 B/event. 
This represents a 62% improvement by BARD. At 100 
nodes BARD averaged 1320 B/event while simple push 
averaged 4100 B/event, a 68% improvement by BARD.  
More importantly, the average rate of increase (slope) 
for BARD from 50 to 100 nodes is 4.25 times less than 
the growth rate for simple push. The results of this 
experiment were better than predicted. Log analysis 
showed that the savings exceeded analysis because of a 
progressively greater limitation of alternate routes by 
BARD as the simulation progressed. When diffusion 
establishes new routes at the beginning of an exploratory 
epoch, it does not immediately retire previously used 
routes. Only when routes consistently display greater 
latency than their alternatives, are they retired.  
Therefore data is often replicated on multiple paths by 
diffusion. BARD established fewer alternate routes than 
simple push as time passed. 

 
B. Performance as node density increases 

 
Changes in density affect BARD in two ways. First, 

higher density increases the number of alternate routes, 
and second nodes involved in viable routes are a smaller 
percentage of total node count. To understand these 
tradeoffs we varied density from 10 to 50 nodes in the 
average neighborhood. (although nodes are randomly 
placed, we computed approximate density analytically 
by assuming a nominal radio range of 39.6 meters and 
uniformly distributed sensors, ignoring edge effects). We 
expected that BARD would achieve greater savings than 
in the first experiment. The rational was that having a 
smaller proportion of total node count involved in  

 
 

Figure 5 
Control bytes per event required to transfer 180 packets of 128 bytes each 

diagonally from source to sink using BARD Routing vs. simple Push Routing 
with increasing density 

 
routing would dominate results. The results, shown in 
Figure 5, validated these expectations. At 10 nodes per 
area (25 nodes), BARD required 62% less control traffic 
than simple push. At 49.3 nodes per area (100 nodes), 
BARD required 73% less control traffic. 
 
C. Varying the number of sources 

 
This experiment compares the performance of BARD 

to unmodified push diffusion when multiple randomly 
positioned sources are generating interesting data.  We 
wished to establish the efficiency with which BARD 
could locate multiple resources. The number of sources 
was varied from one to five. A single sink received all of 
the traffic generated by the sources. Each source 
generated exploratory packets every 60 seconds, which 
were filtered with limited routing 4/5ths of the time in 
the case of the BARD filter. Our expectation for this 
experiment was that the percentage of savings incurred 
by BARD would lessen as the number of sources 
increased. We assumed that as more sources became 
active, more nodes would necessarily become involved 
in routing thus decreasing BARD’s efficiency.  

 
The graph in Figure 6 (see top of next page) shows 

that with a single source BARD averaged 703 control 
B/event, and simple push averaged 1928 bytes. This 
represents 63% improvement by BARD. With 5 sources 
BARD averaged 3607 control B/event and simple push 
averaged 8454 B/event, a 54% improvement by BARD. 
Therefore the percentage of improvement decreases with 
source count. Log analysis showed that in the case of 
multiple sources, BARD must discover more routes per 
event. 



 
 

Figure 6 
Control byte transmissions per event required to transfer 90 packets of 128 
bytes each from a variable number of sources to a single sink using BARD 

Routing vs. simple Push Routing 
 
D. Varying the number of sinks 

 
This experiment compares the performance of BARD 

to unmodified push diffusion when multiple sinks are 
interested in the same events generated by a single 
source.  Because push diffusion does not flood interest 
messages, like two-phase pull, the expectation was that 
adding sinks with a constant number of sources (in this 
case 1) would have a linear growth rate that is relatively 
flat. For each sink, we expected adding n * bytes/pkt 
because each sink sends its own positive reinforcement.  
The BARD filter does not influence the activity of the 
underlying push filter when it comes to positive 
reinforcements. BARD only squelches exploratory 
traffic. With a single source, the relative improvement 
provided by BARD should be consistent.  

 

 
 

Figure 7 
Control byte transmissions per event required to transfer 90 packets 

of 128 bytes each from a single source to a variable number 
of sinks using BARD Routing vs. simple Push Routing 

 

 
 

Figure 8 
Total and control byte overhead per event for BARD Routing vs. simple 

Push Routing with an increasing send rate. 
 

 
The results for this experiment are summarized in 

Figure 7. As can be seen in the figure, the slopes of both 
lines are nearly identical, varying by less than 10%.  
BARD was approximately 60% more efficient than 
push.  If we had chosen to use one-phase pull as the 
underlying routing protocol, and used BARD to limit the 
flooding of interests, we would expect this graph to look 
more like Figure 6, since one-phase pull does sink 
initiated flooding. 

 
E. Increasing the send frequency 

 
What happens when the cost of moving data along 

discovered paths becomes the major overhead in a 
sensor net application? In this experiment we increase 
the frequency with which data is sent from a single 
source to a sink in field of 50 nodes, and measure total 
overhead per event (includes data traffic) as well as the 
control overhead. The simulation time was 1 hour, and 
the send rate was varied from 1 to 30 messages/minute. 
Our expectation was that the control byte overhead for 
push vs. BARD would begin to converge at higher send 
rates due to amortization across an increased number of 
events.  The plot is shown in Figure 8. As predicted, the 
control byte overhead for push approaches that of BARD 
at 30 packets/minute (84 B/event for BARD and 219 
B/event for push). For a single packet/minute, total and 
control B/event are nearly identical because every packet 
is exploratory (1875 B/event for BARD and 5952 
B/event for push). A surprising result was that total 
overhead did not demonstrate greater convergence. 
Although total savings with BARD lessened with send 
rate, it didn’t converge with push very rapidly after 10 
packets/min. As observed in the 1st experiment, BARD  



 
 

Figure 9 
Percentage of packets sent that successfully arrived at a sink given various 

error rates using BARD Routing vs. simple Push Routing 
 
provides an unexpected benefit over unmodified push 
because fewer alternate data paths are maintained over 
time. Diffusion doesn’t immediately retire older data 
paths when new ones are established. BARD reduces the 
number of alternate paths that carry redundant data. 
 
F. Sensitivity to transmission error 
 

In this experiment we wished to investigate what 
influence packet loss has on the efficacy of BARD 
modified routing. We employed a simulation space that 
includes 50 nodes at a density of 10 nodes per radio area 
with a single source and sink placed at approximately 
diagonally opposite corners. We incrementally increased 
the error rate by modifying the error model in ns-2. Our 
expectation was that BARD would show lesser savings 
as the error rate increased. The rationale was that the 
reduction of flooding would result in the discovery of 
fewer viable routes. The error rate was varied from5% to 
40%. Previous studies [25] have demonstrated that error 
rates as high as 40% are present between some nodes in 
a sensor network, albeit rarely at adjacent nodes. A 
network with a 40% error rate between all adjacent 
nodes would be fairly useless. Flooding reduces the 
negative effects of transmission errors. Diffusion nodes 
only forward data that has not been flooded previously.  
If the average node in a sensor network has 9 neighbors, 
then the broadcast from any of these neighbors could be 
considered the “first” broadcast if earlier ones are lost.  
This situation is equivalent to having 9 retries, rather 
than the 3 or 4 provided by the MAC layer. When error 
rates are high, even unicast transmissions, such as 
positive reinforcements, can suffer poor end-to-end 
reliability. The results for this experiment are 
summarized in Figure 9.  As predicted, the decay in the 
end-to-end delivery rate is worse for BARD than simple 
push for global error rates in excess of 10%. 

  There are two curious aspects to the graph in Figure 
9. The first is the stepwise decay in the BARD end-to-
end delivery rate for rates greater than 25%.  Log 
analysis showed that this was related to entire 
exploratory epochs being lost when positive 
reinforcements don’t make it from sink to source. This 
resulted in an effective quantization of the curve that we 
would expect.  The other interesting aspect is the high 
variance. This is to be expected under high entropy 
conditions. 

 
G. Complex “real world” scenerio 

 
We selected previous scenarios to systematically 

explore the effects of BARD. In this section we consider 
a more complex scenario to approximate how we see 
BARD being used in practice. Consider a sensor field 
deployed to track vehicles. Vehicles typically follow a 
common path - perhaps a road. In our scenario (refer 
back to Figure 1), a target follows a diagonal road from 
upper left to lower right. As the target passes by nodes 
near the diagonal, they are triggered to generate traffic. 
A lone sink reinforces the traffic from all transmitting 
nodes (sources).  We initially ran the experiment with 
the sink diagonally opposite of the imaginary path. 
Sources did not transmit in response to a timer 
expiration.  Instead, a“trigger method” was added to 
each node; which, when invoked, forced the 
transmission of source data. The target was modeled as 
an ns- 2 application that woke up monotonically and 
calculated its location according to a pre-determined 
velocity. Nodes within 10 meters of the current location 
of the target were sent a trigger message so that they 
would generate traffic. The topology generator employed 
in the previous experiments was used to generate 
topologies, so that performance could be averaged over 
10 different random node placements. Our expectation 
for this experiment was that the reduction in control 
traffic realized by BARD would not be as dramatic as in 
earlier experiments. The rationale was that BARD would 
need to maintain a network of paths from the sink to the 
diagonal that would encompass half of the simulation 
area used by simple push flooding. Because BARD 
floods 1/5 as often as push, we estimated a savings in the 
range of 40% of the overhead incurred by simple push 
(i.e. 1/2*4/5). Results for this experiment are 
summarized in the left half of the bar graph in Figure 10 
(at the top of the next page).  BARD performance was 
approximately 28% better than simple push, slightly 
worse than expected. Because the sources along the 
diagonal were angularly separated relative to the sink 
and multiple paths existed to each source, some links 
were used multiple times during exploratory epochs. 
 



 
Figure 10 

Control byte overhead per event for target tracking 
application for BARD Routing vs. simple Push Routing when sink 

is diagonal from target route vs. in-line with target route 
 
We then speculated that we could improve on the 

relative performance of BARD vs. simple push by 
placing the sink in the lower right corner of the 
simulation area.  This would put the active sources 
somewhat in-line with the sink, thus creating fewer 
alternatives for the limited routing function of BARD.  
The mean for these simulations is shown on the right 
half of Figure 10.  Notice that the efficiency of straight 
push is virtually unchanged, whereas the improvement 
by BARD over push goes from 28% to 47%. 

 
H. Testbed experiment 

 
Although we found it convenient to explore the 

problem space relevant to diffusion / BARD via ns-2, we 
also wanted to deploy BARD in an actual testbed. Past 
experience has taught us that actual testbed experiments 
often result in unanticipated problems, which require 
design revisions. In this case we had available a testbed 
of 10 nodes, described at the start of this section. The 
deployment of the testbed is shown in Figure 11. The 
testbed consisted of a “fat” end in which nodes had 
multiple neighbors and a “thin” end in which nodes had 
a single neighbor on each side. The sink placement was 
just to the right of the  middle of the testbed.  

 

 
 

Figure 11 
Stayton Testbed Topology 

 

 
Figure 12 

Control byte overhead per event for Stayton testbed experiment - BARD 
Routing vs. simple Push Routing 

 
This allowed us to ascertain if BARD was capable of 
eliminating a non-productive segment of the network 
from attempts to find resources. The node to which we 
attached the source had the highest neighbor count and 
the greatest number of possible paths to the sink. Five 30 
minute runs were performed with this configuration and 
the control traffic was counted for each run. The mean 
control traffic per event and confidence intervals are 
plotted in Figure 12, along with results from an ns-2 
experiment patterned identically.  Bayesian assisted 
routing was 38% more efficient on average than simple 
push routing. This was in line with expectations.  We 
expected the nodes on the right hand side of the testbed 
to be contacted by BARD approximately 40% as often 
as they would be by simple push. This is a reflection of 
the initial 3 data epochs used by BARD to build a prior 
distribution, followed by infrequent flooding by BARD 
to maintain the distribution. We expected BARD to limit 
the number of paths on the left hand side of the testbed 
to those which displayed the least latency. Because 
broadcast packets do not have ARQ in SMAC, the 
neighbors that heard the initial exploratory packet 
transmission from the source varied with time, which 
resulted in a variance of the exact paths maintained by 
BARD. Typically BARD maintained one or two paths 
on the left hand side. In every case BARD found a path 
from source to sink. Although our testbed was of limited 
size, this experiment nonetheless validated that our 
simulation results were consistent with results in a real-
world test environment 
 

VIII. RELATED WORK 
 
The work surveyed for this paper can be partitioned 

into two categories: routing-related and resource-
discovery-related; and six groups: route caching, 
geographic-assist, probabilistic forwarding, in-network 
aggregation, data-centric storage, and target tracking. 



Route caching is a proven method for flooding-
limitation in ad-hoc networks that employ addressed-
based routing. DSR [12] and AODV [17] avoid flooding 
via route caching and on-demand (non-periodic) route 
discovery. A probabilistic technique for adaptive 
routing, which has been used in ad-hoc networks, is 
reinforcement learning [1], wherein nodes learn the 
probabilities that their neighbors will provide the 
shortest path to a given address. Approaches from 
addressed-based protocols cannot be directly applied to 
attribute-based routing because the state space is 
extremely large and grows exponentially in the number 
of attributes used for routing. Additionally, multiple 
nodes may be able to satisfy any given resource request. 
Finally, such techniques are of limited benefit when 
slight variations in attributes preclude matches. We 
instead adopt Bayesian-based filtering to allow partial 
matches. 

 
When resources can be bound to geographical 

coordinates and sensor network nodes are geographically 
aware,  several algorithms provide efficient scalable  
solutions to the problem of flooding. Both GPSR [13] 
and GEAR [24] exploit geography by greedily 
forwarding route discovery packets to individual 
neighbors that are closer to a target location.  The 
primary advantage of  BARD over purely geographic 
methods is its ability to exploit non-geographic aspects 
of a problem domain when accomplishing resource 
discovery. Additionally, sinks often don’t know where 
sources reside initially (or vice verse).  

 
Gossiping is a resource discovery technique that was 

developed in the context of networked databases [4], and 
subsequently applied to ad hoc routing in wireless 
networks [7].  The basic idea in gossiping is to forward 
route discovery messages with some pre-configured 
probability geared to the average degree (fan-out) of the 
network. BARD can adapt to skewed situations better, 
wherein some large segment of the network is not 
generating any interesting traffic. Rumor Routing [2] is a 
technique to limit flooding that can work with data-
based routing and attribute-based queries. Events from 
sources and queries from sinks are propagated along 
approximate straight lines that are likely to intersect. The 
caching of event descriptions (attribute tuples) in rumor 
is similar to the caching of per-attribute probabilities in 
BARD.  

 
There are a large number of algorithms that limit 

flooding in sensor networks via in-network aggregation. 
This principle is loosely related to earlier work on 
clustering [15]. Aggregating data from multiple sensor 
nodes results in a reduced cost of accessing that data 

when the path to the aggregated data is either known or 
local updates percolate the aggregated data up an 
implicit hierarchy towards an active sink. Both SPIN 
[14] and COUGAR [22] form on-the-fly clustered 
hierarchies in which upper layers have partially 
aggregated information collected from lower layers.  

 
DCS/GHT (Data-Centric Storage in Sesnornets with 

Geographic Hash Tables) [18] requires an underlying 
geographic routing layer in order to perform in-network 
aggregation. All data with the same “name” (which 
could be an attribute tuple) is stored at the same node. 
The node is selected by hashing the name into 
geographic coordinates. It is appropriate for situations in 
which the same limited set of long-standing queries 
persists in a stable network. The cost of DCS is that 
preemptively moving data to hash sites can be expensive 
if the data is never accessed. By contrast, data-centric 
routing places the burden of search on queries, and 
BARD helps reduce that cost. 

 
Target tracking is a specialized form of in-network 

aggregation.  GEAR has been successfully combined 
with push diffusion to use geography to follow a target 
in a location aware sensor network [26]. Spatio-temporal 
Multicast in Sensor Networks [10] predicts target path 
and establishes a “delivery zone” that has direction and 
velocity along the predicted path. FRESH [5] is intended 
for mobile ad-hoc networks where flooding is triggered 
frequently due to node movement, and geographical 
information is not available. In FRESH, nodes forward 
route discovery traffic only to nodes that have more 
recently encountered the target. If BARD were 
configured to use time as the only attribute with which to 
calculate its probabilities, it would be similar to FRESH. 

 
Most of the flooding limitation techniques sited in this 

section focus on a particular aspect of resource discovery 
related to the applications that they support. For 
example: GEAR uses geographical location in Euclidean 
space, and FRESH uses temporal information. Data 
aggregation methods, like DCS/GHT aggregate 
information to assigned nodes, assuming that the savings 
incurred for queries outweighs the on-going cost of 
aggregation for storage.  Effectively, each algorithm is 
capable of limiting the flooding associated with resource 
discovery for a particular class of application. The 
advantage of BARD is its generality. BARD can predict 
viable routes using any number or type of attributes in an 
environment where multiple routes alternate in their 
effectiveness to reach target data. BARD is also capable 
of efficient resource discovery when the possible set of 
queries can’t be quantized into a set of small cardinality. 

 



IX. FUTURE WORK 
 
Our initial results have motivated us to further explore 

the potential of Bayesian-Assisted Resource Discovery.  
Foremost we wish to run more experiments over a real 
sensor network with a greater number of nodes. 
Experience has taught us that testbeds bring out race 
conditions, implosions, and correlated error conditions. 
We also need to explore trade offs related to the 
frequency with which BARD floods to update its prior 
distribution (i.e. efficiency vs. real-time response). 
Additionally, BARD needs to be expanded to work with 
Pull diffusion. We also wish to examine the potential of 
BARD to cope with “attribute intersection.” The initial 
test results presented in this paper did not explore cases 
where multiple sinks are interested in different events 
that have incomplete overlap in terms of attribute 
matching.  We believe that coping with such situations is 
a distinguishing aspect of the future potential of BARD.  

 

X. CONCLUSIONS 
 

In our investigation into the application of Bayesian 
estimation techniques to limit flooding during route 
discovery we demonstrated that significant savings are 
available in terms of control traffic per event.  Savings 
depend on the amount of traffic correlation in the 
application and the location of the data consumer. With 
completely uniform queries, BARD will not help, but 
when traffic is topologically correlated with some 
feature (such as a road), BARD can automatically 
discover and exploit that correlation even if it is not 
explicitly known to the application or user. We 
demonstrated savings from 28% to 73% for correlated 
traffic, depending on placement of the data consumer. 
Applications requiring the utmost real-time response 
should not use BARD. BARD uses occasional flooding 
to be responsive to network change and previously 
unseen events. The primary benefit of BARD is the 
pruning of repeated exploratory traffic across links that 
are not providing routes to interesting data. It is 
adaptable to a broad range of queries and event types. As 
a diffusion filter it can be easily added to existing 
applications that are running (push) diffusion. 

 
REFERENCES 

 
[1] J. Boyan and M. Littman. Packet Routing in Dynamically Changing 
Networks: A Reinforcement Learning Approach. In Advances in Neural 
Information Processing Systems, V6, pages 671-678., 1993.  
[2] D. Bragansky, and D. Estrin. Rumor Routing for Sensor Networks. First 
Workshop on Sensor Networks and Applications, pages 22-31, Sept, 2002. 
[3] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, 
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, 
and Haobo Yu.  Advances in Network Simulation.  IEEE Computer, V.33   
(N. 5), pages 59-67, May 2000. 
 
 

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. 
Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated 
Database Maintenance. In Proc. ACM Symposium on Principles of 
DistributedComputing, pages 1-12, 1987. 
[5] H. Dubois-Ferrier, M. Grossglauser, and M. Vetterli. Age Matters: 
Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter 
Ages. In Proceedings of the 4th ACM International Symposium on Mobile Ad-
Hoc Networking, pages 257-266, Annapolis, Maryland, USA 2003 
[6]Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.  
Next Century Challenges: Scalable Coordination in Sensor Networks.  In 
Proceedings of the ACM/IEEE International Conference on Mobile 
Computing and Networking, pages 263-270, Seattle Wash., Aug 1999. 
[7] Zygmunt J. Haas, Joseph Y. Halpern, , and Li Li. Gossip-Based Ad Hoc 
Routing. In IEEE INFOCOM, pages 1707-1716, June, 2002. 
[8] John Heidemann, Fabio Silva, and Deborah Estrin. Matching Data 
Dissemination Algorithms to Application Requirements. In Proceedings of the 
ACM SenSys Conference, pp. 218-229. Los Angeles, California, USA, ACM. 
November, 2003. 
[9] John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padma 
Haldar. Diffusion Filters as a Flexible Architecture for Event Notification in 
Wireless Sensor Networks. USC/ISI Technical Report 2002-556 
[10] Q. Huang, C. Lu, and G. Roman, Spatiotemporal Multicast in Sensor 
Networks. In Proceedings of the ACM SenSys Conference, pp. 218-229. Los 
Angeles, California, USA, ACM. November, 2003. 
[11] C. Intanagonwiwat, R. Govindan, and D. Estrin.  Directed Diffusion: A 
scalable and Robust Communication Paradigm for Sensor Networks.  In 
Proceedings of ACM/IEEE International Conference on Mobile Computing 
and Networking, pages 56-67, Boston, MA, USA, August 2000. ACM. 
[12] D. Johnson, and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless 
Networks. in Mobile Computing,  pages 153-181. Kluwer Academic, 1996. 
[13] Brad Karp, and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing 
for Wireless Networks. In Proceedings of the 6th Annual MOBICOM, pages 
243-254, Boston, MA, 2002. 
[14] J. Kulik, W Rabiner, and H. Balakrishnan. Adaptive Protocols for 
Information Dissemination in Wireless Sensor Networks.  In Proceedings of 
the 5th Annual ACM/IEEE International Conference on Mobile Computing 
and Networking, pages 174-185, Seattle, Washington, USA 1999 
[15] C.R. Lin and M Gerla. Adaptive Clustering for Mobile Wireless 
Networks. IEEE Journal on Selected Areas in Communications, 15(7): 1265-
1275, 1997. 
[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: Tiny 
AGregate Queries in Ad Hoc Sensor Networks. In Proceedings of the 
USENIX Symposium on Operating Systems Design and Implementation, 
Boston, Massachusetts, USA, December 2002. 
[17] C.E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector 
Routing. In Proceedings of the Second  IEEE WMCSA ‘99,  pages 90-100 
New Orleans, LA, Feb 1999. 
[18] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and  
F. Yu. Data-Centric Storage in Sensornets with GHT, A Geographic Hash 
Table.  In Mobile Networks and Applications (MONET), pages 427-442 
Kluwer, 2003. 
[19] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern 
Approach Routing, Prentice Hall Inc., 1995. ISBN 0-13-103805-2. 
[20] Ivan Stojmenovic and Xu Lin, Power aware localized routing in wireless 
networks, IEEE Transaxtions on Parallel and Distributed Systems, 12(11): 
1122-1133 , Nov. 2001 
[21] R. Walpole, R. Meyers, S. Meyers. Probability and Statistics for 
Engineers and Scientists, Prentice Hall Inc., 1998. ISBN 0-13-840208-6. 
[22] Yong Yao and Johannes Gehrke. The Cougar Approach to In-Network 
Query Processing in Sensor Networks. In SIGMOD, pages 9-18,  2002. 
[23] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-efficient 
MAC Protocol for Wireless Sensor Networks. In Proceedings of the IEEE 
Infocom. pages 1567-1576. New York, NY, USA. June 2002. 
[24] Yan Yu, Ramesh Govindan, and Deborah Estrin.  Geographical and 
Energy Aware Routing: a recursive data dissemination protocol for wireless 
sensor networks.  Technical Report TR-01-0032, University of California, Los 
Angeles, Computer Science Department, 2001. 
[25] J. Zhao, R. Govindan.  Connectivity Study of a CSMA based Wireless 
Network. Technical Report TR-02-774, USC/ISI, Los Angeles,  CA, 2002. 
[26] F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor 
Collaboration for Tracking Applications. In IEEE Signal Processing 
Magazine, 19(2):61-72, March 2002 


