

Abstract-Data dissemination in sensor networks requires four

components: resource discovery, route establishment, packet
forwarding, and route maintenance. Resource discovery can be
the most costly aspect if meta-data does not exist to guide the
search. Geographic routing can minimize search cost when
resources are defined by location, and hash-based techniques like
data-centric storage can make searching more efficient, subject
to increased storage cost. In general, however, flooding is
required to locate all resources matching a specification. In this
paper, we propose BARD, Bayesian-Assisted Resource Discovery,
an approach that optimizes resource discovery in sensor
networks by modeling search and routing as a stochastic process.
BARD exploits the attribute structure of diffusion and prior
routing history to avoid flooding for similar queries. BARD
models attributes as random variables and finds routes to
arbitrary value sets via Bayesian estimation. Results of occasional
flooded queries establish a baseline probability distribution,
which is used to focus additional queries. Since this process is
probabilistic and approximate, even partial matches from prior
searches can still reduce the scope of search. We evaluate the
benefits of BARD by extending directed diffusion and examining
control overhead with and without our Bayesian filter. These
simulations demonstrate a 28% to 73% reduction in control
traffic, depending on the number and locations of sources and
sinks.

Index terms - System design, Network measurements,

Simulations, Experimentation with real networks/Testbeds

I. INTRODUCTION

Data dissemination in wireless sensor networks

requires four components: resource discovery, route
establishment, packet forwarding, and route
maintenance. Resource discovery consists of finding
data that is relevant to the application. The other three
components are referred to collectively as routing. In IP
and ad hoc routing, resource discovery is layered on top
of routing. A good deal of work has been done to
improve the efficiency of the route establishment
component of data dissemination in wireless networks.
DSR [12] and AODV [17] utilize cached routing
information to limit overhead by deferring route
establishment until existing route segments are no longer
valid. Reinforcement Learning has been used in ad-hoc
networks to forward data on links that are part of the
shortest path to a destination address [1].

This work was supported by DARPA under grant DABT63-99-1-0011 as part
of the SCAADS project, and was also made possible in part due to support
from Intel Corporation and Xerox Corporation. John Heidemann is also
partially supported through the NSF Division of Civil and Mechanical
Systems, grant number E01-CMS-0112665. Fred Stann and John Heidemann
are with USC/Information Sciences Institute, 4676 Admiralty Way, Marina
Del Rey, CA, USA E-mail: fstann@usc.edu, johnh@isi.edu.

Data-centric protocols, like directed diffusion [11],
combine resource discovery with the route establishment
function of routing. For resource discovery, there are
numerous schemes to limit cost. We divide them into
five classes: data-centric storage, in-network
aggregation, geographic-assist, target tracking, and
probabilistic. We evaluate related work in Section VIII.
Most of these schemes work well in their intended
environments. However, each of these approaches is
designed for a specialized application; we would instead
prefer a general technique that exploits prior routing
information to constrain flooding.

A unique characteristic of our approach is that it
exploits attribute-based routing present in diffusion. IP-
based schemes route only on the IP address. They can
easily cache and reuse routes to prior addresses. By
contrast, data-centric routing exposes application-level
information in the form of attributes, combining routing
and resource discovery. Attribute-based routing
precludes simple route caching because even minor
changes in the attributes mean that prior routes fail to
match, rendering simple caching inapplicable. By
contrast, some prior schemes have exposed limited
application-specific information. For example,
DCS/GHT [18] hashes attributes to physical location.
Database techniques [16, 22] and diffusion [11] use
application-specific in-network caching. Geographic
approaches [2, 24] use physical coordinates to limit
flooding. Target tracking techniques, like
Spatiotemporal Multicast [10], tightly integrate routing
and tracking.

Although each of these approaches is appropriate in

their own context, none provide a general approach to
limit flooding. Our goal is to provide a generic
mechanism to exploit application specific information,
exposed through attributes to limit routing overhead. Our
approach exploits probabilistic approaches and
reasoning approaches from artificial intelligence [19].
We model a real world problem in terms of a belief
agent operating over a set of random variables. The
belief agent chooses whatever action has the highest
probability of achieving success. We model route
discovery in diffusion as a distributed problem in which
each node is a belief agent that must select a subset of
links on which to forward route discovery messages. The
agent must periodically flood in order to maintain a
probability distribution and to locate singular real-time

BARD: Bayesian-Assisted Resource Discovery In Sensor Networks

Fred Stann, John Heidemann

USC/Information Sciences Institute Technical Report ISI-TR-2004-593

Figure 1
Sample simulation layout to model a complex example consisting
of a target moving on a diagonal path through the simulation field.

events, but the flooding interval is much less frequent
than in diffusion.

Consider, for example, a sensor network tracking

vehicles moving along a road, as in Figure 1. A naïve
approach to query for vehicles along the road would
periodically query all sensors. Alternatively, if the
location of the road were known, queries could be
geographically limited. As another alternative, specific
applications might track individual vehicles as they
moved on the road. Instead, we aim to automatically
observe, within diffusion, that a class of queries is
looking for vehicles that elicit responses from sensors
near the road, and automatically infer the location of the
road over time based on query history. This general
approach is similar to reinforcement learning techniques
where it has been applied to general routing, but without
application-specific information [1]. Explicit
representations of belief have also been exploited in the
context of specific sensor network applications [26]. To
our knowledge, we are the first to propose integration of
application-influenced learning at a generic routing
level.

The contribution of this paper to improved efficiency

in diffusion data dissemination protocols is BARD,
Bayesian-Assisted Resource Discovery. BARD takes the
form of a wrapper around diffusion routing using
“filters” [9]. The BARD filter observes the control traffic
generated by the underlying diffusion routing algorithm,
does statistical analysis of that traffic, and routinely
“squelches” a large percentage of control traffic that was
intended to be flooded. BARD must periodically flood in
order to maintain a probability distribution and to locate
singular real-time events, but the flooding interval is
much less frequent than in diffusion.

II. BAYESIAN ESTIMATION AND RESOURCE DISCOVERY

The resource discovery algorithm presented in this

paper relies on the Bayesian method of statistical
inference [21]. Bayesian estimation relies on a prior
probability distribution f(θ), where θ is a random
variable for which we have a prior distribution given a
set of prior conditions, which are also random variables.
Those same conditions, examined in a current sample,
can be combined with f(θ) to compute a new distribution
that predicts the likelihood of various values of θ. In our
algorithm, θ is a set of links to neighboring nodes, which
will be considered as candidates for the forwarding of
resource discovery traffic. The “conditions” are the
attributes and corresponding values of the resources that
exist in the application. In effect, Bayes’ theory provides
a mechanism to calculate the likelihood that a particular
hypothesis is true, given the current state of events and
background evidence. Our hypothesis is simply: “is this
node likely to lead us to a path between a resource
provider (source) and a resource consumer (sink)?” The
prior distribution is a history, collected over a window of
time, relating neighbors to resource attributes.

We now demonstrate the derivation of a Bayesian
estimate in the context of a sink seeking out sources with
seismic and accoustic readings above some threshold.
Suppose that sensor network “node X” has four
neighbors: N1 through N4. We assume that node X has
previously resorted to flooding to locate resources for
queries related to seismic and accoustic data, keeping
track of the frequency with which each neighbor
provided a path to every resource attribute. Node X
would like to limit flooding by exploring only those
neighbors that are more likely to deliver seismic and
acoustic sensor readings above the application-
prescribed values.

Because we wish to express the prior probabilities in

question as a sample space, we could divide the sample
space into several mutually exclusive events N1, N2, N3,
… , Nk (one for each neighbor), and two pieces of
evidence: seismic and acoustic. The expression of this as
a sample space yields a three-dimensional joint
probability distribution such as that depicted in Figure 2
(see top of next page). Unfortunately, joint probability
distributions are difficult to maintain because their size
grows exponentially with each added random variable.
The primary advantage of using Bayes’ Rule is that it
can dynamically calculate conditional probabilities to a
great deal of precision without maintaining a complete
joint probability distribution when certain conditions
hold, as noted below [19].

Node N4

Node N3

Node N2

Node N1

AcousticSeism ic

 Figure 2

A sample space consisting of mutually exclusive Node events, and
conditionally independent events Seismic &Acoustic.

Node X is looking for neighbors that can provide both

seismic and acoustic sensor data (i.e. event S∩A). We
want to answer the question: what is the probability that
a given neighbor is a constituent part of the desired
composite event? The contribution of a prior history is
that it helps to predict which neighbors will most likely
provide certain resources in present time. The following
formula expresses the probability that neighbor N3 has
sound and acoustic sensor data available, i.e. S∩A
occurred, given a joint distribution:

][

]3[]3|[
]|3[

ASP

NPNASP
ASNP

∩

∩
=∩ (1)

Bayes’ formula allows us to simplify the above

equation when events S and A are conditionally
independent. Evidence variables that are dependent in
the joint, can be conditionally independent relative to the
hypothesis variable if they are both a direct result of that
variable. If we know that N3 leads to S, the fact that N3
also leads to M is irrelevant to the conditional
calculation of S (i.e. P[SN3] = P[SN3∩M]). The
following formula is the Bayes’ estimate for neighbor N3
with Seismic and Acoustic as our combined evidence:

=∩]|3[ASNP α]3|[]3|[]3[NAPNSPNP (2)

The normalizing constant α is equal to the constrained

sample space 1/P[S∩A] (i.e. the denominator of eq. (1)).
This constrained space is calculated trivially by
exploiting the fact that it can be converted into the
following conditional terms:

]3|[]3|[]3[NAPNSPNP +

]3|![]3|![]3[! NAPNSPNP (3)

III. BARD AND DIRECTED DIFFUSION

The effort to use Bayesian estimates to limit flooding

during resource discovery, requires an understanding of
how specific diffusion routing algorithms utilize
flooding. The initial diffusion algorithm is now called
two-phase pull diffusion [8]. In two-phase pull, interest
messages that describe the attributes of desired data are
flooded from a sink to all nodes. “Exploratory data” is
then reverse-flooded from sources which have data
matching the attributes. When the Exploratory data
arrives at a sink, high quality (i.e., low latency) paths are
“reinforced” by control messages unicast from a sink
toward sources. The high-quality routes provide efficient
(single path) data transfer for a period of time. Interests
are periodically flooded to re-establish reinforced paths,
in order to cope with changing network conditions.
Therefore, two-phase pull has two flooding stages
involved in resource discovery and path establishment.

Two more recent versions of diffusion are push and one-
phase pull [8]. In push diffusion, sinks have interests
that are held locally, rather than flooded. Resource
discovery in push consists of sources finding paths to
interested sinks via exploratory data flooding and
reverse-path reinforcement. One-phase pull diffusion
only floods interest messages. Data from sources travels
along the reverse path of the lowest latency interest
arrivals. One phase pull thus eliminates exploratory
traffic flooding. The primary difference between push
and pull (one or two-phase) is the direction of resource
discovery via flooding. One-phase pull employs sink-to-
source resource discovery and push uses source-to-sink
resource discovery. Although Bayesian methods can be
used to limit flooding in either direction, push provides
fertile ground for BARD development because it is
simpler in implementation than either the original
diffusion routing algorithm or one-phase pull. All of the
experiments presented in this paper were run over push
diffusion. Push diffusion works well for applications,
such as tracking, where many sensors are looking for
data to publish, but actuations are relatively rare. As
future work we plan to modify BARD to limit flooding
in one-phase pull and two-phase pull diffusion.

IV. BARD FUNCTIONAL DESCRIPTION

Bayesian-Assisted Resource Discovery limits flooding

in push diffusion via the application of Bayesian
methods of estimation to predict what nodes to forward
route discovery messages to. In push diffusion, route
discovery packets are simply data packets, which are
periodically marked as exploratory and flooded. When
an exploratory data packet reaches a sink, the sink sends

a positive reinforcement message along the reverse path
toward the source. Intermediate nodes typically receive
multiple copies of the exploratory route discovery packet
(once from each neighbor). The intermediate nodes use a
heuristic, such as latency, to select a single neighbor to
forward the positive reinforcement to. Once a reinforced
path from source to sink is established, subsequent data
packets are unicast along that path until the next
“exploratory interval.” When there are multiple sinks, a
non-redundant distribution tree is formed between sinks
and source. BARD spends some time building a per-
attribute reinforcement history based on exploratory data
traffic and reinforcement messages. Once a sufficient
mass of history is collected, BARD attempts to limit
flooding by forwarding exploratory traffic only to
neighbors that are likely to yield reinforcements. In
diffusion, data is exchanged when sources publish data
whose attributes logically match those subscribed to by
sinks. BARD employs the same matching rules when
comparing resource-discovery packet content to
reinforcement history. The goal is to predict what
neighboring nodes have the greatest probability of
yielding a working connection.

There are two primary functions that the BARD filter

must provide in order to achieve its goal of efficient
resource discovery: ongoing maintenance of the prior
distribution and flooding limitation. BARD must collect
statistical information about which neighbors have
provided effective routes for data from sources to sinks.
In doing so, it must “dissect” the routing attributes in a
packet so that each routing attribute’s history is
maintained separately, because subsequent traffic flow
may have a limited degree of intersection with current
traffic Periodically BARD refreshes the reinforcement
history by permitting flooding, to cope with changing
conditions in the network. Therefore BARD maintains a
sliding window of history, discarding the oldest entries
as the window moves forward. Periodic flooding also
guarantees that low probability events will be sensed,
albeit at a reduced fidelity. The second primary function
of BARD is to suppress flooding based on collected
history. This function of BARD employs Bayesian
methods of estimation to assign probabilities to outgoing
links in order to predict which links will yield a positive
result during route discovery. Nodes whose Bayesian
estimate falls beneath a calculated threshold will not
have resource discovery messages forwarded to them.
We call this function limited flooding. The ratio of actual
flooding to limited flooding dictates the efficiency
achieved by BARD as well as the latency of its response
to change. Tuning the ratio represents a configurable
trade-off between real-time responsiveness and energy
savings.

Push Diffusion
Routing Filter

Bayes Probability Calcutation

BARD Filter Post-Processing
(Flooding Limitation)

BARD Filter Pre-Processing
(History)

Figure 3
Depiction of Bayesian Filter in relation to Push Diffusion

V. BARD IMPLEMENTATION DETAILS

There are three elemental pieces that make up the

BARD filter: a history gathering routine that is called
whenever data is flooded, a flooding limitation routine
that is called to constrain flooding, and a Bayesian
module that calculates probabilities in support of
flooding limitation (see Figure 3). A helpful concept in
describing how the BARD filter interacts with push
diffusion is that of an exploratory epoch. An exploratory
epoch in diffusion begins when data is tagged as
exploratory (to be flooded) by a source. The exploratory
epoch is the maximum time interval during which data is
unicast over a reinforced path. In general, BARD
restricts flooding during four out of five exploratory
epochs declared by push. As an optimization, BARD
will allow flooding for three exploratory epochs in a row
when there is no prior history. BARD limits the flooding
of push exploratory messages by converting broadcast
addresses to specific unicast addresses. Statistically, the
best candidates to forward exploratory data to are those
which have some history of providing positive
reinforcement for the particular set of attributes
contained in the exploratory data packet.

To support the flooding limitation function, BARD

adds a unique attribute to every exploratory data packet
that emanates from a push diffusion source. This
attribute indicates whether the packet is going to be fully
flooded or subject to limited flooding. The attribute
travels with the packet as it is forwarded through the
network. BARD pre-processing at a source node,
therefore, controls how often an exploratory epoch is
allowed to flood. Although this is currently set to 1/5th
of exploratory epochs, it is configurable. Applications
that are more entropic will require more frequent
refreshing of the history.

The statistics gathering function of the BARD pre-
filter maintains the prior distribution used by the post-
filter during limited flooding. BARD keeps track of how
many positive reinforcements arrive from each neighbor
per flooded exploratory data. The reinforcement
statistics are kept on both a per-neighbor and per-
attribute basis. This allows BARD to deal with a
varying degree of intersection in the attribute sets
generated by different push sources. In order to enable
attribute matching for attribute quantities that are not
strictly identical (such as GT or LT), BARD requires
that the subscription data from sinks be provided in the
positive reinforcement. Push does not currently provide
this data. Our prototype implementation therefore uses a
simpler matching scheme that considers only attribute
equality and not complete matching. We are in the
process of extending the reinforcement information to
allow complete matching.

The single purpose of the post-processing section of

the BARD filter is to limit the flooding of exploratory
data packets to a subset of neighbors. Neighbors are
chosen that have demonstrated a historical probability of
providing reinforced paths from sinks to sources for the
attribute set contained in the exploratory packet. Because
the reinforcement history is kept on a per-attribute basis,
it is possible to construct probabilities incrementally
using multiple pieces of “evidence” and Bayesian
estimation.

In order to identify the subset of neighbors that will

receive resource discovery packets, during limited-
flooding, BARD uses thresholding. The threshold is the
minimum Bayesian probability that must be achieved by
a given neighbor in order to have a resource discovery
packet forwarded to it. If the threshold is set too high,
BARD may not find a route from source to sink, and if
the threshold is set too low BARD efficiency will
unnecessarily deteriorate. The appropriate threshold for
forwarding is a function of three variables:

Fan-Out – the number of neighbors that can

symmetrically communicate with a node.
Error Rate – the percentage of received

packets to packets sent.
Number of Sources – the number of sources

that are generating data traffic.

Dense topologies and multiple active sources produce
multiple neighbors with moderate probabilities rather
than fewer high-probability neighbors. Higher error rates
dilute probabilities through reinforcement packet loss.

The following empirical formula, derived by

observing how each component affected the number of

alternate routes (in simulation), represents thresholds
that resulted in delivery rates equal to or better than
simple push:

()
()05.8.

0 24/

1
−−∑ +

e

S
Sd

 (4)

S is number of sources, d is the degree or fan out, and

e is the error rate. The right hand side represents the
reduction in threshold required to keep pace with an
increasing error rate. The left hand side represents the
graceful decay when multiple sources activate for a
single event. The reciprocal of this formula yields the
projected number of alternate routes. For example, with
10 neighbors, a single source, and an error rate of .05,
the threshold would be .25 and the number of viable
alternate routes within 50 minutes (the history window
of the BARD filter) would be 4.

VI. ANALYSIS

Bayesian estimation techniques rely on the existence

of a prior distribution. BARD collects information
periodically via flooding so as to establish and maintain
this prior distribution for reuse during periods of limited
routing. If we assume that BARD will successfully
identify the “corridor” of alternate routes between source
and sink, then we can predict the amount of traffic we
expect to be generated during limited routing. We know
the amount of control traffic generated by push diffusion
during route discovery. Each node broadcasts the
exploratory message exactly one time, and then a single
route is reinforced. If we have a square grid with nodes
evenly spaced and a source and sink at diagonally
opposite corners, then the cost of routing in bytes per
event is simply:

()
tevents

xnn
tf

+
∗ (5)

where n is the number of nodes, ft is the number of
exploratory intervals per time t, x is the number of bytes
in an exploratory packet, and eventst is the number of
events occurring in time t. The term n represents the
cost of the positive reinforcement. We can actually
simplify Equation (5) because when push diffusion
floods exploratory data, the first exploratory packet to
arrive at the sink will double as an actual data packet.
Thus the n term represents useful data transfer rather
than overhead and can be deleted, yielding:

 teventsnxtf (6)

BARD, operating in steady state (as configured for this
paper), floods 1/5 as often as push. We can express this
cost per event as:

()

tevents

xahtfnxtf 15/45/1 −+
 (7)

where a is the number of alternate routes that the BARD
filter identifies during limited routing and h is the
average hop count of those routes. We decrement a for
the same reason we removed n in Equation (6). As
we add more sources, or increase the error rate, we
expect a to grow as the reciprocal of (4). If we wish to
express the percentage gain that BARD should have over
push, we can simplify our calculation:

()()

ntf

ahntf 15451
1

−+
− (8)

VII. EXPERIMENTAL RESULTS

In order to quickly evaluate the efficiency and

potential of Bayesian-Assisted Resource Discovery, we
designed a series of experiments run primarily in
simulation. Simulation allowed us to quickly and
systematically explore a multi-dimensional problem
space in a manner that is impractical with an actual
testbed. The simulation test environment employed was
ns-2 [3], version 2.26. Most experiments varied an
individual aspect of an n-dimensional problem space.
The varied aspects were: number of nodes, density of
nodes, number of sources, number of sinks, send rate,
and error rate. A simulation experiment was also
performed to approximate the advantage that BARD
might bring to a complex “real-world” application.

We also conducted an experiment on an actual testbed

that incorporated several aspects of our simulations. The
testbed that we used consisted of Stayton nodes. These
are small form factor systems running Linux over a 32-
bit Intel embedded processor, with 64M of SDRAM, and
32M of flash memory. They are fitted with a multi-
channel radio capable of 38.4 Kbaud. Radio range can be
modified to enable multi-hop experiments.

We conducted our ns-2 experiments running multiple

simulations over randomly generated node patterns. For
each pair of data points in an experiment, we ran simple
push diffusion with and without the BARD filter over
ten random topologies and averaged the results.
Additionally, we calculated and plotted 95% confidence
intervals. We expressed results in terms of control byte

transmissions required for resource discovery
normalized by the number of events that generated
traffic in the simulation (i.e. whenever a source decides
to send). We collected these numbers by instrumenting
the simulation code to log resource discovery related
transmissions with unique tags. We then processed the
logs via awk scripts, which used the tags and byte counts
to summarize transmission activity.

For ns-2 node placement we modified an existing

topology-generator program [8] to create random
topologies of progammable size. The generator has
useful options such as optional corner placements of
sources and/or sinks. This allowed for any randomly or
strategically placed sources and sinks. The generator
tests node patterns for connectedness given radio range.
If sources and sinks cannot communicate with each
other, the generator scraps the topology and generates
another.

Software loaded above the MAC layer in each

experiment included the diffusion filter core, the
diffusion push routing filter, the BARD filter (when
using BARD), and simple source and sink apps. For ns-2
experiments, we used the 802-11 MAC layer provided in
ns-2 with a retry count of 4. For all ns-2 experiments the
radius of the radio range was 39.6 meters. Our testbed
experiment used the SMAC link layer [23] with a retry
count of 3. For all experiments, routing was based on
three attribute keys: motion, sound, and target type.

A. Performance as node count increases

The first experiment was aimed at quantifying the

savings achievable with BARD as the number of nodes
increases while density remains the same. The size of the
simulation area was increased with node count, such that
the average node density was held constant at 10.9
neighbors. The selected density insured a high
probability of network connectivity, despite random
node placement. A single source and sink were placed at
the greatest diagonal distance apart in the simulation
field. The node count was varied from 25 to 100. A 128
byte packet was sent every 20 seconds from the source.
Flooding was performed once per 60-second epoch by
push and once every 5 minutes by BARD, after 3 initial
flooding epochs to establish a prior history. Our
expectations for this experiment, based on Equations (4)
and (8), were a 45% improvement running with 25 nodes
and a 53% improvement at 100 nodes. Because the
dominant term in our calculation is the node count we
expected approximately linear growth for both BARD
and push. Because BARD allows flooding 1/5 as often
as simple push, we expected less slope for BARD.

Figure 4

Control bytes per event required to transfer 180 packets of 128 bytes each
diagonally from source to sink using BARD Routing vs. simple Push Routing

with a variable number of nodes.

The graph in Figure 4 depicts the results, along with
95% confidence levels. At 25 nodes BARD averaged
386 B/event while simple push averaged 1027 B/event.
This represents a 62% improvement by BARD. At 100
nodes BARD averaged 1320 B/event while simple push
averaged 4100 B/event, a 68% improvement by BARD.
More importantly, the average rate of increase (slope)
for BARD from 50 to 100 nodes is 4.25 times less than
the growth rate for simple push. The results of this
experiment were better than predicted. Log analysis
showed that the savings exceeded analysis because of a
progressively greater limitation of alternate routes by
BARD as the simulation progressed. When diffusion
establishes new routes at the beginning of an exploratory
epoch, it does not immediately retire previously used
routes. Only when routes consistently display greater
latency than their alternatives, are they retired.
Therefore data is often replicated on multiple paths by
diffusion. BARD established fewer alternate routes than
simple push as time passed.

B. Performance as node density increases

Changes in density affect BARD in two ways. First,

higher density increases the number of alternate routes,
and second nodes involved in viable routes are a smaller
percentage of total node count. To understand these
tradeoffs we varied density from 10 to 50 nodes in the
average neighborhood. (although nodes are randomly
placed, we computed approximate density analytically
by assuming a nominal radio range of 39.6 meters and
uniformly distributed sensors, ignoring edge effects). We
expected that BARD would achieve greater savings than
in the first experiment. The rational was that having a
smaller proportion of total node count involved in

Figure 5
Control bytes per event required to transfer 180 packets of 128 bytes each

diagonally from source to sink using BARD Routing vs. simple Push Routing
with increasing density

routing would dominate results. The results, shown in
Figure 5, validated these expectations. At 10 nodes per
area (25 nodes), BARD required 62% less control traffic
than simple push. At 49.3 nodes per area (100 nodes),
BARD required 73% less control traffic.

C. Varying the number of sources

This experiment compares the performance of BARD

to unmodified push diffusion when multiple randomly
positioned sources are generating interesting data. We
wished to establish the efficiency with which BARD
could locate multiple resources. The number of sources
was varied from one to five. A single sink received all of
the traffic generated by the sources. Each source
generated exploratory packets every 60 seconds, which
were filtered with limited routing 4/5ths of the time in
the case of the BARD filter. Our expectation for this
experiment was that the percentage of savings incurred
by BARD would lessen as the number of sources
increased. We assumed that as more sources became
active, more nodes would necessarily become involved
in routing thus decreasing BARD’s efficiency.

The graph in Figure 6 (see top of next page) shows

that with a single source BARD averaged 703 control
B/event, and simple push averaged 1928 bytes. This
represents 63% improvement by BARD. With 5 sources
BARD averaged 3607 control B/event and simple push
averaged 8454 B/event, a 54% improvement by BARD.
Therefore the percentage of improvement decreases with
source count. Log analysis showed that in the case of
multiple sources, BARD must discover more routes per
event.

Figure 6
Control byte transmissions per event required to transfer 90 packets of 128
bytes each from a variable number of sources to a single sink using BARD

Routing vs. simple Push Routing

D. Varying the number of sinks

This experiment compares the performance of BARD

to unmodified push diffusion when multiple sinks are
interested in the same events generated by a single
source. Because push diffusion does not flood interest
messages, like two-phase pull, the expectation was that
adding sinks with a constant number of sources (in this
case 1) would have a linear growth rate that is relatively
flat. For each sink, we expected adding n * bytes/pkt
because each sink sends its own positive reinforcement.
The BARD filter does not influence the activity of the
underlying push filter when it comes to positive
reinforcements. BARD only squelches exploratory
traffic. With a single source, the relative improvement
provided by BARD should be consistent.

Figure 7
Control byte transmissions per event required to transfer 90 packets

of 128 bytes each from a single source to a variable number
of sinks using BARD Routing vs. simple Push Routing

Figure 8
Total and control byte overhead per event for BARD Routing vs. simple

Push Routing with an increasing send rate.

The results for this experiment are summarized in

Figure 7. As can be seen in the figure, the slopes of both
lines are nearly identical, varying by less than 10%.
BARD was approximately 60% more efficient than
push. If we had chosen to use one-phase pull as the
underlying routing protocol, and used BARD to limit the
flooding of interests, we would expect this graph to look
more like Figure 6, since one-phase pull does sink
initiated flooding.

E. Increasing the send frequency

What happens when the cost of moving data along

discovered paths becomes the major overhead in a
sensor net application? In this experiment we increase
the frequency with which data is sent from a single
source to a sink in field of 50 nodes, and measure total
overhead per event (includes data traffic) as well as the
control overhead. The simulation time was 1 hour, and
the send rate was varied from 1 to 30 messages/minute.
Our expectation was that the control byte overhead for
push vs. BARD would begin to converge at higher send
rates due to amortization across an increased number of
events. The plot is shown in Figure 8. As predicted, the
control byte overhead for push approaches that of BARD
at 30 packets/minute (84 B/event for BARD and 219
B/event for push). For a single packet/minute, total and
control B/event are nearly identical because every packet
is exploratory (1875 B/event for BARD and 5952
B/event for push). A surprising result was that total
overhead did not demonstrate greater convergence.
Although total savings with BARD lessened with send
rate, it didn’t converge with push very rapidly after 10
packets/min. As observed in the 1st experiment, BARD

Figure 9
Percentage of packets sent that successfully arrived at a sink given various

error rates using BARD Routing vs. simple Push Routing

provides an unexpected benefit over unmodified push
because fewer alternate data paths are maintained over
time. Diffusion doesn’t immediately retire older data
paths when new ones are established. BARD reduces the
number of alternate paths that carry redundant data.

F. Sensitivity to transmission error

In this experiment we wished to investigate what
influence packet loss has on the efficacy of BARD
modified routing. We employed a simulation space that
includes 50 nodes at a density of 10 nodes per radio area
with a single source and sink placed at approximately
diagonally opposite corners. We incrementally increased
the error rate by modifying the error model in ns-2. Our
expectation was that BARD would show lesser savings
as the error rate increased. The rationale was that the
reduction of flooding would result in the discovery of
fewer viable routes. The error rate was varied from5% to
40%. Previous studies [25] have demonstrated that error
rates as high as 40% are present between some nodes in
a sensor network, albeit rarely at adjacent nodes. A
network with a 40% error rate between all adjacent
nodes would be fairly useless. Flooding reduces the
negative effects of transmission errors. Diffusion nodes
only forward data that has not been flooded previously.
If the average node in a sensor network has 9 neighbors,
then the broadcast from any of these neighbors could be
considered the “first” broadcast if earlier ones are lost.
This situation is equivalent to having 9 retries, rather
than the 3 or 4 provided by the MAC layer. When error
rates are high, even unicast transmissions, such as
positive reinforcements, can suffer poor end-to-end
reliability. The results for this experiment are
summarized in Figure 9. As predicted, the decay in the
end-to-end delivery rate is worse for BARD than simple
push for global error rates in excess of 10%.

 There are two curious aspects to the graph in Figure
9. The first is the stepwise decay in the BARD end-to-
end delivery rate for rates greater than 25%. Log
analysis showed that this was related to entire
exploratory epochs being lost when positive
reinforcements don’t make it from sink to source. This
resulted in an effective quantization of the curve that we
would expect. The other interesting aspect is the high
variance. This is to be expected under high entropy
conditions.

G. Complex “real world” scenerio

We selected previous scenarios to systematically

explore the effects of BARD. In this section we consider
a more complex scenario to approximate how we see
BARD being used in practice. Consider a sensor field
deployed to track vehicles. Vehicles typically follow a
common path - perhaps a road. In our scenario (refer
back to Figure 1), a target follows a diagonal road from
upper left to lower right. As the target passes by nodes
near the diagonal, they are triggered to generate traffic.
A lone sink reinforces the traffic from all transmitting
nodes (sources). We initially ran the experiment with
the sink diagonally opposite of the imaginary path.
Sources did not transmit in response to a timer
expiration. Instead, a“trigger method” was added to
each node; which, when invoked, forced the
transmission of source data. The target was modeled as
an ns- 2 application that woke up monotonically and
calculated its location according to a pre-determined
velocity. Nodes within 10 meters of the current location
of the target were sent a trigger message so that they
would generate traffic. The topology generator employed
in the previous experiments was used to generate
topologies, so that performance could be averaged over
10 different random node placements. Our expectation
for this experiment was that the reduction in control
traffic realized by BARD would not be as dramatic as in
earlier experiments. The rationale was that BARD would
need to maintain a network of paths from the sink to the
diagonal that would encompass half of the simulation
area used by simple push flooding. Because BARD
floods 1/5 as often as push, we estimated a savings in the
range of 40% of the overhead incurred by simple push
(i.e. 1/2*4/5). Results for this experiment are
summarized in the left half of the bar graph in Figure 10
(at the top of the next page). BARD performance was
approximately 28% better than simple push, slightly
worse than expected. Because the sources along the
diagonal were angularly separated relative to the sink
and multiple paths existed to each source, some links
were used multiple times during exploratory epochs.

Figure 10

Control byte overhead per event for target tracking
application for BARD Routing vs. simple Push Routing when sink

is diagonal from target route vs. in-line with target route

We then speculated that we could improve on the

relative performance of BARD vs. simple push by
placing the sink in the lower right corner of the
simulation area. This would put the active sources
somewhat in-line with the sink, thus creating fewer
alternatives for the limited routing function of BARD.
The mean for these simulations is shown on the right
half of Figure 10. Notice that the efficiency of straight
push is virtually unchanged, whereas the improvement
by BARD over push goes from 28% to 47%.

H. Testbed experiment

Although we found it convenient to explore the

problem space relevant to diffusion / BARD via ns-2, we
also wanted to deploy BARD in an actual testbed. Past
experience has taught us that actual testbed experiments
often result in unanticipated problems, which require
design revisions. In this case we had available a testbed
of 10 nodes, described at the start of this section. The
deployment of the testbed is shown in Figure 11. The
testbed consisted of a “fat” end in which nodes had
multiple neighbors and a “thin” end in which nodes had
a single neighbor on each side. The sink placement was
just to the right of the middle of the testbed.

Figure 11
Stayton Testbed Topology

Figure 12

Control byte overhead per event for Stayton testbed experiment - BARD
Routing vs. simple Push Routing

This allowed us to ascertain if BARD was capable of
eliminating a non-productive segment of the network
from attempts to find resources. The node to which we
attached the source had the highest neighbor count and
the greatest number of possible paths to the sink. Five 30
minute runs were performed with this configuration and
the control traffic was counted for each run. The mean
control traffic per event and confidence intervals are
plotted in Figure 12, along with results from an ns-2
experiment patterned identically. Bayesian assisted
routing was 38% more efficient on average than simple
push routing. This was in line with expectations. We
expected the nodes on the right hand side of the testbed
to be contacted by BARD approximately 40% as often
as they would be by simple push. This is a reflection of
the initial 3 data epochs used by BARD to build a prior
distribution, followed by infrequent flooding by BARD
to maintain the distribution. We expected BARD to limit
the number of paths on the left hand side of the testbed
to those which displayed the least latency. Because
broadcast packets do not have ARQ in SMAC, the
neighbors that heard the initial exploratory packet
transmission from the source varied with time, which
resulted in a variance of the exact paths maintained by
BARD. Typically BARD maintained one or two paths
on the left hand side. In every case BARD found a path
from source to sink. Although our testbed was of limited
size, this experiment nonetheless validated that our
simulation results were consistent with results in a real-
world test environment

VIII. RELATED WORK

The work surveyed for this paper can be partitioned

into two categories: routing-related and resource-
discovery-related; and six groups: route caching,
geographic-assist, probabilistic forwarding, in-network
aggregation, data-centric storage, and target tracking.

Route caching is a proven method for flooding-
limitation in ad-hoc networks that employ addressed-
based routing. DSR [12] and AODV [17] avoid flooding
via route caching and on-demand (non-periodic) route
discovery. A probabilistic technique for adaptive
routing, which has been used in ad-hoc networks, is
reinforcement learning [1], wherein nodes learn the
probabilities that their neighbors will provide the
shortest path to a given address. Approaches from
addressed-based protocols cannot be directly applied to
attribute-based routing because the state space is
extremely large and grows exponentially in the number
of attributes used for routing. Additionally, multiple
nodes may be able to satisfy any given resource request.
Finally, such techniques are of limited benefit when
slight variations in attributes preclude matches. We
instead adopt Bayesian-based filtering to allow partial
matches.

When resources can be bound to geographical

coordinates and sensor network nodes are geographically
aware, several algorithms provide efficient scalable
solutions to the problem of flooding. Both GPSR [13]
and GEAR [24] exploit geography by greedily
forwarding route discovery packets to individual
neighbors that are closer to a target location. The
primary advantage of BARD over purely geographic
methods is its ability to exploit non-geographic aspects
of a problem domain when accomplishing resource
discovery. Additionally, sinks often don’t know where
sources reside initially (or vice verse).

Gossiping is a resource discovery technique that was

developed in the context of networked databases [4], and
subsequently applied to ad hoc routing in wireless
networks [7]. The basic idea in gossiping is to forward
route discovery messages with some pre-configured
probability geared to the average degree (fan-out) of the
network. BARD can adapt to skewed situations better,
wherein some large segment of the network is not
generating any interesting traffic. Rumor Routing [2] is a
technique to limit flooding that can work with data-
based routing and attribute-based queries. Events from
sources and queries from sinks are propagated along
approximate straight lines that are likely to intersect. The
caching of event descriptions (attribute tuples) in rumor
is similar to the caching of per-attribute probabilities in
BARD.

There are a large number of algorithms that limit

flooding in sensor networks via in-network aggregation.
This principle is loosely related to earlier work on
clustering [15]. Aggregating data from multiple sensor
nodes results in a reduced cost of accessing that data

when the path to the aggregated data is either known or
local updates percolate the aggregated data up an
implicit hierarchy towards an active sink. Both SPIN
[14] and COUGAR [22] form on-the-fly clustered
hierarchies in which upper layers have partially
aggregated information collected from lower layers.

DCS/GHT (Data-Centric Storage in Sesnornets with

Geographic Hash Tables) [18] requires an underlying
geographic routing layer in order to perform in-network
aggregation. All data with the same “name” (which
could be an attribute tuple) is stored at the same node.
The node is selected by hashing the name into
geographic coordinates. It is appropriate for situations in
which the same limited set of long-standing queries
persists in a stable network. The cost of DCS is that
preemptively moving data to hash sites can be expensive
if the data is never accessed. By contrast, data-centric
routing places the burden of search on queries, and
BARD helps reduce that cost.

Target tracking is a specialized form of in-network

aggregation. GEAR has been successfully combined
with push diffusion to use geography to follow a target
in a location aware sensor network [26]. Spatio-temporal
Multicast in Sensor Networks [10] predicts target path
and establishes a “delivery zone” that has direction and
velocity along the predicted path. FRESH [5] is intended
for mobile ad-hoc networks where flooding is triggered
frequently due to node movement, and geographical
information is not available. In FRESH, nodes forward
route discovery traffic only to nodes that have more
recently encountered the target. If BARD were
configured to use time as the only attribute with which to
calculate its probabilities, it would be similar to FRESH.

Most of the flooding limitation techniques sited in this

section focus on a particular aspect of resource discovery
related to the applications that they support. For
example: GEAR uses geographical location in Euclidean
space, and FRESH uses temporal information. Data
aggregation methods, like DCS/GHT aggregate
information to assigned nodes, assuming that the savings
incurred for queries outweighs the on-going cost of
aggregation for storage. Effectively, each algorithm is
capable of limiting the flooding associated with resource
discovery for a particular class of application. The
advantage of BARD is its generality. BARD can predict
viable routes using any number or type of attributes in an
environment where multiple routes alternate in their
effectiveness to reach target data. BARD is also capable
of efficient resource discovery when the possible set of
queries can’t be quantized into a set of small cardinality.

IX. FUTURE WORK

Our initial results have motivated us to further explore

the potential of Bayesian-Assisted Resource Discovery.
Foremost we wish to run more experiments over a real
sensor network with a greater number of nodes.
Experience has taught us that testbeds bring out race
conditions, implosions, and correlated error conditions.
We also need to explore trade offs related to the
frequency with which BARD floods to update its prior
distribution (i.e. efficiency vs. real-time response).
Additionally, BARD needs to be expanded to work with
Pull diffusion. We also wish to examine the potential of
BARD to cope with “attribute intersection.” The initial
test results presented in this paper did not explore cases
where multiple sinks are interested in different events
that have incomplete overlap in terms of attribute
matching. We believe that coping with such situations is
a distinguishing aspect of the future potential of BARD.

X. CONCLUSIONS

In our investigation into the application of Bayesian
estimation techniques to limit flooding during route
discovery we demonstrated that significant savings are
available in terms of control traffic per event. Savings
depend on the amount of traffic correlation in the
application and the location of the data consumer. With
completely uniform queries, BARD will not help, but
when traffic is topologically correlated with some
feature (such as a road), BARD can automatically
discover and exploit that correlation even if it is not
explicitly known to the application or user. We
demonstrated savings from 28% to 73% for correlated
traffic, depending on placement of the data consumer.
Applications requiring the utmost real-time response
should not use BARD. BARD uses occasional flooding
to be responsive to network change and previously
unseen events. The primary benefit of BARD is the
pruning of repeated exploratory traffic across links that
are not providing routes to interesting data. It is
adaptable to a broad range of queries and event types. As
a diffusion filter it can be easily added to existing
applications that are running (push) diffusion.

REFERENCES

[1] J. Boyan and M. Littman. Packet Routing in Dynamically Changing
Networks: A Reinforcement Learning Approach. In Advances in Neural
Information Processing Systems, V6, pages 671-678., 1993.
[2] D. Bragansky, and D. Estrin. Rumor Routing for Sensor Networks. First
Workshop on Sensor Networks and Applications, pages 22-31, Sept, 2002.
[3] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in Network Simulation. IEEE Computer, V.33
(N. 5), pages 59-67, May 2000.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H.
Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated
Database Maintenance. In Proc. ACM Symposium on Principles of
DistributedComputing, pages 1-12, 1987.
[5] H. Dubois-Ferrier, M. Grossglauser, and M. Vetterli. Age Matters:
Efficient Route Discovery in Mobile Ad Hoc Networks Using Encounter
Ages. In Proceedings of the 4th ACM International Symposium on Mobile Ad-
Hoc Networking, pages 257-266, Annapolis, Maryland, USA 2003
[6]Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.
Next Century Challenges: Scalable Coordination in Sensor Networks. In
Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, pages 263-270, Seattle Wash., Aug 1999.
[7] Zygmunt J. Haas, Joseph Y. Halpern, , and Li Li. Gossip-Based Ad Hoc
Routing. In IEEE INFOCOM, pages 1707-1716, June, 2002.
[8] John Heidemann, Fabio Silva, and Deborah Estrin. Matching Data
Dissemination Algorithms to Application Requirements. In Proceedings of the
ACM SenSys Conference, pp. 218-229. Los Angeles, California, USA, ACM.
November, 2003.
[9] John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padma
Haldar. Diffusion Filters as a Flexible Architecture for Event Notification in
Wireless Sensor Networks. USC/ISI Technical Report 2002-556
[10] Q. Huang, C. Lu, and G. Roman, Spatiotemporal Multicast in Sensor
Networks. In Proceedings of the ACM SenSys Conference, pp. 218-229. Los
Angeles, California, USA, ACM. November, 2003.
[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A
scalable and Robust Communication Paradigm for Sensor Networks. In
Proceedings of ACM/IEEE International Conference on Mobile Computing
and Networking, pages 56-67, Boston, MA, USA, August 2000. ACM.
[12] D. Johnson, and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. in Mobile Computing, pages 153-181. Kluwer Academic, 1996.
[13] Brad Karp, and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks. In Proceedings of the 6th Annual MOBICOM, pages
243-254, Boston, MA, 2002.
[14] J. Kulik, W Rabiner, and H. Balakrishnan. Adaptive Protocols for
Information Dissemination in Wireless Sensor Networks. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile Computing
and Networking, pages 174-185, Seattle, Washington, USA 1999
[15] C.R. Lin and M Gerla. Adaptive Clustering for Mobile Wireless
Networks. IEEE Journal on Selected Areas in Communications, 15(7): 1265-
1275, 1997.
[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: Tiny
AGregate Queries in Ad Hoc Sensor Networks. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation,
Boston, Massachusetts, USA, December 2002.
[17] C.E. Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector
Routing. In Proceedings of the Second IEEE WMCSA ‘99, pages 90-100
New Orleans, LA, Feb 1999.
[18] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and
F. Yu. Data-Centric Storage in Sensornets with GHT, A Geographic Hash
Table. In Mobile Networks and Applications (MONET), pages 427-442
Kluwer, 2003.
[19] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern
Approach Routing, Prentice Hall Inc., 1995. ISBN 0-13-103805-2.
[20] Ivan Stojmenovic and Xu Lin, Power aware localized routing in wireless
networks, IEEE Transaxtions on Parallel and Distributed Systems, 12(11):
1122-1133 , Nov. 2001
[21] R. Walpole, R. Meyers, S. Meyers. Probability and Statistics for
Engineers and Scientists, Prentice Hall Inc., 1998. ISBN 0-13-840208-6.
[22] Yong Yao and Johannes Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks. In SIGMOD, pages 9-18, 2002.
[23] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-efficient
MAC Protocol for Wireless Sensor Networks. In Proceedings of the IEEE
Infocom. pages 1567-1576. New York, NY, USA. June 2002.
[24] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and
Energy Aware Routing: a recursive data dissemination protocol for wireless
sensor networks. Technical Report TR-01-0032, University of California, Los
Angeles, Computer Science Department, 2001.
[25] J. Zhao, R. Govindan. Connectivity Study of a CSMA based Wireless
Network. Technical Report TR-02-774, USC/ISI, Los Angeles, CA, 2002.
[26] F. Zhao, J. Shin, and J. Reich. Information-Driven Dynamic Sensor
Collaboration for Tracking Applications. In IEEE Signal Processing
Magazine, 19(2):61-72, March 2002

