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Abstract – Reliable data transport in wireless sensor 
networks is a multifaceted problem influenced by the 
physical, MAC, network, and transport layers. Because 
sensor networks are subject to strict resource constraints 
and are deployed by single organizations, they encourage 
revisiting traditional layering and are less bound by 
standardized placement of services such as reliability. This 
paper presents analysis and experiments resulting in 
specific recommendations for implementing reliable data 
transport in sensor nets. To explore reliability at the 
transport layer, we present RMST (Reliable Multi-
Segment Transport), a new transport layer for Directed 
Diffusion. RMST provides guaranteed delivery and 
fragmentation/reassembly for applications that require 
them.  RMST is a selective NACK-based protocol that can 
be configured for in-network caching and repair. 
 
1  Introduction 
 
Wireless sensor networks provide an economical, fully 
distributed, sensing and computing solution for environments 
where conventional networks are impractical. This paper 
explores the design decisions related to providing reliable data 
transport in sensor nets. The reliable data transport problem in 
sensor nets is multi-faceted. The emphasis on energy 
conservation in sensor nets implies that poor paths should not 
be artificially bolstered via mechanisms such as MAC layer 
ARQ during route discovery and path selection [1]. Path 
maintenance, on the other hand, benefits from well-
engineered recovery either at the MAC layer or the transport 
layer, or both. Recovery should not be costly however, since 
many applications in sensor nets are impervious to occasional 
packet loss, relying on the regular delivery of coarse-grained 
event descriptions. Other applications require loss detection 
and repair.  These aspects of reliable data transport include the 
provision of guaranteed delivery and fragmentation/ 
reassembly of data entities larger than the network MTU. 
 
Sensor networks have different constraints than traditional 
wired nets.  First, energy constraints are paramount in sensor 
networks since nodes can often not be recharged, so any 
wasted energy shortens their useful lifetime [2]. 
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Second, these energy constraints, plus relatively low wireless 
bandwidths, make in-network processing both feasible and 
desirable [3]. Third, because nodes in sensor networks are 
usually collaborating towards a common task, rather than 
representing independent users, optimization of the shared 
network focuses on throughput rather than fairness. Finally, 
because sensor networks are often deployed by a single 
organization with inexpensive hardware, there is less need for 
interoperability with existing standards. For all of these 
reasons, sensor networks provide an environment that 
encourages rethinking the structure of traditional 
communications protocols. 
 
The main contribution is an evaluation of the placement of 
reliability for data transport at different levels of the protocol 
stack. We consider implementing reliability in the MAC, 
transport layer, application, and combinations of these. We 
conclude that reliability is important at the MAC layer and the 
transport layer. MAC-level reliability is important not just to 
provide hop-by-hop error recovery for the transport layer, but 
also because it is needed for route discovery and maintenance. 
(This conclusion differs from previous studies in reliability 
for sensor nets that did not simulate routing. [4]) Second, we 
have developed RMST (Reliable Multi-Segment Transport), a 
new transport layer, in order to understand the role of in-
network processing for reliable data transfer. RMST benefits 
from diffusion routing, adding minimal additional control 
traffic.  RMST guarantees delivery, even when multiple hops 
exhibit very high error rates.  
 
2  Architectural Choices 

 
There are a number of key areas to consider when engineering 
reliability for sensor nets. Many current sensor networks 
exhibit high loss rates compared to wired networks (2% to 
30% to immediate neighbors)[1,5,6]. While error detection 
and correction at the physical layer are important, approaches 
at the MAC layer and higher adapt well to the very wide 
range of loss rates seen in sensor networks and are the focus 
of this paper.  MAC layer protocols can ameliorate PHY layer 
unreliability, and transport layers can guarantee delivery.  An 
important question for this paper is the trade off between 
implementation of reliability at the MAC layer (i.e. hop to 
hop) vs. the Transport layer, which has traditionally been 
concerned with end-to-end reliability.   Because sensor net 
applications are distributed, we also considered implementing 
reliability at the application layer. Our goal is to minimize the 
cost of repair in terms of transmission. 
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2.1  MAC Layer Design Choices 
 
Link layer Automatic Repeat Request (ARQ) refers to the 
hop-to-hop recovery of frames that arrive with errors The 
primary design choice we investigated at the MAC layer was 
whether or not to employ link layer recovery via ARQ for 
packets.   The MAC layer used in our evaluations was 802.11 
[7]. The primary reliability mechanisms provided by 802.11 
are RTS/CTS, ACK, and randomized slot selection.  
RTS/CTS is the media access control packet exchange that 
guarantees that single transmitter will gain exclusive access to 
a shared transmission space.  The ACK packet is sent by the 
receiver upon receipt of a data packet to inform the 
transmitter when successful transmission has occurred.  This 
is a basic “stop-and-wait” ARQ mechanism where the 
transmitter times out and retransmits when an ACK does not 
arrive within a window of expectation. The 802.11 MAC does 
not employ RTS/CTS or ACK for multicast and broadcast 
transmissions due to ACK and CTS “implosion.” It does, 
however, attempt to reduce the probability of broadcast 
collision by randomly selecting a transmission slot once an 
idle media is sensed.  Clients of this MAC layer can choose to 
employ ARQ or not by selecting unicast or broadcast 
addresses.  We utilized three different modes when 
considering MAC layer ARQ: 
 
No ARQ: all transmissions are sent with a randomized send 
time and a broadcast MAC address.  Unicasting is 
accomplished by address screening at the routing (in our case 
diffusion) layer.  Such transmissions do not employ MAC 
layer reliability mechanisms such as RTS/CTS and ACK.  In 
this mode, reliability is completely deferred to the transport or 
application layer.  There are several possible benefits to this 
scheme.  Firstly, there is a significant amount of overhead 
over time connected with the exchange of RTS/CTS and ACK 
packets that is avoided.  Secondly, routing protocols like 
diffusion attempt to select high quality  (lower error rate) 
paths for data transmission.  The reliability mechanisms in 
802.11 can make poor paths mistakenly look reliable to higher 
layers. 

 
ARQ Always: all transmissions are sent via a stop-and-wait 
ARQ protocol with a single node address.  This transmission 
method utilizes RTS/CTS and ACK with retries to bolster 
perceived reliability.  When a node wishes to communicate 
with multiple neighbors, each neighbor must be sent a unicast 
packet. The number of ARQ retransmissions attempted before 
giving up is configurable.  This method also has certain 
benefits for sensor nets.  Packets that travel on the links 
identified in route discovery will be delivered with a high 
degree of reliability, despite the transient interference typical 
in a wireless domain. 
 
Selective ARQ: a combination of No ARQ and ARQ. In this 
scheme packets sent to single neighbors employ a stop-and-
wait ARQ mechanism.  Packets sent to multiple neighbors 
have no ARQ.  This method attempts to combine the benefits 

of both ARQ and No ARQ.  Data and control packets 
traveling on established paths are unicast, using ARQ to 
bolster reliability.  Packets used in route-discovery are 
broadcast to all neighbors without ARQ.  Poor paths are 
statistically not selected for reinforcement, and the route-
discovery procedure does not pay the overhead for reliability. 
 
2.2  Transport Layer Design Choices 
 
The transfer of data that is larger than the network MTU is a 
particularly difficult task in wireless communication and, 
more specifically in directed diffusion.  Although protocols 
such as 802.11 have fragmentation and reassembly facilities, 
there are limits on the size of an entity can be broken up, and 
guaranteed delivery is not provided [6,7].  A single missing 
fragment from a large binary object (such as executable code) 
may render the data entity useless; therefore, transport layer 
facilities are required.  Traditional transport layers, like TCP, 
assume that the primary cause of packet loss is congestion.  
As such, their focus is on congestion control. In sensor nets 
the primary problem is packet loss due to interference or low 
power.   
 
The design decisions examined by this paper for the transport 
layer are primarily concerned with the balance of hop-by-hop 
vs. end-to-end functionality.  Repair requests could be 
initiated by sinks (receiver end-points), or by in-network 
nodes on an established path.  Obviously the type of MAC 
that any transport layer runs over will have a profound effect 
on how well the transport layer performs.   This Section looks 
only at the transport layer.  
 
Two transport layer paradigms will be examined in this paper 
and employed in the evaluation of RMST. The two transport 
layer schemes are: 
 
End-to-End Selective Request NACK: The need for repair and 
the generation of repair requests takes place only at the sinks.  
Repair requests for specific missing fragments travel on a 
reverse reinforced path from sink to source, where the missing 
data is retransmitted. 
 
Hop-by-Hop Selective Request NACK and Repair from 
Cache: In this paradigm, each caching node on the reinforced 
path from source to sink caches the fragments that make up a 
larger data entity.  When such nodes sense a missing 
fragment, a repair request is sent to the next hop on the 
reverse reinforced path toward the source.  If the requested 
fragment is in the local cache, a response is sent.  If not, the 
NACK is forwarded to the next hop toward the source. 
 
2.3  Application Layer Design Choices 
 
Reliability can also be provided at the application layer. For 
sensors that automatically generate data periodically, a very 
simple reliability scheme is simply to wait for the next sensor 
reading [8]. This simple approach does not generalize to large 
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objects, however. Even moderate per-packet loss rates quickly 
make the odds of ever getting a complete object over multiple 
hops small. (We analyze this case in Section 5).    
 
Applications could handle both fragmentation/reassembly and 
end-to-end attempts at repair.  In our evaluation (Section 6) 
we included an application layer reliability scheme (End-to-
End Positive ACK) as a benchmark of what performance is 
achievable using standard diffusion for guaranteed delivery 
without the addition of a new transport layer. 
 
End-to-End Positive ACK: In this approach a sink requests to 
receive a large data entity, which is fragmented at the source.  
When all fragments have arrived at the sink, it deletes its 
request.  Sources send the entire set of fragments at pre-
calculated intervals (a posteriori RTT) until request is deleted. 
We use this “transportless” paradigm to gauge if the overhead 
introduced by a transport scheme brings marginal benefits in 
terms of energy usage.   
 
3  RMST Architecture 
 
RMST was designed to run in conjunction with directed 
diffusion.  In this Section we briefly review directed 
diffusion, give an overview of RMST, and then describe the 
protocol in some detail. 
 
3.1  Diffusion Architecture Review 
 
Directed diffusion [9,10] provides multipoint-to-multipoint 
communication for sensor nets much like traditional 
multicasting does so for wired nets.  Sensitivity to energy 
conservation, data-centric routing, and the limitation of traffic 
volume via in-network processing are examples of some 
motivations that helped shape directed diffusion. 
 
In diffusion, a sink subscribes to an interest that names a 
particular type and source of data.  The naming of data is 
accomplished via attribute-value pairs. For example, an 
interest in counting how many people pass through a 
particular geographic region could be injected into an 
arbitrary node in a sensor net (typically an access point).  
Sensor node applications that have data available publish the 
fact, alerting the local diffusion code to look for matching 
interests. The sensors whose publications match a given 
interest, and the collection of sinks that expressed that 
interest, constitute a group that will eventually be connected 
by a distribution tree. 
 
An interest is propagated from a sink toward a source.  If 
geographic information is available, sources can be targeted 
geographically [11]. Each node that the interest passes 
through remembers the interest and which neighbors 
expressed it.  Such local information is called a gradient.  
Every unique interest has an associated set of gradients.  A 
source node sends data, when its publication matches a 
received interest.  Initial data sent by a source across the 

sensor net is marked exploratory and disseminated along the 
reverse paths of the gradients.  This amounts to a reverse-
gradient propagation of data emanating at the sources and 
traveling to the sinks. Once exploratory data is sent, a single 
optimal reinforced path is established from sources to sinks.  
The sink uses an application dependent heuristic to decide 
which arriving exploratory message represents an optimal 
choice for reinforcement.  Reinforcements travel from the 
sink back to the source creating a single reinforced path.   
When there are multiple sources or sinks, a distribution tree is 
formed.  Subsequent data emanating from sources is called 
reinforced data because it is unicast along the reinforced tree. 
 
Because wireless sensor nets are prone to rapidly changing 
conditions, such as the expiration of nodes or radio 
interference, sources periodically send out new exploratory 
messages to discover new routes that may be superior to the 
existing reinforced tree (old routes will be timed out). When a 
sink no longer wishes to express a certain interest, it 
unsubscribes that interest.  This will eventuate in the removal 
of gradients and reinforced path elements from the sensor net. 
 
Diffusion is built on a modular architecture that allows for 
great flexibility in adapting diffusion to specific applications.  
There is a diffusion core that communicates directly to the 
MAC layer below it and installable modules, called filters, 
above.  Much like streams modules that can be assembled to 
create a particular networking stack, filters are installed via 
core diffusion to influence routing or add arbitrary 
application-specific behavior to a sensor net.  The basic 
directed diffusion algorithm is implemented in the gradient 
filter.  One could think of the gradient filter as a networking 
layer pushed on top of the MAC layer.   Message traffic 
arriving at the core is passed to the highest priority filter.  
 
The RMST protocols presented in this paper were 
implemented as a filter.  One could consider RMST to be a 
transport layer pushed onto the diffusion stack, above the 
gradient filter (i.e. at a higher priority).  Figure 1 demonstrates 
the relationship of RMST to a basic diffusion node. 
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There is a strong resemblance in the above description to 
various forms of multicast delivery and routing.  Some 
important distinctions should be made however.  Perhaps the 
most interesting thing about diffusion is the extent to which it 
is “data-centric” [9,10].  The semantics of addressing, group 
management, and routing are entirely expressed by attribute-
based naming.  Rather than layering attribute-based naming 
on top of addressed-based routing, diffusion uses attribute 
vectors to dynamically establish routes on demand.  There are 
no membership reports exchanged in diffusion; rather, the 
movements of interests and data, are used to establish and 
repair distribution routes. Another distinction of diffusion is 
the degree to which it is distributed.  There is no concept of 
end-points and routers in diffusion.  Every node runs the same 
diffusion algorithm and participates equally in routing and 
data forwarding.  Sinks and sources are simply considered to 
be local agents.  When a local agent publishes, subscribes, or 
sends attribute vectors, the essential diffusion code in that 
node accepts the “traffic” in the same fashion that it would 
accept traffic from neighbors. 
 
3.2 RMST Overview 

 
The RMST protocol presented in this Section was 
implemented as a filter that could be attached to any diffusion 
node on an as needed basis without recompilation of the 
diffusion core or Gradient filter. The caching vs. non-caching 
mode was made configurable at run time.   
 
Reliability in RMST refers to the eventual delivery to all 
subscribing sinks of any and all fragments related to a unique 
RMST entity.  A unique RMST entity is a data set consisting 
of one or more fragments coming from the same source.  
Delivery order, which is not guaranteed, is transparent to the 
clients of RMST.  RMST does not include any real time 
guarantees. 
 
There are two distinct transport services that need to be added 
to diffusion: effective management of the fragmentation and 
reassembly of units based on application semantics, and 
guaranteed delivery. Although these requirements are 
orthogonal, many applications require both.  The division of a 
JPEG compressed image into “bands” that fit into the network 
MTU requires fragmentation/reassembly and guaranteed 
delivery to ensure reassembly.   
 
In RMST, receivers are responsible for detecting whether or 
not a fragment needs to be re-sent. The term “receiver” here, 
however, does not necessarily mean sink. In the non-caching 
mode, only sinks monitor the integrity of an RMST entity in 
terms of received fragments.  In caching mode, an RMST 
node collects fragments and is capable of initiating recovery 
for missing fragments to the next node along the path toward 
the source. 
 
There are two types of loss detected by a “receiver”:  a “hole” 
in a sequence of fragments, and a truncated sequence.  When 

a hole in a sequence of fragments is detected, the missing 
fragments should be specifically requested.  This amounts to a 
selective-request ARQ-based behavior.  The truncation of a 
sequence is really a special case of a hole, sensed by the 
receiver via a timeout geared to the expected receipt time of 
the next fragment.  In our experiments we used timers set on 
our understanding of the network configuration, but we are 
exploring self-adaptive timers. 
 
When a node fails, the normal behavior of Diffusion is to 
reestablish a new set of data gradients via an exploratory 
interest.  To this extent sensor networks are self-repairing.  
RMST benefits from the underlying diffusion behavior related 
to failed nodes.  Unlike PGM which must gather and maintain 
path state, or RMTP and SRM which watch and possibly 
generate message traffic to make decisions related to node 
failure, RMST can rely on the mechanisms in diffusion that 
guarantee the eventual discovery of a path from source to 
sink. 
 
In caching mode, the caching of fragments along reinforced 
paths is used to limit power loss due to end-to-end 
retransmission. In non-caching mode, the underlying MAC 
layer is exploited to limit the transport layer overhead.  It is 
precisely this tradeoff that is explored in the experiments. 
 
3.3 RMST Basic Services 
 
Unique identification in sensor networks is data-centric, 
therefore the transport layer must be able to recognize several 
new attributes added to support reliable traffic.  An 
unfragmented data entity must have an application specific 
attribute (RmstNo) or set of attributes that serves to 
distinguish a particular reliable flow of data from source to 
sinks. In applications where complete disambiguation is 
difficult, a random ephemeral ID can be generated at the 
source [12].  Each fragment that makes up a fragmented data 
entity must also contain a sequential fragment id (FragNo).  
The total number of fragments that make up a data entity must 
be known (MaxFrag).  There is a single control message 
generated by RMST, the NACK, which must be defined by an 
attribute. 
 
3.4 RMST Support for Loss Detection and Repair 
 
Loss detection is primarily timer driven. Where loss detection 
occurs depends on whether a node is configured for caching 
or non-caching mode.  In non-caching mode, only sinks set 
timers to detect loss.  In caching mode, each caching node on 
the reinforced path from source to sink detects loss.  The basic 
mechanism for loss detection is a watchdog timer.  A 
watchdog timer is instantiated for each new flow (RmstNo) 
that is added to a caching node’s RMST database.  The timer 
handler inspects the hole map and sends a NACK for any 
holes that have aged for too long. Multiple hole numbers are 
aggregated into a single NACK to conserve on control traffic.  
The maximum wait time heuristic could be dynamically 
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adjusted. We plan to explore adaptive timers. Caching at the 
sinks makes delivery order unimportant, and allows for wide 
latitude in the relationship between the watchdog timer 
interval and the source send rate.  When the watchdog interval 
is significantly slower than the send rate, the cache size must 
increase to retain more incomplete sets of fragments.  Setting 
the watchdog timer faster than the send rate, minimizes the 
required cache size, but increases NACK traffic. 
 
The only control message added to normal diffusion by 
RMST is the NACK.  NACKs are unicast in the reverse 
direction along the reinforced path from source to sink. When 
the RMST filter gets a cache hit for a NACKed fragment, it 
unicasts that fragment to the requesting neighbor.  When an 
RMST filter intercepts a NACK, and it cannot find the 
missing fragment in its local cache (or it’s not in caching 
mode), it forwards the NACK on the reinforced path toward 
the source.  In caching mode, the natural progression of traffic 
from source to sink, causes holes to be sensed sooner 
upstream, thus making NACK forwarding an unlikely event. 
 
3.5 The back-channel 
  
This particular implementation detail is a key enabler of 
efficiency in RMST.  The reinforced paths that diffusion 
constructs for control and data are unidirectional, from source 
to sink.  RMST needs a back-channel in order to deliver 
NAKs to upstream neighbors.  RMST filters snoop at the last 
hops of reinforcement messages in order to construct reverse 
reinforced paths (in a distributed fashion).  The creation of the 
back-channel is “free of charge” in that no additional 
transmissions or control data traffic are needed to create it.  
There is a back-channel associated with every flow. The back-
channel is maintained in both caching and non-caching 
modes. 
 
3.6  Node Failure 
 
In the case of node failure a new reinforced path will be 
established by diffusion. Some nodes that weren’t on the 
original reinforced path may now reside on it.  The RMST 
filter automatically adapts to any such changes by creating a 
new back-channel that mirrors the new reinforced path.  In 
caching mode, an RMST node that suddenly finds itself on a 
reinforced path (mid-sequence) will begin caching from the 
first received fragment on. NACKs for earlier fragments will 
be forwarded on the back-channel toward the source. In 
effect, the RMST filter will transfer responsibility for back-
channel and caching maintenance to the new reinforced path.   
 
3.7 Support for Caching 
 
In caching mode, a node maintains a local cache of traffic in 
progress or recently transmitted.  In non-caching mode, only 
the sources and sinks maintain a cache.  The cache is indexed 
by the application specific flow id.  Each cache entry has an 
associated fragment map and hole map.  The fragment map 

contains the actual cached data indexed by the fragment Id.  
The hole map, used by the watchdog timer, is a list that 
contains missing or overdue fragments for a particular flow. 
Hole map entries contain a fragment id, a timestamp 
indicative of when a NACK for this fragment was sent, and a 
flag indicating whether or not a NACK is outstanding.  On 
receipt of a fragment a caching mode filter must identify 
missing or late fragments and add them to the hole map. 
Currently caching nodes accomplish cache flushing via a 
fixed timer, although we plan to switch to an LRU algorithm. 
 
4  Analysis of MAC Layer Retries 
 
Because one of our primary design decisions concerns the use 
of MAC layer ARQ, we analyze the effect that the number of 
retries attempted by a transmitter has on the resultant 
probability that a packet will arrive between end points.  If we 
define p as the probability of success for a single attempt 
across one hop, and R as the number of MAC-level attempts, 
the probability of success with MAC-level ARQ is: 
 

iR
ih ppp )(11

0 −⋅= ∑ −

=
                                                    (1) 

 
Which simplifies to the probability of not failing at all R tries: 

R
h pp )1(1 −−=                                                           (2) 

 
When considering H hops, the end-to-end probability of 
arrival is: 

h
H

e pp =                                                                     (3) 
 
Figure 1 graphs end-to-end arrival rates for different numbers 
of MAC-level retries. As can be seen in Figure 1, the use of at 
least 3 retries is vital to reliable data delivery in this scenario. 
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Figure 1:  Probability of arrival across 40 hops with an 
average error rate of .10 per hop, given R retries per hop. 
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Figure 2: Probability of arrival across 6 hops 

 
Because wireless nets have physical level error rates that can 
be relatively high compared to wired nets [5] we compare 
ARQ vs. non-ARQ MAC layers for a particular scenario. 
Figure 2 shows two data series plotting the probability that a 
packet will arrive at its final destination after traversing 6 
hops at the given error rate with the number of retries set to 
three. As Figure 2 demonstrates, the probability of arrival at 
the end point plummets with the error rate for the non-ARQ 
case, but remains quite high with ARQ set to three retries. 
 
5  Analysis of Transport Layer Hop-by-Hop  
                             vs. End-to-End 
 
In order to do a basic analysis of the benefits of hop-by-hop 
repair vs. end-to-end repair at the transport layer, we assume 
that the MAC layer provides a particular level of reliability 
expressed as a probability of success per link.  The intent is to 
examine transport layer efficiency given the success rate 
presented to it from lower layers. 
 
First we look at the cost of doing end-to-end repair without 
caching or intermediate transport layer repair. 
 
If a large data object is broken into M fragments and 
transmitted a single time from a source across H hops to a 
sink, the expected number of those fragments to arrive at the 
sink can be derived using the end-to-end probability from eq. 
3 as follows: 
 

mMm
e

M

m e ppmE HMf −−⋅⋅= ∑ =
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),(            (4) 

 
We would also like to know the expected number of hops that 
a failed packet will travel ( fh ).  (We need to adjust pe for each 
value of n). 
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Therefore the approximate cost in terms of link-wise fragment 
transmissions to accomplish one attempt to send M fragments 
(with an end-to-end transport layer) is: 
 

)]),([()]([)],([ HMfEMHfEHMfEH
h
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Using a small program we can calculate E[Tx(H,M)], the total 
number of link-wise transmissions required to get a set of M 
fragments across H hops. We apply equation 6 to get a 
transmission count, calculate the number of fragments 
expected not to make it using equation 4, and recursively call 
on the remainder to be sent (accumulating the count). 
 
If we are caching data at each node and doing transport layer 
recovery on a per-hop, the expected number of retries to move 
a fragment one hop is: 
 

1
1

)1(][ )( −∞

=
−⋅⋅= ∑ k

hk h ppkE Kr                             (7) 

 
For the caching case, the number of link-wise transmissions 
required to get a set of M fragments across H hops is: 
 

)]([)],([ KrENMMHTxE ⋅⋅=                                   (8) 
 
Importantly, E[Tx(H,M)] grows much faster with the non-
caching method as M and n increase.  For example, if we hold 
the probability for success at .9 we get the results accumulated 
in Table 1.   
 
What’s significant in this analysis is that we can look for a 
loss rate that might obviate the advantage of caching in the 
transport layer.  We have already demonstrated in the last 
section the dramatic improvement available by raising the 
retry count for MAC layer ARQ.  If we hold the number of 
fragments and hop count constant and vary the probability for 
success we get curves such as in Figure 3. The loss rate 
presented to the transport layer by the MAC layer needs to get 
below one percent for the advantages of caching and hop-by-
hop repair to be marginalized.  Without MAC layer ARQ, 
physical layer loss rates would need to be below one percent. 
Such low loss rates are common in wired nets, but atypical in 
wireless [1,5,6].   
 
 

# Fragments 5 Hops 10 Hops 
5 27.77 / 42.33 55.55 / 143.39 

10 55.55 / 84.67 111.11 / 286.79 

20 111.11 / 169.35 222.22 / 573.59 
Table 1: Number of total transmissions required to send M 

fragments across N hops (with cache/without cache) 
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 Figure 3: Number of transmissions required to send 10 fragments 
across 10 hops. Hop-by-hop vs. End-to-End repair. 

 
 

6  Evaluation of RMST 
 
Sections 4 and 5 presented simple analysis of reliability at the 
MAC and transport levels. We next present the simulation 
studies of our RMST implementation to evaluate the 
interaction of reliability at different layers.  The analysis 
suggests the importance of hop-by-hop recovery, but it could 
reside at the MAC or transport layer (or both).  The 
experiments were run in ns-2 [13] using an 802.11 MAC layer 
and directed diffusion attached to wireless nodes.  The 802.11 
MAC uses non-ARQ for broadcast packets and ARQ for 
unicast packets. Diffusion is capable of delivering unicast 
messages over a broadcast MAC. It does so by embedding its 
own unique node addresses in packets.  Therefore non-ARQ 
MAC unicasting was achieved by broadcasting at the 
network-layer, but doing unicast address resolution in 
diffusion.  
 
Parameters that could be altered in the experiments include: 
 
Error Rate: This refers to the physical layer lost packet rate. 
In ns-2, errors at the physical layer can be injected by 
attaching an “error model” to each node.   Three error rates 
were used in initial experiments: 0%, 1%, and 10%.  Several 
experiments were also done at the elevated error rates of 20% 
and 30%. 
 
Hop Count: The number of hops required to traverse a 
rectangular grid of nodes from source to sink.  Because 
diffusion is a route discovery protocol, this can vary slightly 
in simulation or the real world. 
 
Number of Retries: This parameter applies to MAC layer 
ARQ count. It is the number of MAC layer retries attempted 
before abandoning a transmission. 
 
Size of Blob: The number of bytes to be transmitted from 
source to sink as a series of fragments. 
 

 

Source

Sink  
 

Figure 4 
Layout of test grid showing radius of central node, 

reinforced path from source to sink and back-channel 
 

Because of the potentially large number of experiments that 
can be performed in this multi-dimensional problem space, 
three of the variables were held constant: Hop Count (6 hops, 
21 nodes), retries (4), size of blob (5k). The simulations 
employed a grid with equidistant nodes that could only 
communicate with “immediate” neighbors (for example, the 
central node in Figure 4 sees eight neighbors).  The source 
was placed in the upper-right position of the grid and the sink 
was placed in the lower-left position. We selected this simple 
topology for ease of evaluation and comparison to the 
analysis. We are currently implementing RMST in a sensor 
node testbed and plan to evaluate realistic topologies there.  
 
The simulation logs were enhanced to count every byte 
transmitted, including CTS/RTS and ACK bytes when ARQ 
was used.  The 5KB blob was broken into 50 100-byte 
fragments that were transferred from source to sink across the 
grid.  The transmission byte totals included the control 
messages used by diffusion to propagate the interest, reinforce 
a gradient, and maintain the interest and gradients over time. 
  
We normalized all results to the cost of sending the messages 
without ARQ or transport layer overhead, i.e. 87,818 bytes. 
The idealized byte count was measured by sending the entire 
set of 50 fragments with zero errors, no MAC level ARQ and 
no transport scheme.  The count includes the ongoing 
message traffic exchanged by diffusion to propagate interests, 
establish and reinforce routes, and otherwise maintain state.  It 
also includes per packet overhead including headers and 
trailers. This provided a baseline of the best that could be 
achieved with no reliability overhead. Experiments in which 
individual simulations exhibited a low variation were repeated 
10 times to calculate an average.  Experiments with error rates 
higher than 10% were repeated 20 times. 
 
6.1  Baseline End-to-End Positive ACK 

 
This experiment was run to establish a baseline of what is 
achievable with standard diffusion without the addition of a 
transport layer.  The entire set of fragments was sent at 
regular intervals until the sink unsubscribed.  The results are 
summarized in Table 2. 
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PHY Error 
Rate 

No ARQ ARQ 
All 

Selective 
ARQ 

0 .93 (.07) .57 (.03) .65 (.03) 

.01 .51 (.04) .56 (.03) .61 (.05) 

.10 .21 (.05) .47 (.09) .54 (.06) 

Table 2: End-to-End Positive ACK 
Normalized byte transmissions required for diffusion to 

transfer 50 fragments of 100 bytes across 6 hops 
without any transport layer 

 
Not surprisingly, with no physical layer errors the overhead 
associated with sending CTS/RTS and ACK frames is made 
apparent in the first row.  Using ARQ, even selectively, adds 
significant overhead. The two right columns demonstrate that 
using Selective ARQ is consistently about 7% more efficient 
than using ARQ for every packet.  Selective ARQ is attractive 
from another aspect in that route discovery packets do not 
have their reliability boosted at the MAC layer. This allows 
the network layer  (diffusion) to make better decisions about 
what routes are best.  The results in the No ARQ column 
plummet with increased error rate.  This is a direct result of 
the exponential decay of reliability demonstrated in Figure 2.  
Clearly, when average error rates are high, using ARQ at the 
MAC layer, when there is no transport layer, is extremely 
beneficial.   
 
6.2  RMST with Hop-by-Hop Recovery and Caching 
 
In this experiment we ran the RMST filter in caching mode at 
every node in the grid with in-network NACKing.  Results are 
summarized in Table 3.  
 
There are two significant results in this experiment. 
Comparing the columns for ARQ and Selective ARQ from 
this experiment with the results of the first experiment, we see 
very slight improvement in all cases.  This would seem to 
suggest that transport layer hop-by-hop recovery adds little to 
the reliability available from a robust MAC layer.  At the 
same time, if we focus on No ARQ at the 10% error rate, we 
see the other interesting result. Using hop-by-hop recovery at 
the transport layer instead of the MAC layer was 15% more 
efficient than Selective ARQ at the same error rate.    

 
PHY Error 
Rate 

No ARQ ARQ 
All 

Selective 
ARQ 

0 .99 (.05) .60 (.06) .68 (.06) 

.01 .95 (.06) .57 (.06) .67 (.07)  

.10 .76 (.07) .48 (.07) .61 (.07) 

Table 3: Hop-by-Hop Selective NACK and Caching 
Normalized byte transmissions required for diffusion to 

transfer 50 fragments of 100 bytes across 6 hops 
with hop-by-hop caching and repair 

 

This result would make it appear that doing hop-by-hop 
recovery at the transport layer is preferable to doing it at the 
MAC layer, where reliability overhead is paid for each and 
every unicast packet.   Log analysis for this case showed that 
many more Exploratory packets were sent before a reinforced 
path between source and sink was established.  Nonetheless, 
once a path was established, the hop-by-hop recovery at the 
transport layer was extremely efficient (with no ARQ 
overhead).   
 
The No ARQ result (at 10%) is somewhat specious in light of 
the exponential decay of arrival probability as the hop count 
or error rate increase. Transient error rates in excess of 10% 
and paths longer than 6 hops are not uncommon in sensor nets 
[1].  Non-transport-layer messages used in path reinforcement 
must be propagated from sink to source.  If the probability of 
arrival decays beyond a certain point, basic diffusion has a 
difficult time maintaining routes.  A fourth experiment (see 
below) was instantiated because of this partial result. 
 
6.3  RMST with End-to-End Recovery 
 
This experiment was run with the RMST filters in non-
caching mode.  The only in-network recovery was when the 
MAC layer was configured to use ARQ or Selective ARQ.  
Transport layer recovery was accomplished end-to-end via 
NACKs sent along the back-channel from sink to source.  
This is similar to traditional transport recovery in wired 
networks. Results are presented in Table 4.   
 
There are two important observations to be made about these 
results.  On top of the No ARQ MAC, at the 10% error rate, 
the simulation did not terminate within the 600 seconds 
allotted.  Log analysis showed that there were numerous holes 
that required NACKs, which had a difficult time making it 
from sink to source. This result was not surprising.  It simply 
means that some sort of hop-by-hop recovery is required 
either at the MAC or transport layer in order to implement 
guaranteed delivery.  There was another important result.  If 
you compare the two columns for ARQ and Selective ARQ 
with those of the previous experiment, you will see virtually 
no change in efficiency.  Comparative log analysis revealed 
that MAC layer ARQ or Selective ARQ made NACKs so rare 
that hop-by-hop vs. end-to-end NACKing at the transport 
layer had little difference in performance.   
 

PHY Error 
Rate 

No ARQ ARQ 
All 

Selective 
ARQ 

0 1.0 (.05) .61 (.08) .67 (.07) 

.01 .90 (.06) .60 (.10) .66 (.07) 

.10 n/c .49 (.09) .61 (.07) 
Table 4: End-to-End Selective NACK 

Total byte transmissions required for diffusion to transfer 50 
fragments of 100 bytes across 6 hops with end-to-end repair. 
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PHY 
Error 
Rate 

Hop by Hop 
RMST 
NoARQ 

Hop by Hop 
RMST  
Sel ARQ 

End to End 
RMST  
Sel ARQ 

.20 .48 (.19)* .40 (.18) .40 (.17) 

.30 n/c .24 (.23) .27 (.25)  
Table 5:  High Error Rate Test 

Total byte transmissions required for diffusion to 
transfer 50 fragments of 100 bytes across 6 hops 

with high error rates. 
 
6.4  Performance under High Error Rates 
 
The purpose of this experiment was to further examine the 
partial results of the three previous experiments on selected 
combinations of MAC and transport layer.  In sensor nets, 
correlated losses due to interference can exhibit transient error 
rates that are quite high [1]. This experiment was performed 
on selected schemes that had performed best at the 10% error 
rate.  From the schemes that employed MAC layer ARQ, we 
chose those that used selective ARQ. The non-ARQ scheme, 
which previously outperformed all others, was RMST in 
caching mode over a MAC with no ARQ.  Results are 
summarized in Table 5. 
 
We see from the No ARQ column that transport layer hop-by-
hop recovery without MAC layer ARQ broke down 
somewhere between .20 and .30 error rate.  Log analysis 
showed that standard control messages used by diffusion to 
reinforce and maintain paths rarely succeeded in establishing 
any viable routes.  At .20 error rate (see asterisk in Table), the 
efficiency rating is misleading.  Log analysis showed that an 
inordinate amount of time (on the order of minutes) was spent 
establishing a viable route.  Such delays would be considered 
unacceptable in a real test bed. 
 
Notice that RMST running over Selective ARQ had very 
similar efficiency in both caching (hop-by-hop) and non-
caching (end-to-end) mode.  There are several additional 
considerations that need to be pointed out in this regard.  
When dealing with multiple sinks or applications that require 
localized in-network processing, experiments with NACK-
based multicast reliability protocols, like SRM [14] and PGM 
[15], have demonstrated an advantage to caching at 
strategically selected nodes. 
 
7  Related Work 
 
There are several areas that we looked to for related work: ad-
hoc sensor networks, TCP over wireless nets, and multicast 
transport schemes.   
 
7.1 Sensor Nets 
 
Much of the existing work related to reliability in sensor 
networks deals with route discovery and maintenance, and not 
reliable data transport.  Mobile ad-hoc networks employ a 

variety of routing protocols concerned with finding high 
quality paths.  For example Signal Stability Adaptive Routing 
(SSA) [16] attempts to differentiate high quality routes by 
monitoring signal strength.  DSR [17] discovers new routes 
via flooding, usually accomplished by broadcasting without 
ARQ.  Higher quality routes are statistically selected more 
often.  
 
TAG [18] is a tree-based aggregation and routing system for 
ad-hoc sensor nets. The identification of “capable neighbors” 
is a major concern in TAG, relying on a scheme in which 
nodes monitor the quality of the links with their parents.  
When a node sees that the quality (loss rate) to a parent is 
“significantly worse” than that of another potential parent, the 
node “re-parents” to improve on the probability of loss.  This 
is very similar to the occasional transmission of exploratory 
messages in diffusion to discover better paths.  Another 
device investigated by TAG was the use of in-network 
caching.  Caching in TAG deals with remembering the “state” 
of children (in terms of values used in aggregation) rather 
than providing repair for specific packets (TAG does not 
guarantee reliable data transport).  It nonetheless demonstrates 
that caching can ameliorate the elevated loss in sensor nets. 
 
PSFQ (Pump Slowly Fetch Quickly) [4] is a transport layer 
paradigm for sensor nets that is very close to our work. It is 
characterized by hop-by-hop error recovery, repair requests 
via NACKs that are delivered at a rate faster than the source 
transmission rate, and in-network caching. PSFQ is assumed 
to run over a non-ARQ MAC layer.  Two important results of 
their work are that end-to-end recovery is not appropriate for 
sensor networks, and that recovery is best accomplished at the 
transport layer. The failure of purely end-to-end recovery is 
consistent with our analysis and simulation results. 
 
We differ with their suggestion that ARQ is best provided at 
the transport layer instead of the MAC. If data transport were 
the only service in a sensor network benefiting from ARQ, 
then it would make sense to push ARQ as high up the stack as 
possible.  However, our simulations of diffusion found that 
lack of reliable routing prevented operation entirely at high 
error rates (more than 30% for 6 hops). The PSFQ study did 
not observe this problem because they considered an 
idealized, “omniscient” multicast in simulation that 
implemented routing out of band. Ignoring the problem of 
route establishment, our results agree with theirs that hop-by-
hop transport layer caching improves performance, not just at 
very high error rates (the 30-70% they observe), but also at 
rates as low as 10%.  Our different conclusions are based on 
the assumption that it is possible to provide an energy 
efficient MAC layer with ARQ. We agree that the RTS/CTS 
mechanism in 802.11’s ad hoc mode is too energy expensive 
for long-term operation since it requires continuous listening; 
we look to recent work in energy–conserving ARQ schemes 
to reduce this cost [19]. 
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7.2  TCP Over Wireless 
 
The extension of TCP into heterogeneous networks that 
includes wireless links has yielded a number of interesting 
observations about the nature of reliability in wireless 
networks. The most obvious problem addressed by these 
investigations is that TCP assumes the primary cause of 
packet loss to be congestion rather than lossy links. When this 
is not the case, as in wireless, TCP behaves poorly [20,21].   
Some solutions assume that hop-by-hop reliability is provided 
by a link layer that does any number of retries required to 
ultimately move a packet forward [22].  Such assumptions 
may not be completely relevant in sensor nets where the cost 
of link layer retries and the occurrence of failing nodes for 
packets must be taken into account.   The SACK (Selective 
ACK) [23] and SMART [20] are attempts to refine the coarse 
granularity of TCP’s cumulative ACK. Research into TCP 
aware link layers includes doing link repair at a rate faster 
than the TCP timeouts and Explicit Loss Notification [20], 
which allows non-congestion-related losses (i.e. packets 
dropped by the link layer) to be identified so that 
retransmissions may be performed without invoking 
congestion-control. The Snoop Protocol [20] places a snoop 
agent in a base station. Snoop agents cache packets from 
senders, and watch for duplicate acknowledgments from 
receivers. They provide somewhat localized repair and shield 
senders from doing congestion control for wireless losses.  
Nonetheless, because snoop agents only reside in base 
stations they are not generally applicable to distributed multi-
hop sensor networks. 
 
7.3  Multicast Transport Layers 
 
IP-based multicast delivery systems generally assume that 
packet loss is inevitable.  Information from a particular source 
is carried a single time on each link, only registered group 
members reside on the distribution tree, and routing is 
maintained by adaptive protocols such as DVMRP [24] and 
PIM [25].  These efficiencies were introduced because of 
difficulties encountered when using traditional unicast 
methods to support distributed applications, such as the 
multicasting of real-time multimedia information. Three 
multicast protocols which each represent a different class of 
reliability solutions are: RMTP, SRM, and PGM. 
 
Reliable Multicast Transport Protocol [26] is an ACK-based 
protocol that avoids the well-known ACK implosion problem 
via a hierarchy of special in-network nodes called designated 
receivers (DRs).  DRs receive ACKs from multiple down 
stream nodes and send ACKs to a single upstream DR or 
sender. They also do in-network caching of data to satisfy any 
subset of downstream nodes that are missing a data fragment.  
Several ideas from RMTP would appear to map well to the 
distributed nature of sensor nets.  One could think of DRs as 
both virtual senders and virtual receivers.   Immediate 
downstream nodes cannot distinguish between a DR and a 
real sender.  Upstream nodes are not aware if they are sending 

to a small set of actual receivers or a set of DRs.  This sort of 
anonymity and distributed responsibility is built into directed 
diffusion [9,11]. 
 
The Scalable Reliable Multicast protocol, SRM [14], 
guarantees eventual delivery of sequenced data to all 
multicast group members, albeit not delivery order. ACK 
implosion avoidance is accomplished via NACKs, which are 
multicast by receivers when discontinuities in sequence 
numbers are perceived.  Because NACKs are multicast, any 
receiver that has cached the data in question can restore the 
missing fragment. An appealing aspect of SRM and other 
NACK-based protocols is the “on-demand” nature of repair 
requests.  A negative aspect of RMTP for sensor nets, 
however, is the routine stream of control traffic generated 
regardless of loss rate.  A problem with both SRM and 
RMTP, in terms of porting sensor nets, is the strict reliance on 
RTT, which can exhibit a larger variance in wireless. 
 
PGM, Pragmatic General Multicast [15], is a commercially 
evolved multicast reliability standard. It relies heavily on in-
network processing via “PGM-aware” routers.  It is a NACK-
based scheme. NACK implosion is controlled in several ways. 
When a receiver recognizes a skipped sequence number, it 
sets a random timer and listens for any restorations of the 
same packet.  PGM routers also “fuse” NACKs by not 
forwarding duplicate NACKs upstream.  PGM allows for in-
network caching via “designated local repairers” (DLR).  
Several ideas in PGM would appear to translate well into 
sensor net transport schemes. PGM’s reverse path routing 
from receivers to sinks and the path repair mechanism bears 
some resemblance to directed diffusion’s path reinforcement 
and repair paradigm.  The in-network caching by path-aware 
DLRs aligns well with the distributed nature of sensor net 
routing algorithms.  Nonetheless, the proliferation of control 
packets in PGM and sheer volume of implementation details 
render a straight port sensor nets impractical.  
 
8  Future Work 
 
We consider it especially important to try RMST in an actual 
sensor network. At the time of this writing we have begun 
initial testing in the ISI testbed. Preliminary results have 
demonstrated the basic operability of Rmst; nonetheless, we 
have identified several areas that need to be addressed as part 
of real-world deployment. First, we observed that incorrectly 
short timeouts can cause excessive NACK traffic (similar to 
congestion collapse [27]). We plan to automatically tune 
timing. Second, we have observed interactions between 
reliable and unreliable links, where the resultant selection of 
bad paths causes high loss (as observed previously [10]). We 
are exploring ways to address this problem. 
 
The ability of RMST to dynamically configure itself for 
caching constitutes important future work that will provide a 
valuable resource for diffusion clients that rely on in-network 
processing.   
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9  Conclusions 
 
We contend that the best implementation for reliability in 
distributed sensor network architectures involves both the 
transport and MAC layers.  It is beneficial to employ MAC 
level ARQ for control and data packets that are unicast on the 
paths selected for data transfer. Route discovery packets 
should be broadcast without any MAC layer reliability 
mechanism.  The periodic discovery of best routes should 
reflect the statistical probability of arrival. The selective use 
of ARQ is available for sensor networks via an energy aware 
MAC layer such as S-MAC [19]. In order to support 
guaranteed delivery in sensor nets, which can demonstrate 
high error rates, a NACK based transport layer running over a 
selective-ARQ MAC layer is an appropriate solution.  We 
conclude that RMST constitutes a good basis for expanding 
the application domain of directed diffusion   into areas 
requiring guaranteed delivery and fragmentation/reassembly. 
It does so in a fashion that leverages the strengths of diffusion 
yet minimizes the amount of extra overhead required to 
support itself. The principles applied in creating RMST are 
applicable to other sensor network routing protocols. 
Applications that require in-network processing or have large 
numbers of sinks will benefit from the capability of RMST to 
be dynamically configured for caching. 
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