
Appearing in 1st IEEE International Workshop on Sensor Net Protocols and Applications (SNPA).
Anchorage, Alaska, USA. May 11, 2003.

1

RMST: Reliable Data Transport in Sensor Networks 1

Fred Stann, John Heidemann

Abstract – Reliable data transport in wireless sensor
networks is a multifaceted problem influenced by the
physical, MAC, network, and transport layers. Because
sensor networks are subject to strict resource constraints
and are deployed by single organizations, they encourage
revisiting traditional layering and are less bound by
standardized placement of services such as reliability. This
paper presents analysis and experiments resulting in
specific recommendations for implementing reliable data
transport in sensor nets. To explore reliability at the
transport layer, we present RMST (Reliable Multi-
Segment Transport), a new transport layer for Directed
Diffusion. RMST provides guaranteed delivery and
fragmentation/reassembly for applications that require
them. RMST is a selective NACK-based protocol that can
be configured for in-network caching and repair.

1 Introduction

Wireless sensor networks provide an economical, fully
distributed, sensing and computing solution for environments
where conventional networks are impractical. This paper
explores the design decisions related to providing reliable data
transport in sensor nets. The reliable data transport problem in
sensor nets is multi-faceted. The emphasis on energy
conservation in sensor nets implies that poor paths should not
be artificially bolstered via mechanisms such as MAC layer
ARQ during route discovery and path selection [1]. Path
maintenance, on the other hand, benefits from well-
engineered recovery either at the MAC layer or the transport
layer, or both. Recovery should not be costly however, since
many applications in sensor nets are impervious to occasional
packet loss, relying on the regular delivery of coarse-grained
event descriptions. Other applications require loss detection
and repair. These aspects of reliable data transport include the
provision of guaranteed delivery and fragmentation/
reassembly of data entities larger than the network MTU.

Sensor networks have different constraints than traditional
wired nets. First, energy constraints are paramount in sensor
networks since nodes can often not be recharged, so any
wasted energy shortens their useful lifetime [2].

This work was supported by DARPA under grant DABT63-99-1-0011 as part
of the SCAADS project, and was also made possible in part due to support
from Intel Corporation and Xerox Corporation.
Fred Stann and John Heidemann are with USC/Information Sciences
Institute, 4676 Admiralty Way, Marina Del Rey, CA, USA
E-mail: fstann@usc.edu, johnh@isi.edu.

Second, these energy constraints, plus relatively low wireless
bandwidths, make in-network processing both feasible and
desirable [3]. Third, because nodes in sensor networks are
usually collaborating towards a common task, rather than
representing independent users, optimization of the shared
network focuses on throughput rather than fairness. Finally,
because sensor networks are often deployed by a single
organization with inexpensive hardware, there is less need for
interoperability with existing standards. For all of these
reasons, sensor networks provide an environment that
encourages rethinking the structure of traditional
communications protocols.

The main contribution is an evaluation of the placement of
reliability for data transport at different levels of the protocol
stack. We consider implementing reliability in the MAC,
transport layer, application, and combinations of these. We
conclude that reliability is important at the MAC layer and the
transport layer. MAC-level reliability is important not just to
provide hop-by-hop error recovery for the transport layer, but
also because it is needed for route discovery and maintenance.
(This conclusion differs from previous studies in reliability
for sensor nets that did not simulate routing. [4]) Second, we
have developed RMST (Reliable Multi-Segment Transport), a
new transport layer, in order to understand the role of in-
network processing for reliable data transfer. RMST benefits
from diffusion routing, adding minimal additional control
traffic. RMST guarantees delivery, even when multiple hops
exhibit very high error rates.

2 Architectural Choices

There are a number of key areas to consider when engineering
reliability for sensor nets. Many current sensor networks
exhibit high loss rates compared to wired networks (2% to
30% to immediate neighbors)[1,5,6]. While error detection
and correction at the physical layer are important, approaches
at the MAC layer and higher adapt well to the very wide
range of loss rates seen in sensor networks and are the focus
of this paper. MAC layer protocols can ameliorate PHY layer
unreliability, and transport layers can guarantee delivery. An
important question for this paper is the trade off between
implementation of reliability at the MAC layer (i.e. hop to
hop) vs. the Transport layer, which has traditionally been
concerned with end-to-end reliability. Because sensor net
applications are distributed, we also considered implementing
reliability at the application layer. Our goal is to minimize the
cost of repair in terms of transmission.

 2

2.1 MAC Layer Design Choices

Link layer Automatic Repeat Request (ARQ) refers to the
hop-to-hop recovery of frames that arrive with errors The
primary design choice we investigated at the MAC layer was
whether or not to employ link layer recovery via ARQ for
packets. The MAC layer used in our evaluations was 802.11
[7]. The primary reliability mechanisms provided by 802.11
are RTS/CTS, ACK, and randomized slot selection.
RTS/CTS is the media access control packet exchange that
guarantees that single transmitter will gain exclusive access to
a shared transmission space. The ACK packet is sent by the
receiver upon receipt of a data packet to inform the
transmitter when successful transmission has occurred. This
is a basic “stop-and-wait” ARQ mechanism where the
transmitter times out and retransmits when an ACK does not
arrive within a window of expectation. The 802.11 MAC does
not employ RTS/CTS or ACK for multicast and broadcast
transmissions due to ACK and CTS “implosion.” It does,
however, attempt to reduce the probability of broadcast
collision by randomly selecting a transmission slot once an
idle media is sensed. Clients of this MAC layer can choose to
employ ARQ or not by selecting unicast or broadcast
addresses. We utilized three different modes when
considering MAC layer ARQ:

No ARQ: all transmissions are sent with a randomized send
time and a broadcast MAC address. Unicasting is
accomplished by address screening at the routing (in our case
diffusion) layer. Such transmissions do not employ MAC
layer reliability mechanisms such as RTS/CTS and ACK. In
this mode, reliability is completely deferred to the transport or
application layer. There are several possible benefits to this
scheme. Firstly, there is a significant amount of overhead
over time connected with the exchange of RTS/CTS and ACK
packets that is avoided. Secondly, routing protocols like
diffusion attempt to select high quality (lower error rate)
paths for data transmission. The reliability mechanisms in
802.11 can make poor paths mistakenly look reliable to higher
layers.

ARQ Always: all transmissions are sent via a stop-and-wait
ARQ protocol with a single node address. This transmission
method utilizes RTS/CTS and ACK with retries to bolster
perceived reliability. When a node wishes to communicate
with multiple neighbors, each neighbor must be sent a unicast
packet. The number of ARQ retransmissions attempted before
giving up is configurable. This method also has certain
benefits for sensor nets. Packets that travel on the links
identified in route discovery will be delivered with a high
degree of reliability, despite the transient interference typical
in a wireless domain.

Selective ARQ: a combination of No ARQ and ARQ. In this
scheme packets sent to single neighbors employ a stop-and-
wait ARQ mechanism. Packets sent to multiple neighbors
have no ARQ. This method attempts to combine the benefits

of both ARQ and No ARQ. Data and control packets
traveling on established paths are unicast, using ARQ to
bolster reliability. Packets used in route-discovery are
broadcast to all neighbors without ARQ. Poor paths are
statistically not selected for reinforcement, and the route-
discovery procedure does not pay the overhead for reliability.

2.2 Transport Layer Design Choices

The transfer of data that is larger than the network MTU is a
particularly difficult task in wireless communication and,
more specifically in directed diffusion. Although protocols
such as 802.11 have fragmentation and reassembly facilities,
there are limits on the size of an entity can be broken up, and
guaranteed delivery is not provided [6,7]. A single missing
fragment from a large binary object (such as executable code)
may render the data entity useless; therefore, transport layer
facilities are required. Traditional transport layers, like TCP,
assume that the primary cause of packet loss is congestion.
As such, their focus is on congestion control. In sensor nets
the primary problem is packet loss due to interference or low
power.

The design decisions examined by this paper for the transport
layer are primarily concerned with the balance of hop-by-hop
vs. end-to-end functionality. Repair requests could be
initiated by sinks (receiver end-points), or by in-network
nodes on an established path. Obviously the type of MAC
that any transport layer runs over will have a profound effect
on how well the transport layer performs. This Section looks
only at the transport layer.

Two transport layer paradigms will be examined in this paper
and employed in the evaluation of RMST. The two transport
layer schemes are:

End-to-End Selective Request NACK: The need for repair and
the generation of repair requests takes place only at the sinks.
Repair requests for specific missing fragments travel on a
reverse reinforced path from sink to source, where the missing
data is retransmitted.

Hop-by-Hop Selective Request NACK and Repair from
Cache: In this paradigm, each caching node on the reinforced
path from source to sink caches the fragments that make up a
larger data entity. When such nodes sense a missing
fragment, a repair request is sent to the next hop on the
reverse reinforced path toward the source. If the requested
fragment is in the local cache, a response is sent. If not, the
NACK is forwarded to the next hop toward the source.

2.3 Application Layer Design Choices

Reliability can also be provided at the application layer. For
sensors that automatically generate data periodically, a very
simple reliability scheme is simply to wait for the next sensor
reading [8]. This simple approach does not generalize to large

 3

objects, however. Even moderate per-packet loss rates quickly
make the odds of ever getting a complete object over multiple
hops small. (We analyze this case in Section 5).

Applications could handle both fragmentation/reassembly and
end-to-end attempts at repair. In our evaluation (Section 6)
we included an application layer reliability scheme (End-to-
End Positive ACK) as a benchmark of what performance is
achievable using standard diffusion for guaranteed delivery
without the addition of a new transport layer.

End-to-End Positive ACK: In this approach a sink requests to
receive a large data entity, which is fragmented at the source.
When all fragments have arrived at the sink, it deletes its
request. Sources send the entire set of fragments at pre-
calculated intervals (a posteriori RTT) until request is deleted.
We use this “transportless” paradigm to gauge if the overhead
introduced by a transport scheme brings marginal benefits in
terms of energy usage.

3 RMST Architecture

RMST was designed to run in conjunction with directed
diffusion. In this Section we briefly review directed
diffusion, give an overview of RMST, and then describe the
protocol in some detail.

3.1 Diffusion Architecture Review

Directed diffusion [9,10] provides multipoint-to-multipoint
communication for sensor nets much like traditional
multicasting does so for wired nets. Sensitivity to energy
conservation, data-centric routing, and the limitation of traffic
volume via in-network processing are examples of some
motivations that helped shape directed diffusion.

In diffusion, a sink subscribes to an interest that names a
particular type and source of data. The naming of data is
accomplished via attribute-value pairs. For example, an
interest in counting how many people pass through a
particular geographic region could be injected into an
arbitrary node in a sensor net (typically an access point).
Sensor node applications that have data available publish the
fact, alerting the local diffusion code to look for matching
interests. The sensors whose publications match a given
interest, and the collection of sinks that expressed that
interest, constitute a group that will eventually be connected
by a distribution tree.

An interest is propagated from a sink toward a source. If
geographic information is available, sources can be targeted
geographically [11]. Each node that the interest passes
through remembers the interest and which neighbors
expressed it. Such local information is called a gradient.
Every unique interest has an associated set of gradients. A
source node sends data, when its publication matches a
received interest. Initial data sent by a source across the

sensor net is marked exploratory and disseminated along the
reverse paths of the gradients. This amounts to a reverse-
gradient propagation of data emanating at the sources and
traveling to the sinks. Once exploratory data is sent, a single
optimal reinforced path is established from sources to sinks.
The sink uses an application dependent heuristic to decide
which arriving exploratory message represents an optimal
choice for reinforcement. Reinforcements travel from the
sink back to the source creating a single reinforced path.
When there are multiple sources or sinks, a distribution tree is
formed. Subsequent data emanating from sources is called
reinforced data because it is unicast along the reinforced tree.

Because wireless sensor nets are prone to rapidly changing
conditions, such as the expiration of nodes or radio
interference, sources periodically send out new exploratory
messages to discover new routes that may be superior to the
existing reinforced tree (old routes will be timed out). When a
sink no longer wishes to express a certain interest, it
unsubscribes that interest. This will eventuate in the removal
of gradients and reinforced path elements from the sensor net.

Diffusion is built on a modular architecture that allows for
great flexibility in adapting diffusion to specific applications.
There is a diffusion core that communicates directly to the
MAC layer below it and installable modules, called filters,
above. Much like streams modules that can be assembled to
create a particular networking stack, filters are installed via
core diffusion to influence routing or add arbitrary
application-specific behavior to a sensor net. The basic
directed diffusion algorithm is implemented in the gradient
filter. One could think of the gradient filter as a networking
layer pushed on top of the MAC layer. Message traffic
arriving at the core is passed to the highest priority filter.

The RMST protocols presented in this paper were
implemented as a filter. One could consider RMST to be a
transport layer pushed onto the diffusion stack, above the
gradient filter (i.e. at a higher priority). Figure 1 demonstrates
the relationship of RMST to a basic diffusion node.

Sink / Source

Diffusion Core

Diffusion API

NS-2 Node

Mac Layer

Application Layer

G
ra

di
en

t
Fi

lte
r

Figure 1

R
M

ST
Fi

lte
r

 4

There is a strong resemblance in the above description to
various forms of multicast delivery and routing. Some
important distinctions should be made however. Perhaps the
most interesting thing about diffusion is the extent to which it
is “data-centric” [9,10]. The semantics of addressing, group
management, and routing are entirely expressed by attribute-
based naming. Rather than layering attribute-based naming
on top of addressed-based routing, diffusion uses attribute
vectors to dynamically establish routes on demand. There are
no membership reports exchanged in diffusion; rather, the
movements of interests and data, are used to establish and
repair distribution routes. Another distinction of diffusion is
the degree to which it is distributed. There is no concept of
end-points and routers in diffusion. Every node runs the same
diffusion algorithm and participates equally in routing and
data forwarding. Sinks and sources are simply considered to
be local agents. When a local agent publishes, subscribes, or
sends attribute vectors, the essential diffusion code in that
node accepts the “traffic” in the same fashion that it would
accept traffic from neighbors.

3.2 RMST Overview

The RMST protocol presented in this Section was
implemented as a filter that could be attached to any diffusion
node on an as needed basis without recompilation of the
diffusion core or Gradient filter. The caching vs. non-caching
mode was made configurable at run time.

Reliability in RMST refers to the eventual delivery to all
subscribing sinks of any and all fragments related to a unique
RMST entity. A unique RMST entity is a data set consisting
of one or more fragments coming from the same source.
Delivery order, which is not guaranteed, is transparent to the
clients of RMST. RMST does not include any real time
guarantees.

There are two distinct transport services that need to be added
to diffusion: effective management of the fragmentation and
reassembly of units based on application semantics, and
guaranteed delivery. Although these requirements are
orthogonal, many applications require both. The division of a
JPEG compressed image into “bands” that fit into the network
MTU requires fragmentation/reassembly and guaranteed
delivery to ensure reassembly.

In RMST, receivers are responsible for detecting whether or
not a fragment needs to be re-sent. The term “receiver” here,
however, does not necessarily mean sink. In the non-caching
mode, only sinks monitor the integrity of an RMST entity in
terms of received fragments. In caching mode, an RMST
node collects fragments and is capable of initiating recovery
for missing fragments to the next node along the path toward
the source.

There are two types of loss detected by a “receiver”: a “hole”
in a sequence of fragments, and a truncated sequence. When

a hole in a sequence of fragments is detected, the missing
fragments should be specifically requested. This amounts to a
selective-request ARQ-based behavior. The truncation of a
sequence is really a special case of a hole, sensed by the
receiver via a timeout geared to the expected receipt time of
the next fragment. In our experiments we used timers set on
our understanding of the network configuration, but we are
exploring self-adaptive timers.

When a node fails, the normal behavior of Diffusion is to
reestablish a new set of data gradients via an exploratory
interest. To this extent sensor networks are self-repairing.
RMST benefits from the underlying diffusion behavior related
to failed nodes. Unlike PGM which must gather and maintain
path state, or RMTP and SRM which watch and possibly
generate message traffic to make decisions related to node
failure, RMST can rely on the mechanisms in diffusion that
guarantee the eventual discovery of a path from source to
sink.

In caching mode, the caching of fragments along reinforced
paths is used to limit power loss due to end-to-end
retransmission. In non-caching mode, the underlying MAC
layer is exploited to limit the transport layer overhead. It is
precisely this tradeoff that is explored in the experiments.

3.3 RMST Basic Services

Unique identification in sensor networks is data-centric,
therefore the transport layer must be able to recognize several
new attributes added to support reliable traffic. An
unfragmented data entity must have an application specific
attribute (RmstNo) or set of attributes that serves to
distinguish a particular reliable flow of data from source to
sinks. In applications where complete disambiguation is
difficult, a random ephemeral ID can be generated at the
source [12]. Each fragment that makes up a fragmented data
entity must also contain a sequential fragment id (FragNo).
The total number of fragments that make up a data entity must
be known (MaxFrag). There is a single control message
generated by RMST, the NACK, which must be defined by an
attribute.

3.4 RMST Support for Loss Detection and Repair

Loss detection is primarily timer driven. Where loss detection
occurs depends on whether a node is configured for caching
or non-caching mode. In non-caching mode, only sinks set
timers to detect loss. In caching mode, each caching node on
the reinforced path from source to sink detects loss. The basic
mechanism for loss detection is a watchdog timer. A
watchdog timer is instantiated for each new flow (RmstNo)
that is added to a caching node’s RMST database. The timer
handler inspects the hole map and sends a NACK for any
holes that have aged for too long. Multiple hole numbers are
aggregated into a single NACK to conserve on control traffic.
The maximum wait time heuristic could be dynamically

 5

adjusted. We plan to explore adaptive timers. Caching at the
sinks makes delivery order unimportant, and allows for wide
latitude in the relationship between the watchdog timer
interval and the source send rate. When the watchdog interval
is significantly slower than the send rate, the cache size must
increase to retain more incomplete sets of fragments. Setting
the watchdog timer faster than the send rate, minimizes the
required cache size, but increases NACK traffic.

The only control message added to normal diffusion by
RMST is the NACK. NACKs are unicast in the reverse
direction along the reinforced path from source to sink. When
the RMST filter gets a cache hit for a NACKed fragment, it
unicasts that fragment to the requesting neighbor. When an
RMST filter intercepts a NACK, and it cannot find the
missing fragment in its local cache (or it’s not in caching
mode), it forwards the NACK on the reinforced path toward
the source. In caching mode, the natural progression of traffic
from source to sink, causes holes to be sensed sooner
upstream, thus making NACK forwarding an unlikely event.

3.5 The back-channel

This particular implementation detail is a key enabler of
efficiency in RMST. The reinforced paths that diffusion
constructs for control and data are unidirectional, from source
to sink. RMST needs a back-channel in order to deliver
NAKs to upstream neighbors. RMST filters snoop at the last
hops of reinforcement messages in order to construct reverse
reinforced paths (in a distributed fashion). The creation of the
back-channel is “free of charge” in that no additional
transmissions or control data traffic are needed to create it.
There is a back-channel associated with every flow. The back-
channel is maintained in both caching and non-caching
modes.

3.6 Node Failure

In the case of node failure a new reinforced path will be
established by diffusion. Some nodes that weren’t on the
original reinforced path may now reside on it. The RMST
filter automatically adapts to any such changes by creating a
new back-channel that mirrors the new reinforced path. In
caching mode, an RMST node that suddenly finds itself on a
reinforced path (mid-sequence) will begin caching from the
first received fragment on. NACKs for earlier fragments will
be forwarded on the back-channel toward the source. In
effect, the RMST filter will transfer responsibility for back-
channel and caching maintenance to the new reinforced path.

3.7 Support for Caching

In caching mode, a node maintains a local cache of traffic in
progress or recently transmitted. In non-caching mode, only
the sources and sinks maintain a cache. The cache is indexed
by the application specific flow id. Each cache entry has an
associated fragment map and hole map. The fragment map

contains the actual cached data indexed by the fragment Id.
The hole map, used by the watchdog timer, is a list that
contains missing or overdue fragments for a particular flow.
Hole map entries contain a fragment id, a timestamp
indicative of when a NACK for this fragment was sent, and a
flag indicating whether or not a NACK is outstanding. On
receipt of a fragment a caching mode filter must identify
missing or late fragments and add them to the hole map.
Currently caching nodes accomplish cache flushing via a
fixed timer, although we plan to switch to an LRU algorithm.

4 Analysis of MAC Layer Retries

Because one of our primary design decisions concerns the use
of MAC layer ARQ, we analyze the effect that the number of
retries attempted by a transmitter has on the resultant
probability that a packet will arrive between end points. If we
define p as the probability of success for a single attempt
across one hop, and R as the number of MAC-level attempts,
the probability of success with MAC-level ARQ is:

iR
ih ppp)(11

0 −⋅= ∑ −

=
 (1)

Which simplifies to the probability of not failing at all R tries:

R
h pp)1(1 −−= (2)

When considering H hops, the end-to-end probability of
arrival is:

h
H

e pp = (3)

Figure 1 graphs end-to-end arrival rates for different numbers
of MAC-level retries. As can be seen in Figure 1, the use of at
least 3 retries is vital to reliable data delivery in this scenario.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4

Number of MAC-level retries

Pr
ob

 (a
rri

va
l)

Figure 1: Probability of arrival across 40 hops with an
average error rate of .10 per hop, given R retries per hop.

 6

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.01 0.05 0.10 0.15 0.20 0.25 0.30

Error Rate

Pr
ob

 (A
rri

va
l)

No ARQ

ARQ

Figure 2: Probability of arrival across 6 hops

Because wireless nets have physical level error rates that can
be relatively high compared to wired nets [5] we compare
ARQ vs. non-ARQ MAC layers for a particular scenario.
Figure 2 shows two data series plotting the probability that a
packet will arrive at its final destination after traversing 6
hops at the given error rate with the number of retries set to
three. As Figure 2 demonstrates, the probability of arrival at
the end point plummets with the error rate for the non-ARQ
case, but remains quite high with ARQ set to three retries.

5 Analysis of Transport Layer Hop-by-Hop
 vs. End-to-End

In order to do a basic analysis of the benefits of hop-by-hop
repair vs. end-to-end repair at the transport layer, we assume
that the MAC layer provides a particular level of reliability
expressed as a probability of success per link. The intent is to
examine transport layer efficiency given the success rate
presented to it from lower layers.

First we look at the cost of doing end-to-end repair without
caching or intermediate transport layer repair.

If a large data object is broken into M fragments and
transmitted a single time from a source across H hops to a
sink, the expected number of those fragments to arrive at the
sink can be derived using the end-to-end probability from eq.
3 as follows:

mMm
e

M

m e ppmE HMf −−⋅⋅= ∑ =
)1(][

1
),((4)

We would also like to know the expected number of hops that
a failed packet will travel (fh). (We need to adjust pe for each
value of n).

)1(][1

1
1)(e

H

n
n

e ppnE H
h

f −⋅⋅= ∑ −

=

− (5)

Therefore the approximate cost in terms of link-wise fragment
transmissions to accomplish one attempt to send M fragments
(with an end-to-end transport layer) is:

)]),([()]([)],([HMfEMHfEHMfEH
h

−⋅+⋅ (6)

Using a small program we can calculate E[Tx(H,M)], the total
number of link-wise transmissions required to get a set of M
fragments across H hops. We apply equation 6 to get a
transmission count, calculate the number of fragments
expected not to make it using equation 4, and recursively call
on the remainder to be sent (accumulating the count).

If we are caching data at each node and doing transport layer
recovery on a per-hop, the expected number of retries to move
a fragment one hop is:

1
1

)1(][)(−∞

=
−⋅⋅= ∑ k

hk h ppkE Kr (7)

For the caching case, the number of link-wise transmissions
required to get a set of M fragments across H hops is:

)]([)],([KrENMMHTxE ⋅⋅= (8)

Importantly, E[Tx(H,M)] grows much faster with the non-
caching method as M and n increase. For example, if we hold
the probability for success at .9 we get the results accumulated
in Table 1.

What’s significant in this analysis is that we can look for a
loss rate that might obviate the advantage of caching in the
transport layer. We have already demonstrated in the last
section the dramatic improvement available by raising the
retry count for MAC layer ARQ. If we hold the number of
fragments and hop count constant and vary the probability for
success we get curves such as in Figure 3. The loss rate
presented to the transport layer by the MAC layer needs to get
below one percent for the advantages of caching and hop-by-
hop repair to be marginalized. Without MAC layer ARQ,
physical layer loss rates would need to be below one percent.
Such low loss rates are common in wired nets, but atypical in
wireless [1,5,6].

Fragments 5 Hops 10 Hops
5 27.77 / 42.33 55.55 / 143.39

10 55.55 / 84.67 111.11 / 286.79

20 111.11 / 169.35 222.22 / 573.59
Table 1: Number of total transmissions required to send M

fragments across N hops (with cache/without cache)

 7

0

50

100

150

200

250

1 0.995 0.99 0.985 0.98 0.975 0.97 0.965 0.96 0.955 0.95

P(Success) per Hop

Tr

an
sm

is
si

on
s

End-to-End

Hop-by-Hop

 Figure 3: Number of transmissions required to send 10 fragments
across 10 hops. Hop-by-hop vs. End-to-End repair.

6 Evaluation of RMST

Sections 4 and 5 presented simple analysis of reliability at the
MAC and transport levels. We next present the simulation
studies of our RMST implementation to evaluate the
interaction of reliability at different layers. The analysis
suggests the importance of hop-by-hop recovery, but it could
reside at the MAC or transport layer (or both). The
experiments were run in ns-2 [13] using an 802.11 MAC layer
and directed diffusion attached to wireless nodes. The 802.11
MAC uses non-ARQ for broadcast packets and ARQ for
unicast packets. Diffusion is capable of delivering unicast
messages over a broadcast MAC. It does so by embedding its
own unique node addresses in packets. Therefore non-ARQ
MAC unicasting was achieved by broadcasting at the
network-layer, but doing unicast address resolution in
diffusion.

Parameters that could be altered in the experiments include:

Error Rate: This refers to the physical layer lost packet rate.
In ns-2, errors at the physical layer can be injected by
attaching an “error model” to each node. Three error rates
were used in initial experiments: 0%, 1%, and 10%. Several
experiments were also done at the elevated error rates of 20%
and 30%.

Hop Count: The number of hops required to traverse a
rectangular grid of nodes from source to sink. Because
diffusion is a route discovery protocol, this can vary slightly
in simulation or the real world.

Number of Retries: This parameter applies to MAC layer
ARQ count. It is the number of MAC layer retries attempted
before abandoning a transmission.

Size of Blob: The number of bytes to be transmitted from
source to sink as a series of fragments.

Source

Sink

Figure 4
Layout of test grid showing radius of central node,

reinforced path from source to sink and back-channel

Because of the potentially large number of experiments that
can be performed in this multi-dimensional problem space,
three of the variables were held constant: Hop Count (6 hops,
21 nodes), retries (4), size of blob (5k). The simulations
employed a grid with equidistant nodes that could only
communicate with “immediate” neighbors (for example, the
central node in Figure 4 sees eight neighbors). The source
was placed in the upper-right position of the grid and the sink
was placed in the lower-left position. We selected this simple
topology for ease of evaluation and comparison to the
analysis. We are currently implementing RMST in a sensor
node testbed and plan to evaluate realistic topologies there.

The simulation logs were enhanced to count every byte
transmitted, including CTS/RTS and ACK bytes when ARQ
was used. The 5KB blob was broken into 50 100-byte
fragments that were transferred from source to sink across the
grid. The transmission byte totals included the control
messages used by diffusion to propagate the interest, reinforce
a gradient, and maintain the interest and gradients over time.

We normalized all results to the cost of sending the messages
without ARQ or transport layer overhead, i.e. 87,818 bytes.
The idealized byte count was measured by sending the entire
set of 50 fragments with zero errors, no MAC level ARQ and
no transport scheme. The count includes the ongoing
message traffic exchanged by diffusion to propagate interests,
establish and reinforce routes, and otherwise maintain state. It
also includes per packet overhead including headers and
trailers. This provided a baseline of the best that could be
achieved with no reliability overhead. Experiments in which
individual simulations exhibited a low variation were repeated
10 times to calculate an average. Experiments with error rates
higher than 10% were repeated 20 times.

6.1 Baseline End-to-End Positive ACK

This experiment was run to establish a baseline of what is
achievable with standard diffusion without the addition of a
transport layer. The entire set of fragments was sent at
regular intervals until the sink unsubscribed. The results are
summarized in Table 2.

 8

PHY Error
Rate

No ARQ ARQ
All

Selective
ARQ

0 .93 (.07) .57 (.03) .65 (.03)

.01 .51 (.04) .56 (.03) .61 (.05)

.10 .21 (.05) .47 (.09) .54 (.06)

Table 2: End-to-End Positive ACK
Normalized byte transmissions required for diffusion to

transfer 50 fragments of 100 bytes across 6 hops
without any transport layer

Not surprisingly, with no physical layer errors the overhead
associated with sending CTS/RTS and ACK frames is made
apparent in the first row. Using ARQ, even selectively, adds
significant overhead. The two right columns demonstrate that
using Selective ARQ is consistently about 7% more efficient
than using ARQ for every packet. Selective ARQ is attractive
from another aspect in that route discovery packets do not
have their reliability boosted at the MAC layer. This allows
the network layer (diffusion) to make better decisions about
what routes are best. The results in the No ARQ column
plummet with increased error rate. This is a direct result of
the exponential decay of reliability demonstrated in Figure 2.
Clearly, when average error rates are high, using ARQ at the
MAC layer, when there is no transport layer, is extremely
beneficial.

6.2 RMST with Hop-by-Hop Recovery and Caching

In this experiment we ran the RMST filter in caching mode at
every node in the grid with in-network NACKing. Results are
summarized in Table 3.

There are two significant results in this experiment.
Comparing the columns for ARQ and Selective ARQ from
this experiment with the results of the first experiment, we see
very slight improvement in all cases. This would seem to
suggest that transport layer hop-by-hop recovery adds little to
the reliability available from a robust MAC layer. At the
same time, if we focus on No ARQ at the 10% error rate, we
see the other interesting result. Using hop-by-hop recovery at
the transport layer instead of the MAC layer was 15% more
efficient than Selective ARQ at the same error rate.

PHY Error
Rate

No ARQ ARQ
All

Selective
ARQ

0 .99 (.05) .60 (.06) .68 (.06)

.01 .95 (.06) .57 (.06) .67 (.07)

.10 .76 (.07) .48 (.07) .61 (.07)

Table 3: Hop-by-Hop Selective NACK and Caching
Normalized byte transmissions required for diffusion to

transfer 50 fragments of 100 bytes across 6 hops
with hop-by-hop caching and repair

This result would make it appear that doing hop-by-hop
recovery at the transport layer is preferable to doing it at the
MAC layer, where reliability overhead is paid for each and
every unicast packet. Log analysis for this case showed that
many more Exploratory packets were sent before a reinforced
path between source and sink was established. Nonetheless,
once a path was established, the hop-by-hop recovery at the
transport layer was extremely efficient (with no ARQ
overhead).

The No ARQ result (at 10%) is somewhat specious in light of
the exponential decay of arrival probability as the hop count
or error rate increase. Transient error rates in excess of 10%
and paths longer than 6 hops are not uncommon in sensor nets
[1]. Non-transport-layer messages used in path reinforcement
must be propagated from sink to source. If the probability of
arrival decays beyond a certain point, basic diffusion has a
difficult time maintaining routes. A fourth experiment (see
below) was instantiated because of this partial result.

6.3 RMST with End-to-End Recovery

This experiment was run with the RMST filters in non-
caching mode. The only in-network recovery was when the
MAC layer was configured to use ARQ or Selective ARQ.
Transport layer recovery was accomplished end-to-end via
NACKs sent along the back-channel from sink to source.
This is similar to traditional transport recovery in wired
networks. Results are presented in Table 4.

There are two important observations to be made about these
results. On top of the No ARQ MAC, at the 10% error rate,
the simulation did not terminate within the 600 seconds
allotted. Log analysis showed that there were numerous holes
that required NACKs, which had a difficult time making it
from sink to source. This result was not surprising. It simply
means that some sort of hop-by-hop recovery is required
either at the MAC or transport layer in order to implement
guaranteed delivery. There was another important result. If
you compare the two columns for ARQ and Selective ARQ
with those of the previous experiment, you will see virtually
no change in efficiency. Comparative log analysis revealed
that MAC layer ARQ or Selective ARQ made NACKs so rare
that hop-by-hop vs. end-to-end NACKing at the transport
layer had little difference in performance.

PHY Error
Rate

No ARQ ARQ
All

Selective
ARQ

0 1.0 (.05) .61 (.08) .67 (.07)

.01 .90 (.06) .60 (.10) .66 (.07)

.10 n/c .49 (.09) .61 (.07)
Table 4: End-to-End Selective NACK

Total byte transmissions required for diffusion to transfer 50
fragments of 100 bytes across 6 hops with end-to-end repair.

 9

PHY
Error
Rate

Hop by Hop
RMST
NoARQ

Hop by Hop
RMST
Sel ARQ

End to End
RMST
Sel ARQ

.20 .48 (.19)* .40 (.18) .40 (.17)

.30 n/c .24 (.23) .27 (.25)
Table 5: High Error Rate Test

Total byte transmissions required for diffusion to
transfer 50 fragments of 100 bytes across 6 hops

with high error rates.

6.4 Performance under High Error Rates

The purpose of this experiment was to further examine the
partial results of the three previous experiments on selected
combinations of MAC and transport layer. In sensor nets,
correlated losses due to interference can exhibit transient error
rates that are quite high [1]. This experiment was performed
on selected schemes that had performed best at the 10% error
rate. From the schemes that employed MAC layer ARQ, we
chose those that used selective ARQ. The non-ARQ scheme,
which previously outperformed all others, was RMST in
caching mode over a MAC with no ARQ. Results are
summarized in Table 5.

We see from the No ARQ column that transport layer hop-by-
hop recovery without MAC layer ARQ broke down
somewhere between .20 and .30 error rate. Log analysis
showed that standard control messages used by diffusion to
reinforce and maintain paths rarely succeeded in establishing
any viable routes. At .20 error rate (see asterisk in Table), the
efficiency rating is misleading. Log analysis showed that an
inordinate amount of time (on the order of minutes) was spent
establishing a viable route. Such delays would be considered
unacceptable in a real test bed.

Notice that RMST running over Selective ARQ had very
similar efficiency in both caching (hop-by-hop) and non-
caching (end-to-end) mode. There are several additional
considerations that need to be pointed out in this regard.
When dealing with multiple sinks or applications that require
localized in-network processing, experiments with NACK-
based multicast reliability protocols, like SRM [14] and PGM
[15], have demonstrated an advantage to caching at
strategically selected nodes.

7 Related Work

There are several areas that we looked to for related work: ad-
hoc sensor networks, TCP over wireless nets, and multicast
transport schemes.

7.1 Sensor Nets

Much of the existing work related to reliability in sensor
networks deals with route discovery and maintenance, and not
reliable data transport. Mobile ad-hoc networks employ a

variety of routing protocols concerned with finding high
quality paths. For example Signal Stability Adaptive Routing
(SSA) [16] attempts to differentiate high quality routes by
monitoring signal strength. DSR [17] discovers new routes
via flooding, usually accomplished by broadcasting without
ARQ. Higher quality routes are statistically selected more
often.

TAG [18] is a tree-based aggregation and routing system for
ad-hoc sensor nets. The identification of “capable neighbors”
is a major concern in TAG, relying on a scheme in which
nodes monitor the quality of the links with their parents.
When a node sees that the quality (loss rate) to a parent is
“significantly worse” than that of another potential parent, the
node “re-parents” to improve on the probability of loss. This
is very similar to the occasional transmission of exploratory
messages in diffusion to discover better paths. Another
device investigated by TAG was the use of in-network
caching. Caching in TAG deals with remembering the “state”
of children (in terms of values used in aggregation) rather
than providing repair for specific packets (TAG does not
guarantee reliable data transport). It nonetheless demonstrates
that caching can ameliorate the elevated loss in sensor nets.

PSFQ (Pump Slowly Fetch Quickly) [4] is a transport layer
paradigm for sensor nets that is very close to our work. It is
characterized by hop-by-hop error recovery, repair requests
via NACKs that are delivered at a rate faster than the source
transmission rate, and in-network caching. PSFQ is assumed
to run over a non-ARQ MAC layer. Two important results of
their work are that end-to-end recovery is not appropriate for
sensor networks, and that recovery is best accomplished at the
transport layer. The failure of purely end-to-end recovery is
consistent with our analysis and simulation results.

We differ with their suggestion that ARQ is best provided at
the transport layer instead of the MAC. If data transport were
the only service in a sensor network benefiting from ARQ,
then it would make sense to push ARQ as high up the stack as
possible. However, our simulations of diffusion found that
lack of reliable routing prevented operation entirely at high
error rates (more than 30% for 6 hops). The PSFQ study did
not observe this problem because they considered an
idealized, “omniscient” multicast in simulation that
implemented routing out of band. Ignoring the problem of
route establishment, our results agree with theirs that hop-by-
hop transport layer caching improves performance, not just at
very high error rates (the 30-70% they observe), but also at
rates as low as 10%. Our different conclusions are based on
the assumption that it is possible to provide an energy
efficient MAC layer with ARQ. We agree that the RTS/CTS
mechanism in 802.11’s ad hoc mode is too energy expensive
for long-term operation since it requires continuous listening;
we look to recent work in energy–conserving ARQ schemes
to reduce this cost [19].

 10

7.2 TCP Over Wireless

The extension of TCP into heterogeneous networks that
includes wireless links has yielded a number of interesting
observations about the nature of reliability in wireless
networks. The most obvious problem addressed by these
investigations is that TCP assumes the primary cause of
packet loss to be congestion rather than lossy links. When this
is not the case, as in wireless, TCP behaves poorly [20,21].
Some solutions assume that hop-by-hop reliability is provided
by a link layer that does any number of retries required to
ultimately move a packet forward [22]. Such assumptions
may not be completely relevant in sensor nets where the cost
of link layer retries and the occurrence of failing nodes for
packets must be taken into account. The SACK (Selective
ACK) [23] and SMART [20] are attempts to refine the coarse
granularity of TCP’s cumulative ACK. Research into TCP
aware link layers includes doing link repair at a rate faster
than the TCP timeouts and Explicit Loss Notification [20],
which allows non-congestion-related losses (i.e. packets
dropped by the link layer) to be identified so that
retransmissions may be performed without invoking
congestion-control. The Snoop Protocol [20] places a snoop
agent in a base station. Snoop agents cache packets from
senders, and watch for duplicate acknowledgments from
receivers. They provide somewhat localized repair and shield
senders from doing congestion control for wireless losses.
Nonetheless, because snoop agents only reside in base
stations they are not generally applicable to distributed multi-
hop sensor networks.

7.3 Multicast Transport Layers

IP-based multicast delivery systems generally assume that
packet loss is inevitable. Information from a particular source
is carried a single time on each link, only registered group
members reside on the distribution tree, and routing is
maintained by adaptive protocols such as DVMRP [24] and
PIM [25]. These efficiencies were introduced because of
difficulties encountered when using traditional unicast
methods to support distributed applications, such as the
multicasting of real-time multimedia information. Three
multicast protocols which each represent a different class of
reliability solutions are: RMTP, SRM, and PGM.

Reliable Multicast Transport Protocol [26] is an ACK-based
protocol that avoids the well-known ACK implosion problem
via a hierarchy of special in-network nodes called designated
receivers (DRs). DRs receive ACKs from multiple down
stream nodes and send ACKs to a single upstream DR or
sender. They also do in-network caching of data to satisfy any
subset of downstream nodes that are missing a data fragment.
Several ideas from RMTP would appear to map well to the
distributed nature of sensor nets. One could think of DRs as
both virtual senders and virtual receivers. Immediate
downstream nodes cannot distinguish between a DR and a
real sender. Upstream nodes are not aware if they are sending

to a small set of actual receivers or a set of DRs. This sort of
anonymity and distributed responsibility is built into directed
diffusion [9,11].

The Scalable Reliable Multicast protocol, SRM [14],
guarantees eventual delivery of sequenced data to all
multicast group members, albeit not delivery order. ACK
implosion avoidance is accomplished via NACKs, which are
multicast by receivers when discontinuities in sequence
numbers are perceived. Because NACKs are multicast, any
receiver that has cached the data in question can restore the
missing fragment. An appealing aspect of SRM and other
NACK-based protocols is the “on-demand” nature of repair
requests. A negative aspect of RMTP for sensor nets,
however, is the routine stream of control traffic generated
regardless of loss rate. A problem with both SRM and
RMTP, in terms of porting sensor nets, is the strict reliance on
RTT, which can exhibit a larger variance in wireless.

PGM, Pragmatic General Multicast [15], is a commercially
evolved multicast reliability standard. It relies heavily on in-
network processing via “PGM-aware” routers. It is a NACK-
based scheme. NACK implosion is controlled in several ways.
When a receiver recognizes a skipped sequence number, it
sets a random timer and listens for any restorations of the
same packet. PGM routers also “fuse” NACKs by not
forwarding duplicate NACKs upstream. PGM allows for in-
network caching via “designated local repairers” (DLR).
Several ideas in PGM would appear to translate well into
sensor net transport schemes. PGM’s reverse path routing
from receivers to sinks and the path repair mechanism bears
some resemblance to directed diffusion’s path reinforcement
and repair paradigm. The in-network caching by path-aware
DLRs aligns well with the distributed nature of sensor net
routing algorithms. Nonetheless, the proliferation of control
packets in PGM and sheer volume of implementation details
render a straight port sensor nets impractical.

8 Future Work

We consider it especially important to try RMST in an actual
sensor network. At the time of this writing we have begun
initial testing in the ISI testbed. Preliminary results have
demonstrated the basic operability of Rmst; nonetheless, we
have identified several areas that need to be addressed as part
of real-world deployment. First, we observed that incorrectly
short timeouts can cause excessive NACK traffic (similar to
congestion collapse [27]). We plan to automatically tune
timing. Second, we have observed interactions between
reliable and unreliable links, where the resultant selection of
bad paths causes high loss (as observed previously [10]). We
are exploring ways to address this problem.

The ability of RMST to dynamically configure itself for
caching constitutes important future work that will provide a
valuable resource for diffusion clients that rely on in-network
processing.

 11

9 Conclusions

We contend that the best implementation for reliability in
distributed sensor network architectures involves both the
transport and MAC layers. It is beneficial to employ MAC
level ARQ for control and data packets that are unicast on the
paths selected for data transfer. Route discovery packets
should be broadcast without any MAC layer reliability
mechanism. The periodic discovery of best routes should
reflect the statistical probability of arrival. The selective use
of ARQ is available for sensor networks via an energy aware
MAC layer such as S-MAC [19]. In order to support
guaranteed delivery in sensor nets, which can demonstrate
high error rates, a NACK based transport layer running over a
selective-ARQ MAC layer is an appropriate solution. We
conclude that RMST constitutes a good basis for expanding
the application domain of directed diffusion into areas
requiring guaranteed delivery and fragmentation/reassembly.
It does so in a fashion that leverages the strengths of diffusion
yet minimizes the amount of extra overhead required to
support itself. The principles applied in creating RMST are
applicable to other sensor network routing protocols.
Applications that require in-network processing or have large
numbers of sinks will benefit from the capability of RMST to
be dynamically configured for caching.

REFERENCES

[1] Jerry Zhao, Ramesh Govindan. Connectivity Study of a CSMA based
Wireless Network. Technical Report TR-02-774, USC/ISI, Los Angeles,
CA, 2002.

[2]Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.
Next Century Challenges: Scalable Coordination in Sensor Networks. In
Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, pages 263-270, Seattle Washington, Aug 1999.

[3]Gregory J. Pottie and William J. Kaiser. Embedding the Internet: wireless
integrated network sensors. Communications of the ACM, V.43 (N .5), pages
51-58, May, 2000.

[4] C. Wan, A. Campbell, L. Krishnahmurthy. PSFQ: A Reliable Transport
Mechanism for Wireless Sensor Networks. ACM International Workshop on
Wireless Sensor Networks and Applications, Atlanta, Georgia, Sept 2002.

[5] Jean Tourrilhes. Robust Broadcast: Improving the reliability of broadcast
transmissions on CSMA/CD. Hewlett Packard Laboratories, Bristol U.K.

[6] Ken Tang, and Mario Gerla. Mac Reliable Broadcast in Ad Hoc
Networks. MILCOM 2001, McLean, Virginia, October 2001.

[7] LAN MAN Standards Committee of the IEEE Computer Society,
Wireless LAN medium access control (MAC) and physical layer (PHY)
specification. IEEE Std 802.11, IEEE, 1997.

[8] W. Chu, J. Hellerstein, and M. Lan. The Exclusive-Writer Protocol: A
Low Cost Approach for Updating Replicated Files in Distributed Real Time
Systems. In Proceedings of the 3rd International Conference on Distributed
Computing Systems, pages 269-277, Oct 1982 IEEE.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A
scalable and Robust Communication Paradigm for Sensor Networks. In
Proceedings of ACM/IEEE International Conference on Mobile Computing
and Networking, pages 56-67, Boston, MA, USA, August 2000. ACM.

[10] John Heidemann, Fabio Silva, Charlemek Intanagonwiwat, Ramesh
Govindan, Deborah Estrin, and Deepak Ganesan. Building efficient wireless
sensor networks with low level naming. In Proceedings of the Symposium on
Operating System Principles, pages 146-159, Chateau Lake Louise, Banff,
Alberta, Canada, October 2001. ACM.

[11] Yan Yu, Ramesh Govindan, and Deborah Estrin. Geographical and
Energy Aware Routing: a recursive data dissemination protocol for wireless
sensor networks. Technical Report TR-01-0032, University of California,
Los Angeles, Computer Science Department, 2001.

[12] Jeremy Elson, and Deborah Estrin. Random Ephemeral Transaction
Identifiers in Dynamic Sensor Networks. In Proceedings of the Twenty-first
International Conference on Distributed Computing, Phoenix, AZ Apr 2001.

[13] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in Network Simulation. IEEE Computer, V.33
(N. 5), pages 59-67, May 2000.

[14] Sally Floyd, Van Jacobson, Ching-Gung Liu, and Lixia Zhang. A
Reliable Multicast Framework for Light-weight Sessions and Application
Level Framing. In Proceedings of the ACMSIGCOMM Conference, pages
342-356, Cambridge, MA, August 1995, ACM.

[15] Tony Speakman, Dino Farinacci, Steven Lin, Alex Tweedly, Nidhi
Bhaskar, Richard Edmonstone, Rajitha Sumanasekera, and Lorenzo Vicisano.
PGM Reliable Transport Protocol. Internet-Draft (describing protocols used
by Cisco and Whitebarn), Feb 2001.

[16] R. Dube, C. Rais, K. Wang, and S. Tripathi. Signal Stability Based
Adaptive Routing for Ad Hoc Mobile Networks. In IEEE Personal
Communications, Feb 1997.

[17] D. Johnson, and D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks in Mobile Computing, pages 153-181. Kluwer Academic, 1996.

[18] S. Madden, M. Franklin, and J. Hellerstein. TAG: a Tiny Agregation
Service for Ad-Hoc Sensor Networks. OSDI, Dec 2002.

[19] W. Ye, J. Heidemann, D. Estrin. An Energy Efficient MAC Protocol for
Wireless Sensor Networks. Technical Report TR-543, USC/ISI, Los Angeles,
CA, September 2001.

[20] H. Balakrishna, V. Padmanabhan, S. Seshan, and R. Katz. A
Comparason of Mechanisms for Improving TCP Performance over Wireless
Links. In IEEE Transactions on Networking, 756 -769, Vol. 5 1997, ACM.

[21] H. Chaskar, T. Lakshman, U. Madhow. TCP Over Wireless with Link
Level Error Control: Analysis and Design Methodology. In IEEE
Transactions on Networking, pages 605 -615, Vol. 7 1999, ACM.

[22] H. Chaskar, T. Lakshman, U. Madhow. On the Design of Interfaces for
TCP/IP over Wireless. In Proceedings of IEEE Milcom, 1996.

[23] V. Jacobson and R. T. Braden. TCP Extensions for Long Delay Paths.
RFC, Oct 1988. RFC-1072.

 [24] D. Waizman, C. Partridge, and S. Deering. Distance Vector Multicast
Routing Protocol, DARPA Request for Comments (RFC) 1075, Nov 1989.

[25] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu , and L. Wei.
The PIM architecture for wide-area multicast routing. In IEEE Transactions
on Networking, pages 153-162, April 1996, ACM.

[26] John C. Lin, and Sanjoy Paul. RMTP: A Reliable Multicast Transport
Protocol. In Proceedings of IEEE INFOCOM, pages 1414-1424, March 1996.

[27] Van Jacobson. Congestion Avoidance and Control. In Proceedings of the
SIGCOMM ’88, pp. 314-329. Stanford, California, ACM. August, 1988.

