
Network Routing Application Programmer’s Interface (API) and

Walk Through 9.0.1

Fabio Silva, John Heidemann and Ramesh Govindan

{fabio,johnh,govindan}@isi.edu

December 9, 2002

1 Introduction

SCADDS data diffusion (at USC/ISI) and DRP (at MIT/LL) are both based on the core concept of
subject-based routing. Although there are some fundamental differences between these approaches,
we believe that both can be accommodated with the same Network Routing API.

An earlier version of this API was used by both network routing approaches, and was co-
authored by Dan Coffin and Dan Van Hook {dcoffin,dvanhook}@ll.mit.edu.

This version of this document describes the current API as used by the SCADDS implemen-
tation. In addition to the Publish/Subscribe API, we introduce the Filter API in order to better
support in-network processing (e.g. caching/aggregation/mobile code) as well as the Timer API,
which allows support for event-driven applications.

Also, this document does not provide information on how to compile, install, and run diffusion.
Please refer to the distribution’s README file. For information about how to run diffusion in ns-2,
please refer to the Directed Diffusion chapter in the ns-2 documentation.

1.1 Recent changes to the API

Since the API’s last version, release 9.0, dated May 31st, 2002, we changed our Timer API. Please
refer to section 5 for more information. Also, since the release 8.0, dated March 4th, 2001, the
following changes have been made:

• GEAR, the Geographic and Energy Aware Routing protocol, is now supported in diffusion.
GEAR improves diffusion efficiency when geographic information is available. See section 3.3
for more information.

• As an option, the publish/subscribe API now also supports PUSH. PUSH improves diffusion
efficiency in cases where there are many subscribers and few publishers. (By default diffusion
is optimized for many publishers and fewer subscribers.) For more details, see section 3.2.

• The filter API has been improved, giving filter developers more freedom when exchanging
messages.

• Several of the sample applications/filters provided in our distribution have been updated.
They include several small features and fixes. This code can be used as a starting poing for
application/filter developers.

1

• Attribute creation and manipulation has been improved with the addition of a few extra
functions to help diffusion application/filter developers. More details, refer to section 2.4.

1.2 Other planned changes and implementation status

Although we have iterated on this API and used it in various demos and other experiments, we
expect that the API will evolve as we gain more experience with how network routing is used.

We expect to continue to experiment with better APIs for sending large objects across the
network. This should be included in a future version of this API.

2 Network Routing API Overview

This version of the API has been improved to better support attribute creation, manipulation and
matching. We have introduced templates that facilitate the use of attributes. This API now uses
STL vectors to group a set of attributes that describe interests and data. Following is an overview
of the approach taken and a brief description of the use of these templates.

For a more detailed description about diffusion attributes and naming, see [1]. For more detail
about filter invocation, see [2].

2.1 Attributes and Attribute Factories

Data requests and responses are composed of data attributes that describe the data. Each piece
of the subscription (an Attribute) is described via a key-value-operator triplet, implemented with
class Attribute.

• key indicates the semantics of the attribute (latitude, frequency, etc.). Keys are simply
constants (integers) that are either defined in the network routing header or in the application
header.

Allocation of new key numbers will be done with an external procedure to be determined.
Keys in the range 0-2999 are reserved and should not be used by an application.

• type indicates the primitive type that the key will be. This key will indicate what algorithms
to run to match subscriptions. For example, checking to see if an INT32 TYPE is EQ is a
different operation than checking to see if a STRING TYPE is EQ. The available types are:

INT32_TYPE // 32-bit signed integer

FLOAT32_TYPE // 32-bit

FLOAT64_TYPE // 64-bit

STRING_TYPE // UTF-8 format

BLOB_TYPE // uninterpreted binary data

• op (the operator) describes how the attribute will match when two attributes with the same
type and key are compared. Available operators are: IS, EQ, NE, GT, GE, LT, LE, EQ ANY.

The IS operator indicates that this attribute specifies a literal (known) value (the LATI-
TUDE KEY IS 30.456). Other operators (GE, LE, NE, etc.) mean that this value must
match against an IS attribute. Matching rules are below.

2

This version of the API supports all operators for all types. Note however that for blobs the
API doesn’t know how the information is encoded and will perform a bit wise comparison
only (i.e. IS can be used to specify a literal blob value that can only be matched with the
EQ and NE operators).

In addition, attributes have values. Values have some type and contents. Some values also have
a length (if it’s not implicit from the type). Keys, operators, type and length can be extracted
from an attribute via getKey(), getOp(), getType() and getLen() methods. (see below for details).

2.2 Matching Rules

Data is exchanged when there are matching subscriptions and publications and the publisher sends
data. Filters receive messages that match a specified set of attributes. Since diffusion is based on the
core concept of subject-based routing, it is very important to make sure attributes in publications,
subscriptions and filters match.

For the Publish/Subscribe API, matches are determined by applying the following rules between
the attributes associated with the publish (P) and subscribe (S):

For each attribute Pa in P, where the operator Pa.op is something other than IS

Look for a matching attribute Sa in S where Pa.key == Sa.key and Sa.op == IS

If none exists, exit (no match)

else use Pa.op to compare Pa and Sa

If all are found, repeat the procedure comparing non-IS operators in S against IS operators in P.

If neither exits with (no match), then there is a match.

For example, a sensor would publish this set of attributes:

LATITUDE_KEY IS 30.455

LONGITUDE_KEY IS 104.1

TARGET_KEY IS tel

while a user might look for TELs by subscribing with the attribute:

TARGET_KEY EQ tel

or it might look for anything in a particular region with:

TARGET_KEY EQ_ANY

LATITUDE_KEY GE 30

LATITUDE_KEY LE 31

LONGITUDE_KEY GE 104

LONGITUDE_KEY LE 104.5

Filters, described later in Section 2.5, only use one-way matching. In this case, the matching
procedure just compares non-IS operators in the first set of attributes against IS operators in the
second set, calling it a match if this operation is successful. For instance, in order to receive all
interest messages arriving at the node, a filter developer would add a filter with the following
attribute:

CLASS_KEY EQ INTEREST_CLASS

3

2.3 Using Attributes

In order to ease attribute creation and manipulation, the API provides factories to create attributes.
The attribute factories also include other functions that allow finding an attribute in a set of
attributes. An example of how to define and create an attribute is shown below:

#define TEMPERATURE_KEY 5050 // Defines key value for the attribute

// Creates a factory for the TEMPERATURE_KEY attribute

NRSimpleAttributeFactory<float> TemperatureAttr(TEMPERATURE_KEY,

NRAttribute::FLOAT32_TYPE);

// Creates a temperature attribute with the op IS and value 56.12

NRAttribute *temperature = TemperatureAttr.make(NRAttribute::IS, 56.12));

These factories are available for all supported types and can be used to create INT32 TYPE
(<int>), FLOAT32 TYPE (<float>), FLOAT64 TYPE (<double>), STRING TYPE (<char *>)
and BLOB TYPE (<void *>) attributes.

Also, the method getVal() returns the value of the attribute. The value from the attribute
created above can be accessed by:

float room_temperature = temperature->getVal();

Since several API functions require a set of attributes (to describe a subscription, publication,
filter, data, etc), the API defines the NRAttrV ec structure, which is a STL vector of pointers to
attributes. As a consequence, this version of the Network Routing API does not require applications
to explicitly pass the number of attributes in each API function interface. This information can
easily be obtained using the STL vector’s size() method.

This is an example that creates a set of attributes:

NRSimpleAttributeFactory<float> TemperatureAttr(TEMPERATURE_KEY,

NRAttribute::FLOAT32_TYPE);

NRSimpleAttributeFactory<float> HumidityAttr(HUMIDITY_KEY,

NRAttribute::FLOAT32_TYPE);

NRSimpleAttributeFactory<char *> MovieNameAttr(MOVIE_NAME_KEY,

NRAttribute::STRING_TYPE);

NRSimpleAttributeFactory<void *> LibraryCardAttr(LIBRARY_CARD_KEY,

NRAttribute::BLOB_TYPE);

main()

{

NRAttrVec attrs;

//

// Demonstrate making some attributes.

// All duplicative information is in the factory.

//

// Push back is an STL vector operation

attrs.push_back(TemperatureAttr.make(NRAttribute::IS, 56.12));

attrs.push_back(HumidityAttr.make(NRAttribute::IS, 0.78));

attrs.push_back(MovieNameAttr.make(NRAttribute::IS, "Harry Potter"));

4

char *card_id = "B34201S102";

attrs.push_back(LibraryCardAttr.make(NRAttribute::IS,

(void *) card_id,

strlen(card_id) + 1));

}

Attribute factories also provide the following find interfaces, which can be used to find an
attribute that has the same key as the factory in a set of attributes. The first form of the function
searches the set of attributes and returns the first one that matches the key. The second, more
general, form allows applications to specify where to start the search.

NRSimpleAttribute<T>* find(NRAttrVec *attrs,

NRAttrVec::iterator *place = NULL);

NRSimpleAttribute<T>* find_from(NRAttrVec *attrs,

NRAttrVec::iterator start,

NRAttrVec::iterator *place = NULL);

The following examples illustrate how these two functions can be used to find an attribute in a
set of attributes:

// Find a temperature attribute in a set of attributes

NRSimpleAttribute<float> *temp_attr = TemperatureAttr.find(&attrs);

if (!temp_attr){

// Attribute not present in the set

...

}

// Demonstrate extracting multiple attributes with the same key

NRAttrVec::iterator place = attrs.begin();

for (;;){

NRSimpleAttribute<char *> *movie = MovieNameAtt.find_from(&attrs, place,

&place);

if (!movie)

break;

// Process attribute

cout << "Movie = " << movie->getVal() << endl;

place++;

}

2.4 Additional Attribute Functions

In this section, we list additional functions that can be used to manipulate, compare and delete
attributes.

2.4.1 Matching Functions

Our API includes several functions that perform matching. Even though these functions are not
typically needed by applications, we document them here. They are members of the NRAttribute
class and their prototypes are as follows:

5

bool isEQ(NRAttribute *attr);

bool isGT(NRAttribute *attr);

bool isGE(NRAttribute *attr);

bool isNE(NRAttribute *attr);

bool isLT(NRAttribute *attr);

bool isLE(NRAttribute *attr);

All the above functions assume that both attributes have the same key and type. An example
of the use of these functions is shown below:

NRAttribute *lat1 = LatitudeAttr.make(NRAttribute::IS, 45.1);

NRAttribute *lat2 = LatitudeAttr.make(NRAttribute::IS, 38.3);

bool flag = lat1->isGT(lat2);

// flag is true !

2.4.2 Attribute Manipulation Functions

This version of the API includes the following additional functions that can be used to manipulate
sets of attributes:

NRAttrVec * CopyAttrs(NRAttrVec *src_attrs);

• This function returns a pointer to a newly created attribute vector, containing a copy of all
attributes from src attrs.

void AddAttrs(NRAttrVec *attr_vec1, NRAttrVec *attr_vec2);

• This function adds a copy of all attributes from attr vec2 to the existing attribute vector
attr vec1.

• After execution, attr vec1 will contain its original attributes and a copy of all attributes
present in attr vec2 (which will remain unchanged).

void PrintAttrs(NRAttrVec *attr_vec);

• This function prints all attributes present in attr vec using the function DiffPrint.

void ClearAttrs(NRAttrVec *attr_vec);

• This function will delete all attributes from attr vec. After the execution of ClearAttrs,
attr vec will be an empty vector (which still has to be deleted).

2.5 Filter API

Filters are application-specific code that run in the network to accomplish application-specific
processing like aggregation, caching, etc. With the Filter API, applications can specify a set of
attributes along with a callback. This causes diffusion to send incoming messages matching those
attributes to the application callback. As mentioned in section 2.2, filters are a special case of

6

Directed Diffusion Core

App

Filter
 F1

Filter
 F2

1

2 3

4 5 6 7

8

Figure 1: Message Flow in Directed Diffusion

the matching rules. When matching filters against incoming messages, the match is done one-way
only. Only operators in the filter have to be satisfied for a match to happen. Note that if a
filter is too generic, it will possibly receive messages from other applications too. For instance, if
the only attribute specified is CLASS KEY EQ INTEREST CLASS, all interest messages from all
applications will be forwarded to this callback.

When setting up a filter, the application has to specify its priority. This is used to define the
order filters will be called when multiple filters match the same incoming message. Higher numbers
are called first. Diffusion will not allow two filters to have the same priority, so this number should
be discussed with other developers to avoid problems.

If there is a match, the incoming message will be forwarded to the callback in the form of a
Message structure (described later in section 6.1). The message structure allows the callback to
access information that would otherwise be hidden from applications. This information include
message last hop, which contains either a neighbor id (or a random id that is picked upon start up
if node ids are not specified) or the constant LOCALHOST ADDR, indicating that the message
originated from a local application.

The filter callback has control of this message, which can be forwarded, changed and then
forwarded or discarded. Please refer to section 6.3 for a more detailed description.

2.5.1 Message Flow with the Filter API

This section describes the message flow in Directed Diffusion when using the Filter API. The
numbers in the text correspond to the numbers in figure 1, which illustrates the message flow.

Messages arriving at the Directed Diffusion Core module usually come from either the network
(1) or from local applications (3), which use the publish/subscribe/send interface to send interest
and data messages to the network.

Every incoming message is matched against all registered filters (see section 6.1 for a detailed
description on how to add a filter). The result is a list ordered by filter priority containing all filters
that resulted in a successful match.

Assuming that both filters F1 and F2 on figure 1 match the incoming message and P(F1) >

P(F2), where P(X) is the priority of filter X, Diffusion will forward the incoming message to filter
F1 (4) since it has the highest priority.

After processing the message, filter F1 can return the message to Directed Diffusion (5) by
calling SendMessage (see section 6.3). Note that the filter can return the same message it re-
ceived from Diffusion, a modified message, a complete new message, multiple messages (by calling
SendMessage more than one time) or even no messages (by returning from the callback without
calling SendMessage). Directed Diffusion will match returned messages against all registered filters

7

again and create a new list of filters (note that because filter F1 can change the message or send
new messages, the list of filters matching returned messages can be different than the original list).
What happens next depends if SendMessage is called with or without a new priority. Assuming
that the priority remains the same, if filter F1 is still present on this list, the message is sent to the
filter coming immediately after F1 in the list (in our case, filter F2 will receive the message (6)). If
the filter F1 is not present on this new list, the first filter on the list will receive the message. If there
are no other filters after F1, the message will be simply discarded. If a new priority is specified in
SendMessage, diffusion will start looking for filters whose priorities are below the specified priority.
This allows filters to send messages to other filters directly, bypassing the default ordering imposed
by diffusion.

Filters can also send messages directly to the network (e.g. (5), then (8)) or to a local application
(e.g. (5), then (2)) by calling SendMessage (see section 6.3 for more information). In this case,
other filters will not receive the message.

3 Performance Evaluation

As of the 9.0 version of the API, diffusion supports several variants that can offer better efficiency
for particular workloads. Developers therefore should know what performance/overhead to expect
when using diffusion in order to better decide how to implement their algorithms using this Net-
work Routing API. For a detailed description of how diffusion works, see [3]. We now present a
brief description of what happens when applications call Publish and Subscribe. For detailed API
information, please refer to section 4.

3.1 Basic Diffusion

Each subscription (i.e. call to Subscribe) causes diffusion library to periodically send an Interest
message (containing the subscription’s attributes) to the network. These interests messages are
flooded throughout the network. When they encounter publishers with matching data, simple
(non-reinforced) gradients are set up from the publisher to the subscriber. Calls to Publish, on the
other hand, do not cause any messages to leave the diffusion library API. The attributes specified
in the Publish call are just stored so later they can be used. When an application calls Send, the
attributes provided are added to the attributes from a previous Publish (using the handle provided).
These attributes form a Data message. Data messages are sent only through reinforced gradients.
Periodically, in order to discover new paths or repair broken paths, diffusion marks a data message
as exploratory and sends it to all nodes. When one of these messages reach a Subscriber, it will
cause a positive reinforcement to be sent to the Publisher. That is what makes regular gradients
become reinforced gradients.

In a brief summary, subscriptions cause periodic interest messages to flood the network and
therefore are expensive. Publications (and then Sends) incur no cost unless someone is interested
in the data. Usually Sends are cheap, sending data only on reinforced gradients, but periodically
they are expensive (when marked exploratory).

Basic diffusion is therefore best suited to cases where there are many publishers and a few
subscribers. If this situation is reversed, the PUSH option to diffusion (described next) can provide
better performance.

Also, basic diffusion must periodically flood information to all nodes. This cost can be reduced
using geographic information and GEAR as described in Section 3.3.

8

3.2 Using PUSH

PUSH is an option to diffusion that reverses the relative costs of Publish and Subscribe. When ap-
plications use PUSH, Interest messages generated by subscriptions are not sent out to the network.
They are kept local to the Subscriber node. From time to time, Data messages are turned into
exploratory data messages, and are flooded throughout the network. When one of these messages
reaches a Subscriber node, a positive reinforcement message will be sent to the Publisher in re-
sponse, setting up reinforced gradients on its way. Non-exploratory data messages will travel only
through these reinforced gradients. If there are no Subscribers for this datatype, there will not
be any reinforced gradients therefore non-exploratory messages will be suppressed at the Publisher
node.

In summary, subscriptions with PUSH are cheap since messages do not leave the Subscriber
node. Publishers, on the other hand, have no way of telling if there Subscribers interested in their
data therefore periodic exploratory data messages are flooded throughout the network.

PUSH offers more benefits when there are many Subscribers and/or when there are few data
messages to be sent from Publishers to Subscribers.

3.3 Using GEAR

GEAR, our Geographical and Energy Aware Routing protocol, uses geographic information for
making informed neighbor selection when routing packets towards a target region. Subscriptions
that contain a reference to a closed region (i.e. have two latitude attributes and two longitude
attributes, specifying a closed retangular region), are sent towards the specified region. This greatly
improves diffusion’s performance by avoid flooding Interest messages outside the subscription’s
region. Until a subscription gets inside the specified region, a node will forward interest messages
only to a neighbor that is located closer to the region, setting up a single path from the Subscriber
to the region’s border.

Since exploratory data messages travel only through gradients, they are not going to be flooded
outside the subscription’s region.

4 Publish/Subscribe API Interfaces

Following is a description of each of the methods that are part of the Publish/Subscribe network
routing API class.

4.1 Initialization

To initialize the NR class, there is a C++ factory called NR::createNR() that will create the NR
class and return a pointer to it.

The prototype of the function is as follows:

static NR * NR::createNR();

createNR() is a method rather than a constructor so that it can actually create a specific
subclass of class NR (one for MIT and one for ISI-W). It will create any threads needed to insure
callbacks happen.

9

4.2 Subscribe

The application declares interest in via the NR::subscribe interface. This function accepts a list of
interest attributes and uses this information to route data to the necessary nodes.

The prototype of the function is as follows:

handle NR::subscribe(NRAttrVec *subscribe_attrs, const NR::Callback * cb);

• subscribe attrs is a pointer to a STL vector containing the elements that describe the sub-
scription information (see notes above about the class type).

• cb indicates the class that contains the implementation of the method to be called when
incoming data (or tasking information) matches that subscription. The class inherits from
the following abstract base class:

class Callback {

public:

virtual void recv(NRAttrVec *data, handle h) = 0;

};

After subscriptions are diffused throughout the network, data arrives at the subscribing node.
The recv() method (implemented by the application) is called when incoming matching data
arrives at the network routing level. This method is used to pass the incoming data and
tasking information up to the caller. See section 4.7 for more detail about callbacks.

Subscribe returns a handle (which is an identifier of the interest declaration/subscription). This
handle can be used for a later unsubscribe() call. If there is an error in the subscription call (based
on local information, not the propagation of the interest), then a value of −1 will be returned as
the handle.

Note that the condition that no data matches the attributes is not considered an error condition—
if the application requires or expects data to be published, application-level procedures must de-
termine conditions that might cause no data to appear. (As one example, if the goal is to contact
a few nearby sensors, the application might start with a small region around it and expand or
contract that region until the expected number of sensors reply.)

Subscribes are used to get both data and to find out about subscriptions from other nodes. To
get data, (if you’re a data sink) subscribe with:

CLASS_KEY IS INTEREST_CLASS

SCOPE_KEY IS GLOBAL_SCOPE

If no SCOPE KEY attribute is specified, the API will assume GLOBAL SCOPE and this sub-
scription will propagate through the network and the callback will eventually trigger when matching
data returns. If the SCOPE KEY attribute is set to NODE LOCAL SCOPE, this subscription will
follow the PUSH semantics (please refer to section 3.2 for more information).

To find out about interests (if you’re a sensor or data source), subscribe with:

CLASS_KEY EQ INTEREST_CLASS

SCOPE_KEY IS NODE_LOCAL_SCOPE

10

The callback you provide will be called for each new subscription (with CLASS KEY IS IN-
TEREST CLASS). In order to also find out whenever a subscription goes away due to unsubscribe
or detection of node failure (timeout), subscribe including CLASS KEY NE DATA CLASS. This
will result in callbacks with CLASS KEY IS DISINTEREST CLASS. These callbacks will be made
at least once for each unique expression of interest. If multiple clients express interest in exactly
the same thing, this callback will occur at least once.

Note that some combinations of CLASS KEY and SCOPE KEY are not supported by this API.
In these cases, subscribe() will return −1.

4.3 Unsubscribe

The application indicates that it is no longer interested in a subscription via the NR::unsubscribe
interface. This function accepts a subscription handle (originally returned by NR::subscribe) and
removes the subscription associated with that passed handle.

The prototype of the function is as follows:

int NR::unsubscribe(handle subscription_handle);

• subscription handle is a handle associated with the subscription that the application wishes
to unsubscribe to. It was returned from the NR::subscribe interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of −1 is returned. Otherwise, 0 is returned for normal operation. If an unsubscribe is issued
for a subscription that contains a task, then the each node that has received that task will be
informed of the unsubscribe.

4.4 Publish

The application also indicates what type of data it has to offer. This is done via the publish
function.

The prototype of the function is as follows:

handle NR::publish(NRAttrVec *publish_attrs);

• publish attrs is an STL vector of publication declarations.

This function returns a handle (which is an identifier of the publication) that will be later used
for NR::unpublish. If there is an error in the publication call, then a value of −1 will be returned
as the handle. This handle is used later when unpublishing or sending data.

Note that if the application does not specify a SCOPE KEY attribute, NR::publish will assume
it to be NODE LOCAL SCOPE. If, however, the application wants to use PUSH semantics (please
refer to section 3.2), both CLASS KEY and SCOPE KEY attributes need to be specified. For
example:

CLASS_KEY IS DATA_CLASS

SCOPE_KEY IS GLOBAL_SCOPE

11

4.5 Unpublish

The publish interface has a matching unpublish interface, NR::unpublish.

The prototype of the function is as follows:

int NR::unpublish(handle publication_handle);

• publication handle is the handle associated with the publication that the application wishes
to unpublish. It was returned from the NR::publish interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of −1 is returned. Otherwise, 0 is return for normal operation.

4.6 Send

After publications are set up, the application can send data via the NR::send function. This function
will accept a set of attributes to send associated with a publication handle (the handle used in the
associated NR::publish function call). This method does not guarantee delivery, but the system
will make reasonable efforts to get it to its destination.

The prototype of the function is as follows:

int NR::send(handle publication_handle, NRAttrVec *send_attrs);

• publication handle is the handle that is associated with the block of data that was sent.

• send attrs is a pointer to a STL vector containing the attributes to be associated with the
send. (In addition to those attributes defined in the original publication.)

The return value indicates success/failure. If there is a problem with the arguments, then an
error code of −1 is returned. Otherwise, 0 is returned for normal operation. If there is currently
no one interested in the message (no matching subscription), then it will not consume network
resources.

4.7 Recv

After the subscribe is issued from the application thread, the application thread can wait for the
reception of information via the NR::Callback::recv() method.

The network routing system will provide a thread to make callbacks happen. Since there is
only one such thread in the system, the callback function should return reasonably quickly. If the
callback needs to do some compute-bound or IO-bound task, it should signal another thread.

The attributes received in this function should be treated as read-only. The API will delete
them as soon as the callback returns. The application must copy the appropriate attribute(s) if
they are needed after the recv function returns.

12

5 Timer API

In our Network Routing API, we have included support for timers in order to support event-driven
applications. As described below, applications and filters can setup timers to call an application
provided callback. Timers can also be removed from the API’s event queue.

In diffusion 3.1.3, our Timer API has changed. This section describes this updated version.
The old API, described in earlier versions of this document, is still supported but as we plan to
drop it in our next major release, developers are urged to use the API described here.

5.1 Add Timer

Applications can set up a timer via the NR::addTimer interface. The function calls the provided
callback after the specified time has elapsed.

The prototype of the function is as follows:

handle NR::addTimer(int timeout, TimerCallback *callback);

• timeout specifies the time to wait before calling the recv callback (in msecs)

• callback indicates the class that contains the implementation of the methods to be called when
the timer expires or when the timer is being deleted. The class inherits from the following
abstract base class:

class TimerCallback {

public:

TimerCallback() {};

virtual ~TimerCallback() {};

virtual int expire() = 0;

};

Note that there is no need for any callback-specific parameters in NR::addTimer as application
and filter developers can add instance variables and task-specific functions to the derived class.
For instance, a timer used to send a message after a specific timeout, will probably include
the actual message to be sent.

The expire() method, implemented by the application, is called when the timer expires. The
return value indicates if the timer should be rescheduled and the new timeout. A return value
of 0 indicates the application wants to reschedule the timer with the same timeout (provided
previously in NR::addTimer). A positive return value causes the timer to be rescheduled with
a new timeout (in msecs). A negative return value indicates the timer is to be deleted from
the event queue. Note that it is the user’s responsibility to delete the timer callback. For
example:

int SendDetectionTimer::expire()

{

// Send detection

dr_->send(handle_, detection_attrs_);

// Delete this timer

13

delete this;

return -1;

}

5.2 Remove Timer

The application indicates that it wants to cancel a pending timer via the NR::removeTimer interface.
This function accepts a timer handle (originally returned by NR::addTimer) and removes associated
timer from the event queue.

The prototype of the function is as follows:

int NR::removeTimer(handle timer_handle);

• timer handle is a handle associated with the timer that the application wishes to cancel. It
was returned from the NR::addTimer interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of −1 is returned. Otherwise, 0 is return for normal operation.

6 Filter API

The following sections describe the interfaces for the Filter API. It should be used to run application
code in the network for application specific processing.

6.1 Add Filter

Application can set up filters via the NR::addFilter interface. This function accepts a set of at-
tributes that are matched against incoming messages, as described in section 2.2.

The prototype of the function is as follows:

handle addFilter(NRAttrVec *filter_attrs, u_int16_t priority,

FilterCallback *cb);

• filter attrs is a pointer to a STL vector containing the attributes of this filter. Note that for
filters, matching is performed one-way (messages have to match the operators specified in the
filter).

• priority is the filter priority (larger numbers are called before smaller ones). This number has
to be agreed with other application developers.

• cb indicates the class that contains the implementation of the method to be called when an
incoming message matches the filter. The class inherits from the following abstract base class:

class FilterCallback {

public:

virtual void recv(Message *msg, handle h) = 0;

};

14

The handle h is the same handle returned by NR::addFilter and the message msg points to
a message class containing the message that was matched against the filter’s attributes. The
message class is defined as follows:

class Message {

public:

// Read directly from the packet header

// (other internal fields omitted here)

int32_t next_hop_; // Message next hop. Can be BROADCAST_ADDR if

// a neighbor node sent it to broadcast,

// LOCALHOST_ADDR if it came from a local application

// or it can be this node’s ID if the message was sent

// by a neighbor to this node only.

int32_t last_hop_; // Can be either a neighbor’s ID or LOCALHOST_ADDR, if

// the message comes from a local application.

// Other flags

bool new_message_;

// Message attributes

NRAttrVec *msg_attr_vec_;

};

NR::AddFilter returns a handle (which is an identifier of the filter). This handle can be used
for a later NR::removeFilter call. If there is an error in the NR::addFilter call, then the error code
−1 will be returned.

6.2 Remove Filter

The application indicates that it is no longer interested in a filter via the NR::removeFilter interface.
This function accepts a filter handle (originally returned by NR::addFilter) and removes the filter
associated with that passed handle.

The prototype of the function is as follows:

int NR::removeFilter(handle filter_handle);

• filter handle is a handle associated with the filter that the application wishes to remove. It
was returned from the NR::addFilter interface.

The return value indicates success/failure. If there is a problem with the handle, then an error
code of −1 is returned. Otherwise, 0 is return for normal operation.

6.3 Send Message

A filter callback can use the NR::sendMessage interface to send a message to the next filter, to an
arbitrary filter, or to the the network/other applications. An example of how to use this function
is presented later, in section 8.2, where the ’log’ filter, using a high priority, receives all messages
before any other filter and then passes it to other filters, after logging some information on the
terminal (since messages are not changed, this is totally transparent to other filters downstream).

15

void NR::sendMessage(Message *msg, handle h,

u_int16_t priority = FILTER_KEEP_PRIORITY);

• msg is a pointer to the message the application wants to send.

• h is the handle received from addFilter.

• priority can be used to tell diffusion to start looking for matching filters which have priorities
lower than the one specified here. If this parameter is ommited, diffusion will follow its regular
rules for determining which filter should get this message next. For further details, please
refer to section 2.5.

If diffusion cannot find any filters matching a message sent by NR::sendMessage, it will try to
send the message to the network (node specified in msg->next hop if msg->next port is set to 0)
or to a local application (if msg->next port is different than 0 and msg->next hop is LOCAL-
HOST ADDR).

7 Publish/Subscribe API Walk Through

This walkthrough considers, at a high-level, what happens in the network when an user node is
interested in a specific target.

A user node (say, Node A) wants information about TELs and expresses this interest by calling
NR::subscribe with the following attributes:

Subscription 1:

CLASS_KEY IS INTEREST_CLASS

SCOPE_KEY IS GLOBAL_SCOPE

LONGITUDE_KEY GE 10

LONGITUDE_KEY LE 50

LATITUDE_KEY GE 20

LATITUDE_KEY LE 40

TASK_FREQUENCY_KEY IS 500

device_type EQ seismic

TARGET_KEY IS TEL

TARGET_RANGE_KEY LE 50

TASK_NAME_KEY IS detect_track

TASK_QUERY_DETAIL_KEY IS [query_byte_code]

Note the distinction between IS which specifies a known value and EQ, which specifies a re-
quired match. All of the comparisons are currently ANDed together. The query parameters that
interact with network routing (for example, lat/lon) must be expressed as attributes, but some
other parameters may appear only in application-specific fields (such as the query byte code in this
example).

NR::subscribe returns right away with a handle for the interest. Because this interest has a
global scope, network routing forwards it to the neighboring nodes, that proceed using the pre-
defined rules.

Nodes with sensor(s) tell network routing about the type of data they have available by publish-
ing. An application on a node (say, Node B) would call NR::publish with the following attributes:

16

Publication 1:

CLASS_KEY IS DATA_CLASS

SCOPE_KEY IS NODE_LOCAL_SCOPE

LONGITUDE_KEY IS 10

LATITUDE_KEY IS 20

TASK_NAME_KEY IS detectTrack

TARGET_RANGE_KEY IS 40

device_type IS seismic

After receiving the handle, the application can start sending data with the NR::send command.
For example, each detection it might invoke send() with the attribute (CONFIDENCE KEY IS
.8) and then handle from the publish command. This attribute (CONFIDENCE KEY) would be
associated with the other attributes associated with publish handle and eventually delivered to
anyone with a matching subscribe. Initially, since the node has no matching interest, the data will
not propagate to other nodes. When interests arrive, data will begin to propagate.

In some cases, the application may wait to start sensing until it has been tasked, either to avoid
doing unnecessary work, or to use the parameters in the interest to influence what it looks for.
In this case, the sensor would get the task by subscribing to interests with NR::subscribe and the
following attributes:

Subscription 2:

CLASS_KEY NE DATA_CLASS

SCOPE_KEY IS NODE_LOCAL_SCOPE

LONGITUDE_KEY IS 10

LATITUDE_KEY IS 20

TASK_NAME_KEY IS detectTrack

TARGET_RANGE_KEY IS 40

device_type IS seismic

(The only difference in these attributes with the publish call is in the CLASS key and opera-
tor.) The callback associated with this subscribe will then be called each time a new subscription
arrives or goes away. Arrivals will have CLASS KEY IS INTEREST CLASS, unsubscribes will
have CLASS KEY IS DISINTEREST CLASS.)

7.1 Using PUSH and GEAR

There are a few things to consider when using PUSH or GEAR. Note that because Subscription
1 specifies a closed region, GEAR can be used to route this subscription towards nodes in the
mentioned region. No changes are required to the application code. Note that GEAR is a separate
program that needs to be started along with diffusion and gradient.

If the application developer wanted to use PUSH semantics, Subscription 1 and Publication 1
would have to be changed to:

Subscription 1: (PUSH Semantics)

CLASS_KEY IS INTEREST_CLASS

SCOPE_KEY IS NODE_LOCAL_SCOPE

LONGITUDE_KEY GE 10

17

LONGITUDE_KEY LE 50

LATITUDE_KEY GE 20

LATITUDE_KEY LE 40

TASK_FREQUENCY_KEY IS 500

device_type EQ seismic

TARGET_KEY IS TEL

TARGET_RANGE_KEY LE 50

TASK_NAME_KEY IS detect_track

TASK_QUERY_DETAIL_KEY IS [query_byte_code]

Publication 1: (PUSH Semantics)

CLASS_KEY IS DATA_CLASS

SCOPE_KEY IS GLOBAL_SCOPE

LONGITUDE_KEY IS 10

LATITUDE_KEY IS 20

TASK_NAME_KEY IS detectTrack

TARGET_RANGE_KEY IS 40

device_type IS seismic

Note that the only difference is on the SCOPE KEY attributes. Also, since PUSH causes
interest messages to remain local to the Subscriber node, there is no reason to have Subscription
2, as there are no interest messages to match it.

8 API Usage Examples

This section provides examples on how to use the Network Routing Publish/Subscribe and Filter
APIs.

8.1 Publish/Subscribe Example

Step 0: Includes and Definitions

#include "diffapp.hh" // Everything from diffusion you will need

// You should implement your application in

// a class derived from DiffApp, something like:

class MyApplication : public DiffApp

{

public:

MyApplication(int argc, char **argv);

// Your stuff goes here

};

Step 1: Initialization of Network Routing

{

// This code is in the initialization routine of the

// network routing client. It should be somewhere in

18

// your class

.

.

.

// Parse diffusion related command line arguments (this is not

// necessary, but won’t hurt either). It’s defined in the DiffApp

// class

parseCommandLine(argc, argv);

// Create an NR instance. This will create the NR instance

// and return a pointer to that instance. You can use the dr_

// pointer (defined in the DiffApp class) to store it...

// Specifying diffusion_port_ (also defined in the DiffApp class),

// is optional, and is used to pass the port specified in the -p

// command line option

dr_ = NR::createNR(diffusion_port_);

// Setup the publications and subscriptions for this NR client.

// Note the details of the following calls are found in step 3

setupPublicationsOnSensorNode();

setupSubscriptionsOnSensorNode();

.

.

.

// Do any other initialization stuff here...

}

Step 2: Create callbacks for incoming data/subscriptions

// In a header file somewhere in the client setup two callback

// classes. One to handle incoming data and the other to handle

// incoming subscriptions/tasking.

class DataReceive : public NR::Callback {

public:

void recv(NRAttrVec *data,

NR::handle h);

};

class TaskingReceive : public NR::Callback {

public:

void recv(NRAttrVec *data,

NR::handle h);

};

// In the appropriate C++ file, define the following methods

void DataReceive::recv(NRAttrVec *data,

NR::handle h)

19

{

// called every time there is new data.

// handle it.

}

void TaskingReceive::recv(NRAttrVec *data,

NR::handle h)

{

// Handle incoming tasking.

}

Step 3: Setup publications and subscriptions

void setupPublicationsOnSensorNode()

{

// Setup a publication with 4 attributes.

NRAttrVec attrs;

attrs.push_back(NRClassAttr.make(NRAttribute::IS,

NRAttribute::DATA_CLASS));

attrs.push_back(DeviceAttr.make(NRAttribute::IS,

"seismic");

attrs.push_back(LatitudeAttr.make(NRAttribute::IS, 54.78));

attrs.push_back(LongitudeAttr.make(NRAttribute::IS, 87.32));

// publish these attributes save the pub_handle

// somewhere like in the private data.

pub_handle_ = dr_->publish(&attrs);

// Delete the attributes (they have been copied by publish)

ClearAttrs(&attrs);

if (pub_handle_ == -1)

{

// ERROR;

}

}

// create two subscriptions (one for the sensor node and the

// other for the user node.

void setupSubscriptionsOnSensorNode()

{

// (1) the first subscription indicates that I am interested in

// receiving tasking subscriptions for this node.

//

// Each of the subscriptions will have its own callback

// to separate incoming subscriptions and incoming data.

// ****************

// SUBSCRIPTION #1: First setup the subscription for

// tasking interests...

20

NRAttrVec attrs;

attrs.push_back(NRClassAttr.make(NRAttribute::EQ,

NRAttribute::INTEREST_CLASS));

attrs.push_back(NRScopeAttr.make(NRAttribute::IS,

NRAttribute::NODE_LOCAL_SCOPE));

attrs.push_back(DeviceAttr.make(NRAttribute::EQ_ANY, "");

// Create the callback class that will be used to

// handle subscriptions that match this subscription.

TaskingReceive * tr = new TaskingReceive();

// subscribe and save the handle somewhere

// like in the private data.

task_sub_handle_ = dr_->subscribe(&attrs, tr);

// Delete the attributes (they have been copied by publish)

ClearAttrs(&attrs);

if (task_sub_handle_ == -1)

{

// ERROR;

}

}

void setupSubscriptionsOnUserNode()

{

// (2) the second subscription indicates that I am interested in

// nodes that have seismic sensors in a particular region

// and have

// them run a task call detectTel (with some specific query

// byte code attached). This task instructs the nodes to send

// data back.

// ****************

// SUBSCRIPTION #2: First setup the subscription for

// tasking subscriptions...

NRAttrVec attrs;

attrs.push_back(NRClassAttr.make(NRAttribute::IS,

NRAttribute::INTEREST_CLASS));

attrs.push_back(DeviceAttr.make(NRAttribute::IS, "seismic");

attrs.push_back(LatitudeAttr.make(NRAttribute::GE, 44.0));

attrs.push_back(LatitudeAttr.make(NRAttribute::LE, 46.0));

attrs.push_back(LongitudeAttr.make(NRAttribute::GE, 103.0));

attrs.push_back(LongitudeAttr.make(NRAttribute::LE, 104.0));

attrs.push_back(TaskNameAttr.make(NRAttribute::IS, "detectTel"));

attrs.push_back(TaskQueryDetailAttr.make(NRAttribute::IS,

&query_byte_code.contents,

query_byte_code.len));

// Create the callback class that will be used to

// handle subscriptions that match this subscription.

21

DataReceive * drcv = new DataReceive();

// subscribe and save the handle somewhere

// like in the private data.

data_sub_handle_ = dr_->subscribe(&attrs, drcv);

// Delete the attributes (they have been copied by publish)

ClearAttrs(&attrs);

if (data_sub_handle_ == -1)

{

// ERROR;

}

Step 4: Sending data

{

.

.

// When one of the clients have data to send, then it will use

// the NR::send method. Assume that there is acoustic data to

// send (matching the publish call above). The data is found

// in the variable adata with the size of adata_size.

NRAttrVec attrs;

attrs.push_back(AppBlobAttr.make(NRAttribute::IS,

&adata,

adata_size));

if (dr_->send(pub_handle, &attrs) == -1)

{

// ERROR;

}

// Delete the attributes (they have been copied by send)

ClearAttrs(&attrs);

.

.

}

Step 5: Receiving data

(the ReceiveData callback is called every time data arrives)

8.2 Filter API Example

In this section we describe a simple module that uses the Filter API to receive INTEREST messages
received by data diffusion. The filter calls addFilter with a high priority (in order to get the packets
before other filters). After logging an arrival (printing a packet has arrived along with where it came
from), the Log filter returns this (unmodified) message to data diffusion so other filters/applications
can receive them.

Please note that the following code is a modified version of the log filter (supplied with the

22

current diffusion release).

// Step 0: Includes

#include "diffapp.hh" // Includes everything it is needed from diffusion

#define LOG_FILTER_PRIORITY 16 // This is higher than gradient/gear

class LogFilter : public DiffApp

{

LogFilter(int argc, char **argv);

// Your stuff here. It’s recommended that all applications and filters

// derive from the DiffApp class

}

// Step 1: Initialization

LogFilter::LogFilter(int argc, char **argv)

{

// Create Diffusion Routing class

parseCommandLine(argc, argv); // Not necessary, but recommended.

// Takes care of setting up debug level,

// diffusion port

dr_ = NR::createNR(diffusion_port_); // Both dr_ and diffusion_port_ are

// part of the DiffApp class

filter_callback_ = new LogFilterReceiver();

// Set up the filter

filter_handle_ = setupFilter();

DiffPrint(DEBUG_ALWAYS, "Log Filter received handle %d\n", filter_handle_);

DiffPrint(DEBUG_ALWAYS, "Logging App initialized !\n");

}

// In the header file, the Filter API client setup a callback class.

class LogFilterReceive : public FilterCallback {

public:

void recv(Message *msg, handle h);

};

// setupFilter() creates an attribute that matches all

// INTEREST messages coming to diffusion routing

handle LogFilter::setupFilter()

{

NRAttrVec attrs;

handle h;

// This attribute matches all interest messages

attrs.push_back(NRClassAttr.make(NRAttribute::EQ,

NRAttribute::INTEREST_CLASS));

23

h = ((DiffusionRouting *)dr_)->addFilter(&attrs,

LOGGING_FILTER_PRIORITY,

filter_callback_);

ClearAttrs(&attrs);

return h;

}

Step 2: Handle callbacks

// Implement the Filter API callback

void LogFilterReceive::recv(Message *msg, handle h)

{

DiffPrint(DEBUG_ALWAYS, "Received a");

if (msg->new_message_)

DiffPrint(DEBUG_ALWAYS, " new ");

else

DiffPrint(DEBUG_ALWAYS, "n old ");

if (msg->last_hop_ != LOCALHOST_ADDR)

DiffPrint(DEBUG_ALWAYS, "INTEREST message from node %d\n", msg->last_hop_);

else

DiffPrint(DEBUG_ALWAYS, "INTEREST message from agent %d\n", msg->source_port_);

// We shouldn’t forget to send the message back to diffusion routing

((DiffusionRouting *)dr_)->sendMessage(msg, h);

}

References

[1] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin,
and Deepak Ganesan. Building efficient wireless sensor networks with low-level naming. In
Proceedings of the Symposium on Operating Systems Principles, pages 146–159, Chateau Lake
Louise, Banff, Alberta, Canada, October 2001. ACM.

[2] John Heidemann, Fabio Silva, Yan Yu, Deborah Estrin, and Padmaparma Haldar. Diffusion
filters as a flexible architecture for event notification in wireless sensor networks. Technical
Report ISI-TR-556, USC/Information Sciences Institute, April 2002.

[3] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. In Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, pages 56–67, Boston, MA,
USA, August 2000. ACM.

24

