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Abstract—Distributed Denial-of-Service (DDoS) attacks ex-
haust resources, leaving a server unavailable to legitimate clients.
The Domain Name System (DNS) is a frequent target of DDoS
attacks. Since DNS is a critical infrastructure service, protecting
it from DoS is imperative. Many prior approaches have focused
on specific filters or anti-spoofing techniques to protect generic
services. DNS root nameservers are more challenging to protect,
since they use fixed IP addresses, serve very diverse clients and
requests, receive predominantly UDP traffic that can be spoofed,
and must guarantee high quality of service. In this paper we
propose a layered DDoS defense for DNS root nameservers. QOur
defense uses a library of defensive filters, which can be optimized
for different attack types, with different levels of selectivity. We
further propose a method that automatically and continuously
evaluates and selects the best combination of filters throughout
the attack. We show that this layered defense approach provides
exceptional protection against all attack types using traces of ten
real attacks from a DNS root nameserver. Our automated system
can select the best defense within seconds and quickly reduces
traffic to the server within a manageable range, while keeping
collateral damage lower than 2%. We can handle millions of
filtering rules without noticeable operational overhead.

I. INTRODUCTION

Distributed-Denial-of-Service (DDoS) attacks remain a se-
rious problem [5], [34], [49], [16], in spite of decades of
research and commercial efforts to curb them. Ongoing Covid-
19 pandemic and increased reliance of our society on network
services, have further increased opportunities for DDoS at-
tacks. According to the security company F5 Labs, between
January 2020 and March 2021, DDoS attacks have increased
by 55% [13]. While some large-volume DDoS attacks make
front page news (for example, the 1.35Tb/s [35] attack on
Github in Feb. 2018, or 2021 17.2M requests per second
attack, detected by CloudFlare [56]), many more attacks occur
daily and disrupt operations of thousands of targets [47], [4].

This paper focuses on protecting the Domain Name System
(DNS) root servers against DDoS attacks. The root-DNS
service is a high-profile, critical service, and it has been subject
to repeated DDoS attacks in the past [50], [1], [2], [31], [42].
In addition, because the DNS root “bootstraps” DNS, it is
served on specific IP addresses that cannot be easily modified,
thus precluding use of many traditional DDoS defenses that
redirect traffic to clouds to distribute load [11].

There are many types of DDoS attacks. Some attacks
are conceptually easy to mitigate with firewalls, assuming
upstream capacity is sufficient, such as volumetric attacks
using junk traffic. Others, such as exploit-based attacks, re-
main pernicious, but automated patching and safer coding
practices offer promise. Most challenging are attacks using

legitimate-seeming application traffic, since a flash-crowd at-
tack from millions of compromised hosts (also known as
layer-7 or application-layer attacks) can resemble a legitimate
flash crowd, when many legitimate clients access popular
content. At DNS root servers, flash crowd attacks would
generate excessive DNS queries. Because legitimate clients
also generate DNS queries, it is challenging to filter out attack
traffic. We focus on mitigation of flash-crowd attacks on DNS
root servers.

In flash-crowd attacks, attack traffic often appears iden-
tical in content to legitimate traffic. Approaches to handle
flash-crowd attacks thus focus on withstanding the attack
using cloud-based services [14], [37], [32], [40]. Other ap-
proaches aim to separate legitimate from attack clients, e.g.,
via CAPTCHAs [36], or by using models of typical client
behavior [39], [45]. These defenses work poorly for DNS root
servers. First, the DNS root operates at small number of fixed
IP addresses that cannot be easily changed. This restriction
precludes use of traditional defenses that redirect traffic to
clouds [11]. Second, DNS traffic to roots is generated by
recursive resolvers. Since there is neither direct interaction
with a human nor a web-based user interface, CAPTCHAs
cannot be interposed. Third, aggressive client identification
requires modeling a typical legitimate client. Building a typical
client model at roots is challenging, because client request
rates vary by five orders of magnitude, from a few queries per
day to thousands of queries per second. A model that spans
all types of clients can be too permissive, while a model that
captures a majority of clients may drop legitimate traffic from
large senders. Since most DNS traffic is currently UDP-based,
spoofing also is a challenge and spoofers can masquerade as
legitimate clients.

In this paper we propose a multi-layer approach to DNS root
server defense against DDoS attacks, called DDiDD — DDoS
Defense in Depth for DNS. Our first contribution is to propose
an automated approach to select the best combination of filters
for a given attack. Selecting from a library of possible filters is
important, since different filters are effective against different
attacks, and each filter has a different false positive rate, and
different operational cost, which precludes its continuous use.
DDiDD selects the best combination of filters quickly (within
3s) and continuously re-evaluates filtering effectiveness. When
attack traffic changes (e.g., in case of polymorphic attacks),
DDiDD quickly detects decrease in the filtering effectiveness
and re-selects a new, better combination, thereby adjusting to
dynamic attacks.



Our second contribution is to propose a novel wild client
filter for DNS. We provide the first open description and evalu-
ation of a filter that models per-client behavior for DNS clients.
Client modeling is widely used to protect web servers [46]
where a single model for a “typical” web client suffices. DN'S
shows a huge range of rates (over 5 orders of magnitude)
across clients, so any model that captures this entire range will
be too permissive. Instead, we model each client separately
during pre-attack periods, and identify as attackers the clients
that become more aggressive during attacks. In deployment
we combine this filter with anti-spoofing filters to establish
trust in client identities.

Our final contribution is to perform evaluation of each
candidate filter, including our wild resolver filter and six other
filters proposed in prior work [43], [51], [23], [33]. While
prior work quantified performance of some individual filters
for general DDoS attacks [51], [23], [33], and other work
qualitatively described commercial deployments (such as Aka-
mai’s [43]), we are the first to evaluate each filter quantitatively
against real DDoS attacks on a DNS root. We are also the
first to propose and evaluate a dynamic multi-filter system
for protection of DNS roots against DDoS. Our evaluation
uses real-world attacks and normal traffic taken over 6 years
from B-root, as well as an adversarial, polymorphic attack
we have synthesized. Our evaluation confirms that no single
filter outperforms the others, but together they provide a stable
defense against different attack types converging in 3s or
less, with low collateral damage (at most 2%). Our analysis
provides evidence for the DNS operators about the importance
of having an automated system, and it provides insights about
individual filter performance against different types of attacks.

We focus our work on the DNS root server system to meet
its unique challenges, but our results also apply to other self-
hosted, authoritative DNS servers.

We release the DDoS datasets that we use in this paper [3].

II. BACKGROUND: DNS AND DDOS

The Domain Name System (DNS) is critical Internet in-
frastructure that maps between human-readable names and
resources such as IP addresses. DNS names are hierarchical,
with the root, top-level domains (TLDs), like .com and
. uk, and subdomains, like example . com. This hierarchy is
distributed across many authoritative nameservers (‘“‘authorita-
tives” for short). Users usually do not directly query the DNS,
but instead use recursive resolvers (“recursives” for short) that
resolve names on their behalf. Each recursive usually provides
service for many users, caching responses to speed access.

For resilience, root zone is served by 13 identifiers, each
at a unique, anycasted IPv4 and IPv6 address, served by
multiple authoritative servers at multiple geographical points
of presence (PoPs). Three aspects make the authoritatives for
the DNS root challenging to defend from flash-crowd DDoS
attacks. First, most DNS queries use connectionless UDP (not
TCP), so it is trivial for an attacker to spoof source IP ad-
dresses, making defenses that model client behavior unreliable.
Second, root authoritative servers see a huge range of query

rates from different recursives—over five orders of magnitude,
and huge query content diversity. This variation makes it
impossible to produce a single, tight model for a “typical
recursive behavior”. Third, the DNS root is used to bootstrap
the DNS system, and so it operates at fixed IP addresses.
Although resolvers refresh this list on startup [26], the list is
expected to be mostly static. Deploying new root servers takes
months of careful planning. Thus defenses typically used by
Content Delivery Networks (CDNs) to shift traffic to different
servers (such as [11]) cannot be used to protect DNS root.

Because of its visibility and defensive challenges, the DNS
root has been the target of several DDoS attacks. During large,
volumetric attacks in 2002 [9], 2007 [21], and 2015 [31],
several of the 13 root identifiers showed service degradation
(we show other events in §V). Although caching of root
contents at recursives reduces the end-user impact of these
attacks [30], [27], DNS outages at CDNs have impacted
prominent user-facing services [47]. Effective DDoS defense
for the DNS root is thus necessary.

III. RELATED WORK

DDoS attacks have been a problem for more than two
decades, and many research and commercial defenses have
been proposed. This section reviews only those solutions that
are closely related to our approaches and to protecting DNS
servers against DDoS.

A. Flash-Crowd DDoS Defenses

CAPTCHAs [8], [25] are a popular defense against flash-
crowd attacks. They can be used together with other indicators
of human user presence, to differentiate between humans and
bots. However, DNS queries come from recursives, not directly
from human users, so there is no opportunity for a CAPTCHAs
intervention. FRADE [46] is a flash-crowd DDoS defense,
which builds models of how human users interact with a
Web server, including query rates and query content, and
uses them to detect bot-generated traffic. FRADE models a
typical client’s behavior. While this works for Web servers,
which are browsed by humans, request rates and contents of
DNS recursives vary widely. FRADE thus cannot protect DNS
servers against DDoS.

Creating an allow-list of known-good clients is suggested in
several studies and RFCs [12], [55], [38], [18], [29] for general
protection from unwanted traffic. However, the approaches
to create a list of known-good recursives for DNS roots
have not been described nor evaluated. We evaluate this idea
in this paper under the name ‘“unknown recursive filter,” in
conjunction with hop-count filtering [23], and show that it
works well to filter out spoofed attack traffic, but cannot handle
attacks that do not use IP spoofing.

Many companies provide DDoS solutions, which may
combine signature-based filtering, rate limiting, and traffic
distribution using cloud resources and anycast. Such solu-
tions are offered by Akamai [43], [19], Verizon [10], and
Cloudflare [54], [17], for example. Since these solutions are
proprietary, we cannot compare against them directly. In
addition, they often collect traffic with DNS-based redirection



or route announcement (friendly hijacking). Neither of these
redirections are possible for root DNS service, which must
operate at a fixed IP address, and cannot easily be re-routed.

B. Spoofed Traffic Filtering

Several filters to remove spoofed traffic have been proposed:
hop-count filtering [51], [23], [33], route traceback [44],
route-based filtering [15], path identifier [53], unknown client
filtering [55], [38], and client legitimacy based on network,
transport and application layer information [48]. Of these ap-
proaches, only hop-count filtering and unknown client filtering
can be deployed on or close to the target, and thus show
promise for protection of DNS root servers. In hop-count
filtering, the filter learns which IP TTL values are used in
packets from a given source IP address, and uses this to filter
out spoofed packets. The original approach [51] advocates
for storing one expected hop-count per source. Mukaddam et
al. show that recording a list of possible hop-counts improves
the precision of TTL filters [33]. These studies are performed
on 10-20 years old traceroute measurements, and they assume
reliable inference of TTL filters from established TCP connec-
tions. Both Internet topology and application dynamics have
since evolved, and DNS traffic is predominantly UDP. Our
paper fills this gap, by evaluating hop-count filtering against
DDoS with real attack and legitimate traffic, spanning six years
and ten attack events.

C. DDoS on DNS

BIND pioneered Response Rate Limiting (RRL) to avoid
excessive replies [22] and conserve outgoing network capacity
during a volumetric query DDoS. RRL addresses a few
misbehaving clients and outgoing amplification attacks, but
it does not address well-distributed, volumetric attacks from
large botnets.

Akamai uses sophisticated scoring and priority queuing to
protect their authoritative DNS servers from floods [19], [43].
Akamai scores queries with the source’s expected rate, if the
resolver participated in prior attacks, the source’s NXDomain
fraction, query similarity from that source, and an evaluation
of TTL consistency. While two of these scoring approaches
are similar to our unknown resolver and wild resolver filters,
there are three major differences. First, Akamai provides
no quantitative data about how various scoring approaches
perform against real attack events. We contribute a careful
quantitative evaluation of how well different filters work
against playback of real attacks. Second, we propose a specific
mechanism to select filter combinations, and reevaluate them
when necessary. Akamai’s approach uses all filters at once
to calculate each query score, and Schomp et al. [43] do not
describe how the filters interact. Finally, key parts of Akamai’s
scoring system run inline with processing, requiring high-
speed packet handling. Our approach operates in parallel with
packet processing, evaluating resolvers to identify potential
attackers (or known-good resolvers), simplifying deployment,
particularly for lower-end hardware.

Prior work has studied real DDoS events, inferring opera-
tor responses using anycast, and suggesting possible anycast

options in DNS roots [31]. Recent work has taken this idea
further, suggesting that a network playbook can pre-evaluate
routing options to shift traffic across anycast sites [40]. Our
work complements this line of research, by studying how
filters can reduce load at each anycast site.

Finally, several groups have suggested fully distributing the
root to all recursives [20], [6], [28]. Such wide replication
would greatly reduce the threat of DDoS on the root, but not
on other DNS authoritative servers. As a result, on-site defense
is still necessary to mitigate DDoS attacks on DNS.

1V. DDiDD DESIGN

Our goal is to design an automated system, which contin-
uously evaluates suitability of multiple filters to handle an
ongoing DDoS attack on a DNS root server. Our system
needs to quickly select the best filter or the combination of
filters, reasoning about the projected impact on the attack,
the collateral damage from the filter on legitimate recursives’
traffic and the operational cost. The system should also be able
to adjust its selection as attack changes. Finally, individual
filters need to be configured to achieve optimal performance —
high effectiveness against attacks they are designed to handle
and low collateral damage.

DNS root may also experience a legitimate flash crowd,
e.g., when many clients access some popular online content.
Due to caching, queries for existing TLDs should not create
flash crowd effect, but queries for non-existing TLDs may,
since their replies are not cached. DDiDD will only activate
when excessive queries overwhelm server resources. Unless
the server can quickly draft more resources (e.g., through
anycast) some queries have to be dropped. Without DDiDD,
random legitimate queries would be dropped. DDiDD (§V)
mostly drops queries from sources causing the legitimate flash
crowd.

A. Threat Model

We assume that an attacker’s goal is to exhaust some key
resource at a target by sending legitimate-like requests to the
server. Current authoritative servers (including root) do not
store state between requests, so the attacker can target CPU
resources, incoming bandwidth or outgoing bandwidth. In all
cases, the attacker generates more requests than the server can
process per second. The attacker may spoof these requests, or
they may compromise new or rent existing bots and send non-
spoofed requests.

A spoofing attacker may spoof at random, or they may
choose specific IP addresses to spoof. In some cases, the
attacker may choose to spoof addresses of existing, legitimate
recursives.

A non-spoofing attacker compromises or rents bots to use
in the attack. Drafting new bots carries non-negligible cost for
the attacker.

The features of attack requests depend on the resource
that the attack targets. If the targeted resource is CPU, the
attacker may generate many requests per second. If the target is
incoming bandwidth, the attacker may generate large requests
to quickly consume the bandwidth. In both of these cases, the



content of the requests is not important, just their rate and
size. Finally, if the target is outgoing bandwidth, the attacker
may generate requests that maximize the size of replies, using
the ANY query type.

Some attacks are polymorphic — they change their features
during the attack event. Any attack features may change: how
spoofing is done, which sources generate attacks, and the
content of attack requests.

A naive attacker does not have knowledge about DDiDD
and is focused only on overwhelming the target server. A
sophisticated attacker may obtain information about types and
parameters of the filters that our defense uses, and they may
try to adjust their attack to bypass the defense, or to trick the
defense into filtering a legitimate recursive’s traffic.

DDiDD works well both against naive and against so-
phisticated attackers, and against spoofing and non-spoofing
attackers, due to its layered defense approach, and multiple
filters, as we show in our evaluation.

B. DDiDD Operation

To avoid any operational impact on a DNS root server,
DDiDD consumes packet captures, operating offline to get
required parameters, independently of the actual DNS server
software. DDiDD’s analysis detects an attack, selects a filter
or a combination of filters, then deploys filters via iptables
and ipset rules on the server. We consider six filters,
described in §IV-C, and implement four that perform well
with DNS root traffic: frequent query filter, unknown recursive,
wild recursive and hop-count filter. iptables work well
when number of rules is small (up to 2% delay increase for
5 rules) and matching is needed on query content. We use
iptables to implement the frequent query filter, for 1-5
frequent query names. ipset uses an indexed data structure
and provides efficient matching of thousands or even millions
of rules, without added delay. We use it when blocking
attack sources, identified by unknown recursive, wild recursive
and hop-count filters. iptables/ipset or their equivalents
are available on all modern operating systems, thus DDiDD
is highly deployable by any interested DNS root server. If
a root is anycast over multiple points-of-presence (PoPs),
DDiDD should be deployed at each PoP independently. No
synchronization or information exchange is required across
instances deployed at different PoPs.

DDiDD automatically selects filters to meet two goals. First,
we prefer filters that will remove most attack traffic with low
or zero collateral damage to legitimate queries. Second, we
aim to select filters quickly, because most DDoS attacks are
short [24]. We then revise our selection if attack changes, or
if we learn that another filter combination works better. This
decision process is fully automated. Further, DDiDD is flexible
and modular, allowing addition of new filters in the future.

Attack detection. DDiDD detects possible attacks by mon-
itoring the status of critical resources and recognizing when a
resource is overloaded. We use collectd to periodically collect
status information from several resources (CPU, memory,
inbound and outbound network capacity). We identify possible

parameter | meaning | rec. values
Lrqg num. queries for learning 10 K
fro freq. change threshold 0.3
Luyr,Luc,Lwnr learn. period 2 h (20 m for WR)
Uvr,Ubnc,Uwnr use period 2h
Wiy weey WN - observ. windows 20 21 ., 28
twnr deviance threshold 0.5
TABLE I

FILTER PARAMETERS

attacks when any resource exceeds a fraction of its maximum
capacity, which we denote as critical load.

We detect attack termination by monitoring the amount
of traffic blocked by the deployed filters. We declare the
attack over when the traffic blocked by DDiDD decreases
significantly, and the load on the server stays low as well,
for an extended period of time. More details are given in [41].

Filter priming and selection. All filters (e.g., frequent
query filter, unknown recursive, wild recursive filter, hop-
count filter) require information that must be learned continu-
ously, in absence of attacks. DDiDD continuously learns these
parameters from packet collection and uses them when the
corresponding filter is deployed. Some filters (e.g., frequent
query name) also require a short learning phase during an
attack. DDiDD triggers a short learning phase for these
filters when the attack is detected, and repeats it regularly to
update filter parameters. After the detection, DDiDD uses the
incoming traffic to select the filter parameters (for example,
finding the frequent query name to filter). For some filters like
unknown resolver filter, DDiDD uses known legitimate traffic
(we provide more details when we describe the filters).

During attack, each filter and some filter combinations are
continuously evaluated for potential deployment. We emulate
the effect of each filter or their combination on a sample
of captured packets. We estimate the success of each filter
based on acceptable query load at the server, calculated as the
server’s average query load times a small multiplicative factor
facc. Because root servers operate well below their capacity,
this approach guarantees that query rates below the acceptable
load will also not exhaust the server’s CPU or bandwidth
resources, and will not trigger attack detection.

We also estimate collateral damage when the filter is param-
eterized using peace-time (non-attack) traffic. The collateral
damage depends on the legitimate traffic’s blend and we have
verified that it does not change sharply over time. Thus, we
can calculate it once and use this estimate for a long time
(e.g, months). Based on the estimated effectiveness of the
given filter or their combination, and their projected collateral
damage, new filters may be selected for deployment and
existing filters may be retired.

C. DDIDD Filters

In DDIiDD we have implemented the following filters:
(FQ) frequent query name filter, (UR) unknown recursive
filter, (HC) hop-count filter and (WR) wild recursive filter.
In addition to these, we have also considered (RC) response-
code filter and (AR) aggressive recursive filter. Since these
two filters do not perform well on root server traffic, we do
not include them in DDiDD, but we evaluate them on our
dataset and summarize results in this section. We show our



recommended filter parameters in Table I. For each filter, we
measure the performance and operational cost.

Frequent query name filter (FQ). In our datasets many
attacks have queries that follow a given pattern, e.g., have a
common suffix. Thus, in practice it is useful to develop filters
that remove frequent queries during attack periods.

Approach: We use a simple algorithm to identify fre-
quent query names. We continuously observe Lpg queries
of incoming traffic and learn frequency of top-level domains,
subdomains and full queries. Under attack, we repeat the
calculation and look for segments (TLDs, subdomains or full
queries) whose frequency has increased more than a threshold
frq. These segments are candidates for frequent query names.
Segment frequency prior to the attack serves to estimate
collateral damage. We evaluated a range of values for Lrg
and fpq. Shorter Lpq than 10,000 reduced mitigation delay,
but increased chances of mis-identification of frequent queries.
Similarly, lower frq than 0.3 lead to some collateral damage.
These values should be calibrated for each server.

Operational cost: We can filter frequent query names di-
rectly using iptables, or we can identify sources that send
frequent queries and block them using ipset. We denote
these two implementation approaches as FQ; and FQg. The
FQ; (iptables) implementation imposes added processing
delay, which greatly increases once we go past five filtering
rules, but it minimizes collateral damage. The FQ, (ipset)
implementation adds no measurable delay, but it may create
collateral damage if spoofing is present, and thus must be
deployed together with anti-spoofing filters (UR and HC).

Unknown recursive filter (UR). An allow-list with IP
addresses of recursives present prior to the attack can be an
effective measure against random-spoofing attacks or those
that rent bots. This filter passes traffic from recursives on
allow-list to the server, and drops all other traffic.

Approach: An allow-list is built by processing incoming
traffic to the DNS root server over period Lyg prior to an
attack event. The list is then ready to be used for some time
Uur, and after that it can be replaced by new list.

DDiDD builds allow-lists proactively at all times, observing
traffic over period Ly . We experimented with Ly g ranging
from 10 minutes (capture 93% of traffic sources) to 6 hours
(capture 99% of traffic sources). We also tested values of Uy g
of up to 1 day, and the allow-lists were very stable.

Operational cost: An allow-list can be implemented effi-
ciently using ipset, which adds no processing delay.

Hop count filter (HC). A hop-count filter builds the TTL-
table, containing source IP addresses, along with one or more
TTL values seen in the incoming traffic from each given
source. This kind of filter can be effective for attacks that spoof
IP addresses of existing recursives. The filter drops traffic from
sources that exist in the TTL-table, but whose TTL value does
not match the values in the table. All other traffic is forwarded.

Approach: We build the TTL-table by processing incoming
traffic to the DNS root server over period Lgc. The list is
then ready to be used for some time Up¢, and after that it
can be replaced by new list.

One could use hop counts [51], [33] or TTL values for
filtering. TTL values are better choice, since they have larger
value space, which improves filter effectiveness. DDiDD
builds its TTL-list by using each packet in the incoming
traffic to the server during the learning period. Such traffic
could be spoofed. Prior approaches [51], [33], [7] rely on
established TCP connections or they probe sources to reliably
learn TTL-table values. These approaches do not work for
DNS root servers, which serve mostly UDP traffic and whose
policy forbids generation of unsolicited traffic. Hop-count filter
parameter values have similar properties to known-recursive
parameter values.

Operational cost: We implement this filter efficiently by
adding a new ipset module to match on an IP address and
TTL value (or range).

Wild recursive filter (WR). While query rate of different
DNS recursives towards a DNS root server varies widely,
individual recursives’ behaviors are mostly consistent over
short time periods (e.g., several hours). We leverage this obser-
vation to build models of each individual recursive’s behavior.
The model for a given recursive, along with the recursive’s
IP address is stored in the rate-table. During an attack, we
identify those recursives that send more aggressively than
their rate-table predicts as wild recursives. Wild recursive filter
drops traffic from wild recursives, and it forwards all other
traffic.

Approach: A wild-recursive filter learns the rate of a DNS
recursive’s interaction with the DNS root server over multi-
ple time windows, w1, we, w3, ..., wy, during learning period
Ly r. For each window, the filter learns the mean and standard
deviation of the number of queries observed and stores them
in the rate-table. The rate-table can be used for some time
Uwr, and after that it can be replaced by a new table.

When the attack is detected, the filter measures the current
query rates over the same windows. It then calculates the
difference between the current rate 7., in the window w;
and the rate expected by the model: mean,,, + 3 x std,,,. We
then calculate a smoothed, normalized deviance score d; at
. Pew; —MEANy, —3%8tdy, .
time ¢ as: dy = (d¢—1 X 0.5) +0.5 x 3, =—7t L,
Those recursives whose deviance score exceeds threshold twr
will be identified as wild recursives.

We experimented with values for Ly r between 10 minutes
and 6 hours. While performance was relatively stable, lower
values led to lower collateral damage, since they captured
recent traffic trends. We experimented with uniformly dis-
tributed and exponentially distributed (powers of two) win-
dow sizes. Exponentially distributed windows led to lower
mitigation delay, because they capture both aggressive and
stealthy attackers. We also experimented with 1-9 windows.
Higher number of windows had slightly higher collateral
damage, but they significantly improved filter effectiveness,
because they enabled us to identify sporadic attackers. Learned
models become quickly outdated so we set Uyyr = Ly r. We
experimented with values for the threshold tyyr from 0.1 to
16. Values higher than 0.5 minimized collateral damage.

Operational cost: This filter is implemented by processing




filters: array of all possible filters

candidates: array of filters that can be deployed
deployed: array of currently deployed filters

AL: acceptable load

CL: current load

function select filters()

1: select_candidates()

2: deployed=deploy_single()
3: if pot deployed:

4: Eeployﬁcomboo

function select_candidates()
1: for F in filters:

2: jf F can reduce load to AL:
3: |candidates.append(F)

the traffic incoming to the DNS server offline. When the
attack starts, the filter identifies wild recursives and inserts
corresponding ipset rules to block their traffic.

Response code filter (RC). For some DNS servers, queries

function deploy_single()

1
2

function deploy_combo()
1: tofilter = CL - AL; deployed.clear()
2: for T in ur, hcf, fq, wild:

: current_fp = 1, best = null
: for C in candidates:

3: |if C.fp < current_fp: 3: ffor C in candidates:
4: best=C 4: if C.type not T
5 current_fp = C.fp 5: i cqntinue )
6: if pest is not null: 6: if|C is effective:
7: deployed.clear() 7 deployed.append(C)
8: |deployed.append(best)  8: tofilter -= C.filtered
9: lreturn true 9: if tofilter <= 0
10: return false 10: Feturn
Fig. 1. Pseudocode for filter selection
p1 Q p2 R p3 P4 WR
randoin queries. spoof known IPs oison model ofson model
::{> o dof a .‘pﬂf 1P ‘ pofbon model o
| e 4 ® o
—_ pdison model
=0 (]
[—— [

with missing names are rare. For example, at Akamai only a
small fraction of legitimate queries result in NXDomain [43]
replies, while attackers often query for random query names.
We therefore considered a filter based on response codes that
discards NXDomain responses. Unfortunately, more than 60%
of root DNS traffic involves non-existing TLDs. Thus for root
DNS traffic, a response code filter will have large collateral
damage, and we do not currently include it in DDiDD.

Aggressive recursive filter (AR). This filter blocks the
aggressive clients during an attack, starting with the client
that sends the highest query rate and moving down. Filter
adds addresses to the block-list until the query load reduces
to acceptable levels. We evaluated this filter on our dataset.
It performs well when attacks use non-spoofed traffic, but its
performance is consistently worse than that of wild recursive
filter. We thus do not include it in DDiDD.
D. Filter Selection and Synchronization

In this section we discuss how filters are selected for
deployment and why their learning periods have to be syn-
chronized. Filter selection. Our goal was to design effective
filter selection process, which minimizes collateral damage to
legitimate traffic. Our pseudocode for filter selection is given
in Figure 1. At each time interval (e.g., one second), if the
current query load (C'L) on the server (queries per second) is
higher than the acceptable load (AL), we first select candidate
filters. We continuously emulate operation of all filters, thus
we produce for each filter an estimate of the amount of queries
they would drop. Our candidate filters are those whose drop
estimates are positive. If among the candidate filters there
are any that could reduce the load to AL, we will select the
filter with the lowest estimated collateral damage (described
in §1V-B) and deploy only this filter (function deploy_single).

If no such filters exist, we will consider combinations of
multiple filters (function deploy_combo). Not all combinations
are valid, which greatly reduces complexity of this step. HC
filter must be deployed after an UR filter, since HC is pass-
through for addresses that do not exist in TTL-table. UR
filter removes queries that spoof unknown recursives, thus
guaranteeing that addresses of queries that pass will be present
in TTL-table. FQ, could be deployed together with any other
filter. FQ; and WR filters must be deployed after UR and
HC, because they make per-source blocking decisions, and

Fig. 2. Swiss cheese model of defense

require reliable source identities. Since both FQ, and FQ filter
frequent query names, only one of them should be deployed.
FQ; has zero collateral damage and is considered first. If
it cannot be supported operationally (there are more than
five query names, and thus there will be added processing
delay), FQ, will be considered. In addition to considering
filters in a specific order for deployment, we only consider
filters that are effective — filter at least 5% of excess traffic
(function effective). Deployment is finalized as soon as the
filter combination can reduce the load below AL.

Filter synchronization. DDiDD may engage one or multi-
ple filters to mitigate an attack. When some filter combinations
are engaged, it is important that their learning periods match,
so that each filter has entries for the same recursives in
their table. Because we need a shorter learning period for
wild recursive filter, than for the unknown recursive and hop-
count filter, we learn parameters over 2 hours, and then keep
updating WR entries each 20 minutes to keep them as recent
as possible.

Sophisticated adversary. Each of the filters we consider
could be bypassed by a sophisticated adversary. We now dis-
cuss how their combination makes this challenging (Figure 2).

FQ filter could be bypassed by the attacker sending random
queries. UR filter could be bypassed by the attacker spoofing
existing (known) recursives. UR, HC and WR filters could
each be bypassed by poisoning the models during learning.
One way to counter poisoning attacks could be to learn over
longer time periods, from random traffic samples. While this
works for UR and HC, whose data is fairly stable, it would
greatly diminish effectiveness of WR filter, and it would
complicate filter synchronization. Our approach is to handle
poisoning attacks only at WR filter, and to rely on the Swiss
cheese defense model (Figure 2) to capture attackers that
bypass one filter layer, but can be stopped at the other. Thus
random queries may bypass FQ, but will be stopped at UR if
they are from new sources, or at HCF if they are spoofed. At
WR, queries sent by recursives at high rate (spoofed or not)
can be detected and dropped. This leaves poisoning attacks at



start dur FQ UR HC WR DDiDD DDiDD p
PoP date (UTC)  (sec) ULQ %)]ISIHS con cd con cd | con cd con cd con cd con cd
LAX | 2015-11-30  06:50 8,918* 98 100 100 0991 18 03 14 0 551991 04 ] 993 1.7
LAX | 2015-12-01  05:10 3,781%* 100 100 98.7 0| 99.1 0| 06 0 0 0| 99.3 0| 994 0
LAX | 2016-06-25 22:18 2,436* 52 99 0 0 100 0.1 0 0 0 0 100 0.1 100 0.1
LAX | 2017-02-21  06:40 6,992% 2 1 98.4 0 0.1 1.8 0.1 1.5 | 984 0 99 0 | 98.8 0
LAX | 2017-03-06 04:43 19,835% 6 5 98.8 0 0 1.1 0 04916 15 100 0| 923 15
LAX | 2017-04-25 09:54 10,414* 3 4 98.3 0 0 1.1 0 07 | 949 2 1 99.1 0 | 95.1 2
ARI 2019-09-07  06:45 80 0 5 0 0| 933 0.6 0 038 0 01937 06| 931 0.6
LAX | 2019-09-07 06:45 80 23 5 0 0 100 0.9 0 02 0 02 100 0.9 100 0.9
MIA | 2019-09-07 06:45 80 8 5 0 0 100 0.6 0 0 0 04 100 0.6 100 0.6
SIN 2020-02-13  08:05 206 14 2 100 0 0 03 4.8 0| 385 05 100 0| 975 038
ARI 2020-10-24  02:55 445 67 7 0 0 100 1.3 0 0 0 08 100 1.3 100 1.3
ARI 2021-05-28  02:35 70 25 3 0 0 100 1.1 0 0 0 0.1 100 1.1 100 1.1
IAD 2021-05-28  02:35 70 63 3 0 0 100 04 0 0 2.7 0 100 0.5 100 0.5
LAX | 2021-05-28  02:35 70 3 3 0 0 100 04 0 0 0 0 100 04 100 04
MIA | 2021-05-28  02:35 70 2 3 0 0 100 1.5 0 0 0 0 100 1.7 100 1.7
SIN 2021-05-28  02:35 61 41 3 0 0 100 0 0 0 0 0 100 0 100 0

TABLE II

DDiDD PERFORMANCE: COMPARING LOAD CONTROL (CON) AND COLLATERAL DAMAGE (CD) FOR EACH POSSIBLE FILTER AND DDiDD AS A WHOLE.
WE HIGHLIGHT RESULTS WITHIN 1% OF THE BEST PERFORMANCE IN BOLD. FOR LONG ATTACKS (*) WE SIMULATE ONLY THE FIRST 600 SECONDS.

WR filter (thin red arrow at the top right of Figure 2), where
each bot poisons the rate model for itself by sending sporadic
traffic during learning, with high fluctuations. This can lead
the filter to model a large expected rate for the bot in each
window, due to large standard deviation. To address this attack,
we learn only when load on the server is low (avg + stdev).
This forces the attacker to engage their bots very sporadically,
which becomes an outlier and is excluded from the model.

V. EVALUATION

We use datasets containing real DNS root traffic and attacks
(§V-A) to calculate success metrics (§V-B) that characterize
DDiDD performance (§V-C).

A. Datasets

We use datasets collected at B-root, one of 13 root identi-
fiers. These datasets are publicly available [3] in both pcap and
text format. The operators of B-root identify attacks based on
unusual traffic rates and system load, as seen from operational
monitoring. Our evaluation uses ten diverse attack events
spanning six years (see Table II). During events in 2017 and
later B-root employed anycast network with multiple points-
of-presence (PoPs). Some attacks affected only one PoP (e.g.,
2020-02-13), while others targeted all PoPs (e.g., 2020-05-28).

We confirm that our selected events are DDoS attacks
based on DNSmon observations shown in the “DNSmon”
column Table II. DNSmon reports the fraction of responses
received by many (about 100) physically distributed probers,
which query each DNS root every 10 minutes. In Table II,
the first three attack events had a large impact, showing
99-100% of unanswered queries, as publicly reported [31],
[1], [2]. The other seven events had smaller impacts (1-7%
unanswered queries), because they were shorter (5 minutes and
less) and sent at a lower rate, and because B-root’s capacity
had increased. DNSmon reports reflect aggregate performance
across all PoPs, so the percentage of unanswered queries at
each PoP might be higher than measured by DNSmon. We
include traces from all the PoPs in our analysis, and simulate
running of DDiDD at each PoP. We use ground truth for attack
start and stop times to start and stop DDiDD’s simulation,

and use facc = 2.5. During attacks, query rate at the
server increases more than 10-fold, so using facc = 2.5 is
reasonable.

While attackers could generate any random traffic to port 53,
attacks in our dataset had unique content or traffic signatures,
which enabled us to establish ground truth during evaluation.
Attacks on 2015-11-30, 2015-12-01, 2017-02-21, 2017-03-06,
2017-04-25, and 2020-02-13 had used either several specific
queries or a random prefix with a common, specific, suffix.
Attack on 2016-06-25 was a TCP SYN flood. Attacks on 2019-
09-07 and 2020-10-24 and 2021-05-28 sent malformed UDP
traffic to port 53, which consumed resources at the server, but
did not parse into legitimate query format.

Ethical considerations. Our analysis is performed on
packet traces incoming to and outgoing from B-root. Both
source and destination IP addresses are anonymized using
Crypto-PAn [52], [57]. Packet payloads are not anonymized,
which allows us to establish ground truth in evaluation. After
ground truth is established, analysis is automated and we
report only aggregate results. These steps preserve resolver
privacy.

B. Metrics

Our goal is to reduce load on the DNS root server, by
filtering malicious traffic, to allow serving more legitimate
users when under duress. We therefore consider two success
metrics: (1) controlled load, the percent of time when server
load is at or below acceptable load due to defense’s actions,
ideally 100%; (2) collateral damage, the percent of legitimate
queries filtered, with an ideal of 0%.

C. DDiDD Performance

Table II shows DDiDD’s performance per each PoP affected
by a given attack. We show several defense configurations:
first, each filter by itself (FQ, UR, HC, or WR), then the full
DDiDD with all four filters and a partial DDiDD with only
UR, HC, and WR filters. Removing the FQ filter from the
partial DDiDD simulates a smart adversary, which randomizes
queries for each attack.

These experiments confirm that no single defense does well
in all attack cases. The FQ filter does very well in attacks



that use similar queries, but has no effect otherwise. The UR
filter performs well in many attacks. HC does not work well
by itself, but enhances other filters. Finally, WR does well in a
few attacks, where some recursives, which are present prior to
the attack, modify their behavior to become more aggressive.
This evaluation demonstrates that we need multiple filters to
handle all attack events.

We further show that the full DDiDD automatically chooses
the best filter or combination of filters for each attack, always
achieving 93% or higher controlled load and at most 1.7% col-
lateral damage. DDiDD selects the optimal filter combination
in 1-3 seconds.

Partial DDiDD’s performance (the right-most column)
shows how well it would handle an adversary that randomizes
queries. DDIDD controls load for most of the time (92.3%—
100%), with low collateral damage (2% or lower), with all
filters selected in 3's or less.

We compare collateral damage of DDiDD with percentage
of legitimate queries at the affected PoP that fail to receive
a response during the original attack, without DDiDD. We
calculate this percentage from our datasets and show it in the
fifth column (ULQ) of Table II. This is an internal measure of
DoS impact and it can differ from the external measurements
by DNSmon, because of several reasons. First, DNSmon
averages measurements over 10 minutes and across all PoPs
for a given root, while our internal-DoS measure is per PoP
and it is averaged over the duration of the attack. For these
reasons DNSmon will often underestimate attack impact, as is
the case for many of our attacks. Second, if B-root’s incoming
bandwidth were overloaded, DNSmon could measure higher
loss rate than our internal-DoS measure. This is the case, for
example, for 2019-09-07 attack.

Full DDiDD’s and partial DDiDD’s collateral damage is
always lower than DNSmon (external) and ULQ (internal)
measures. Thus DDiDD improves legitimate traffic’s handling
during DoS attacks. DDiDD is also effective, reducing re-
source consumption by controlling server load, 93-100% of
time, after a short initial delay of 1-3 seconds.

Legitimate flash crowds. While three attacks in 2017
overloaded B-root, they involved a large number of recursives
involved (around 50 K per event), large difference in rates per
recursive, and did not spoof. Legitimate flash crowds would
show similar patterns. In 2017 events, DDiDD dropped only
traffic that was causing the overload event, and only as much
as to free server resources from overload.

Polymorphic attacks. In evaluation events DDiDD changes
defenses because the attacks change. During 2015-11-30 attack
there were periods where existing clients were spoofed with
incremental TTL values, traversing the entire TTL value space.
Partial DDiDD correctly switched from UR to UR+HC combo
to handle these cases. During 2020-02-13 attack, single UR,
HC and WR filters could not sufficiently reduce the load.
Partial DDiDD deployed all three filters, which managed to
reduce the load.

We demonstrate how DDiDD can nimbly adjust filter se-
lection by using an artificial polymorphic attack in Figure 3.
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Fig. 3. DDiDD evaluation for a synthetic polymorphic attack.

We create a synthetic attack by mixing legitimate traffic from
February 2017 with five synthetic attacks, which correspond
to pl—p5 labels in Figure 2: (pl) a random-spoofed attack with
a fixed query name, (p2) an attack with random query names,
(p3) same as (p2) but also spoofs only known recursives
using random TTL values, (p4) same as (p3) but spoofs with
correct TTL values, (pS) same as (pl) but 90% of queries
are random and 10% use a fixed query name. We find that
DDiDD quickly converges to the best single filter for each
attack strategy: FQ;, UR, HC, WR and FQ,, respectively.
Figure 3 shows passed and filtered legitimate and attack traffic
for our synthetic attack—overall controlled load was 99.1%,
collateral damage was 0.7%, and selection delay was 1-4s.

VI. CONCLUSION

This paper provides the first in-depth design and evaluation
of an automated, layered approach to mitigate DDoS on DNS
root. Evaluated on ten real-world DDoS attacks on B-root,
DDiDD quickly selects the best filter or filter combination
from a library of filters, and deploys it automatically. DDiDD
reduces server load to acceptable levels within seconds, with
collateral damage under 2%. DDiDD is adaptive to the poly-
morphic attack events, which change attack pattern during an
ongoing attack event, and nimbly makes new filter selection
in up to 4 seconds. It further has low operational cost,
working offline to process incoming traffic at the server, and
producing filtering rules, which can be implemented at no
added processing delays using ipset. We release DDiDD
as open source.
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