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Abstract—Services on the public Internet are frequently
scanned, then subject to brute-force password attempts and
Denial-of-Service (DoS) attacks. We would like to run such
services stealthily, where they are available to friends but hidden
from adversaries. In this work, we propose a discovery-resistant
moving target defense named “Chhoyhopper” that utilizes the
vast IPv6 address space to conceal publicly available services.
The client meets the server at an IPv6 address that changes
in a pattern based on a shared, pre-distributed secret and the
time of day. By hopping over a /64 prefix, services cannot be
found by active scanners, and passively observed information is
useless after two minutes. We demonstrate our system with the
two important applications—SSH and HTTPS, and make our
system publicly available.

I. INTRODUCTION

Attackers frequently scan for services on the public Inter-
net, then make brute-force password attempts and Denial-of-
Service (DoS) attacks. IPv4 scanning has been possible for
more than a decade [15] and recent tools allow scanning all
of IPv4 in minutes [2], [13]. Mass scanning of IPv4 is done
regularly by many parties [38]. Scanning is increasing in IPv6
as well, with evidence of IPv6 address space scanning [9] and
development of public lists of responsive IPv6 addresses [23].
Once scanning detects an active service, attackers can carry out
brute-force password attacks to get access [31], [4]. Services
with static address can also be targeted by DoS attacks [8].

We would like to provide discovery-resistant stealthy ser-
vices on the public Internet, available to friends but hidden
from adversaries.

IPv6 adoption has been increasing over the years [6]. As of
December 2021, 37% of Google accesses use IPv6 [12], and
APNIC shows 29.4% of all global users are capable of using
IPv6 [3]. From May 2018 to February 2020, Akamai reports
4x increase in the IPv6 traffic volume [28].

IPv6 provides a huge address space in which we can
hide services. Even with clever scanning, when each LAN
has 264 addresses (or more), active discovery of services
on intentionally obscure addresses is intractable (see §VI-A).
With IPv6 prefixes of /48s as the recommended minimum size
of publicly routable prefix, [36], and /56s recommended for
homes [26], even with a million devices in a home, quintillions
of addresses remain unused on every network.

Our insight is that only a discovery-resistant moving target
can elude scanners. We describe Chhoyhopper1, using the vast
IPv6 address space to conceal publicly available services. The
server hops to different IPv6 addresses in a pattern based on
a shared, pre-distributed secret and the time-of-day. A client
with the shared secret can match this pattern to find the server.
As with SSH [33], we target services for small groups where
out-of-band sharing of secrets (our hop key, or ssh’s per-user
keys) is viable; our approach can scale to support millions of
such small groups. By hopping over a /64 prefix, any service
cannot be found by active scanners, and passively observed
information is useless after two minutes. We expect our system
to be used by small organizations who want to protect their
specific services used by their group from active scanners and
brute-force attacks. Since the server hops over addresses, our
system provides protection against DDoS attacks targeted to
a fixed address.

We make three new contributions: first, we show that IPv6
address hopping can be used to protect existing services
(§IV). Prior work suggested daily address changes for IoT
devices with new services [19]. We instead propose changing
addresses every minute, and show how to apply this approach
to existing popular services like SSH and HTTPS. We provide
a common hopping design that can be used by multiple
services. To the best of our knowledge, this is the first design
of a moving target defense for SSH and HTTPS utilizing
IPv6. Second, we show how to support web security with
TLS by adding support for DNS-based TLS certificates to
our core hopping protocol (§IV-F). Finally, we propose a new
approach to accommodate long-lived connections in the face
of frequent address changes (§IV-D). We use ip6tables rules
to retain the existing connections to a fixed internal address
but changing NAT rules allow new connections only with the
current IPv6 addresses. Our deployment is user friendly, and
works similarly like the current client applications (§V).

Availability: Our implementation is freely available at https:
//ant.isi.edu/software/chhoyhopper/. We provide server module
using a Python script for both SSH and HTTPS. Our client
implementation has a Python script for SSH, and a browser
extension for HTTPS.

II. BACKGROUND

We next briefly review how IPv6 makes our solution pos-
sible. Full details about IPv6 are in its specification [16].

1Chhoy is the number “six” in Bengali, since we hop in IPv6.
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The defining characteristic of IPv6 is its much larger address
space relative to IPv4, with 128 bits per address instead of
only 32. IPv6’s larger address space was chosen to address
the expected exhaustion of IPv4 addresses, realized in May
2014 [18]. Of the 128 bits, 64 are dedicated to LAN-specific
information to supporter automatic address assignment [17].
We exploit these plentiful LAN addresses in our hopping
mechanism.

Global IPv6 addresses contain a routing prefix (normally
48 bits or shorter), a subnet identifier (16 bits more), and an
interface identifier (64 bits). The interface identifier can be
static or can be generated by stateless auto configuration [25],
or assigned using DHCPv6 [22]. In our work, the server uses
a fixed /64 prefix (combining both routing prefix and subnet
identifier), generates the interface identifier dynamically, and
changing it every minute. A client needs to find out the
interface identifier to get the service.

III. RELATED WORK

Our work is motivated by our desire to improve security
using the unique properties of IPv6. As such, it augments
existing IPv6 security and privacy, and is related to other
moving target defenses.

There are several studies related to the dramatic growth
in the IPv6 adoption, and suggest that IPv6 is no longer
an “uninteresting rarity” [6], [5], [27], [12]. This widespread
adoption of IPv6 implies that our use of IPv6 is viable and
timely.

Though IPsec in IPv6 provides data integrity and confi-
dentiality, it can expose the link-layer address, creating a
new privacy risk [35]. To fix this, clients can choose random
and ephemeral addresses using the IPv6 addressing privacy
extension [24]. As an alternative way, providers utilize prefix
rotation that changes the entire allocated prefix to improve
address privacy [22], [32]. Our goal is the opposite; providing
service in changing addresses, and clients need to find out the
changing address.

We build on privacy-preserving IPv6 address assign-
ment [10], [11], but while that work proposes updating ad-
dresses daily with a fixed pattern, we accelerate hopping each
minute to service as an active defense against scanning. Our
work is similar to port knocking [20], [7], but it hides in IPv6
rather than requiring “wake-up” packets. Closest to our work
is IPv4-based port-hopping [21]; we take advantage of much
larger IPv6 space (264) compared to the quite limited IPv4 port
space (216). Work by Judmayer et al. uses a similar technique
for IoT devices where they assume IoT devices use publicly
routable IPv6 addresses [19]. Our solution does not interrupt
running services, and is applicable for many other applications.

IV. CHHOYHOPPER DESIGN

Our goal is to enable discovery-resistant public services.
To accomplish this goal, clients will rendezvous with servers
on a public, but temporary IPv6 address. By allocating the
temporary address from a large space (264 addresses), scanning
is impractical, as we show in §VI-A. By changing the address

frequently, reuse of a passively observed temporary address is
only possible for a very brief window of time. The hopping
pattern is cryptographically secure, so prior active addresses
reveal nothing about future addresses.

A. Design Requirements

The Chhoyhopper design has a primary requirement of
discovery resistance, and several secondary requirements:

Discovery resistance: Our primary goal is that services
should be discovery resistant. An adversary should not be able
to contact the service and carry out a brute-force or DoS attack,
even if they know the network where the service is running.

Application support: Our moving target defense should
support many existing, real-world applications. We describe a
common hopping strategy as simple core defense, and then
apply this design to applications such as SSH and HTTPS.
Our design should be adaptive so that new applications can
be added easily.

Transparency: Our system should be compatible with
the current application clients without protocol changes. For
example, an HTTPS client should be able to connect to
a Chhoyhopper server using a web browser. Similarly, a
client should have the SSH capability using a command line
interface. Extensions to support hopping should be possible
without changes to core programs.

Support for collateral services: Often IP addresses are
exposed in collateral services, and we must ensure that a
hopping IP address does not break other, related services.
For example, HTTPS should support TLS authentication, and
clients should be able to identify services by domain names,
but both TLS and DNS must continue to function even if the
underlying IP addresses hop. We integrate hopping in DNS
lookup (§IV-B) and describe how TLS can support hopping
addresses (§IV-D).

Uninterrupted connection while hopping: Our system
should be able to hop over addresses seamlessly without
breaking an already established connection. Our system should
not require a restart to hop over to a different address so that
no service interruption occurs. We meet this requirement by
using ip6tables NAT rules.

Finally, a non-requirement is direct support for millions of
clients. We depend a shared secret, but security of a secret
over a large group is challenging. One could support large
groups by splitting them into many small groups, each with a
separate, revocable hopping secret.

B. Design Overview

A hopping IPv6 address must be understood at both the
client and the server: the server will move service to a new
address frequently, and a client must be able to find that
server’s current IPv6 address to start a new session. In addition,
existing, long-lived sessions must continue even when the
server moves to a new address.

Figure 1 shows the components of our system. The client
and server must follow the same hopping pattern to ren-
dezvous. We assume they share a pre-distributed secret key.
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Client

(i) 
Curr. addr.: 2001:db8::5054:ff:fe80:634 
Prior addr.: 2001:db8::5054:ff:fe80:123

Internal addr.: 2001:db8::5054:ff:fe80:1 Server (runs at
internal addr.)

NAT

Generate address with: 
1. shared key 
2. timestamp 
3. salt

Chhoyhopper 
(runs at

external addr.) 

(ii) Existing
connections

(iii) Any other
addresses incl.
internal addr.

Server

Fig. 1: Client and server interaction in Chhoyhopper.

Domain name

Client

IPv6 address Fixed first 64 bits 
Generated last 64 bit 

hop.example.com 2001:db8::f 2001:db8::5054:ff:fe80:634
Generated
using key,
salt, and

timestamp

Server DNS

Fig. 2: Getting the rendezvous address.

We expect secret distribution to use common methods, such
as out-of-band distribution of ssh keys today. Several methods
are possible: including face-to-face sharing, secure interactive
communication such as secure instant messaging, or other
secure channels such as encrypted e-mail or an authenticated
website. While we welcome new approaches to secret distribu-
tion, they are out-of-scope of this paper. Our requirement for
this secret means Chhoyhopper cannot be used for anonymous
clients to discover a server, since scanners could exploit any
discovery process. It also means Chhoyhopper does not apply
to very large groups where secret sharing becomes untenable.
The design of the server ensures only the access of the
legitimate clients who have the correct secret key and salt
value. In this way, our service becomes discovery-resistant
which is our first design requirement (§IV-A). Clients who
lose the secret key will not have access to the service anymore
and need to get the key again.

Next, we describe the selection and lifetime of the tempo-
rary address, hopping on the server, and hopping by the client.

C. Address Hopping Pattern

The server and the client compute the same temporary
address by computing a cryptographic hash of the shared
secret, a salt value, and the current time in minutes. We use the
SHA-256 algorithm for hashing and the time in seconds since
the Unix epoch. The salt value prevents rainbow attacks [29]
and can vary by service or deployment.

We compute the IPv6 address in two parts. We take the
DNS name of the service address and look up a full IPv6
address, but replace the low 64 bits of the address with the
top 64 bits of the hash result. Figure 2 shows how a client and
a server converge to a single rendezvous address. Our system

gets an example IPv6 address (2001:db8::f) from the domain
name using DNS. Then it keeps the first 64 bits (marked
by green letters), and computes the last 64 bits (marked by
red letters) using SHA-256 algorithm (in our example the
computed address is 2001:db8::5054:ff:fe80:634). The clients
and the server can only merge to a single address when they
use the same secret key, salt value, and timestamp.

Use of DNS allows the service to move in the Internet and
provides a user-friendly name. DNSSEC should be used to
ensure that the DNS lookup of the top IPv6 address bits is not
subject to a person-in-the-middle attack. If clients prefer, our
system can also take a direct IPv6 service address. We discuss
the potential of collisions in §VI-B.

The server tracks its current address, changing it every
minute. To avoid problems with clock skew, the server listens
to two addresses, one for the current minute and the other for
the nearest adjacent minute. (Larger clock skew can be handled
by increasing the duration addresses are kept active, if desired.)
We use NAT rules (in ip6tables) to track live connections as
addresses change.

D. Server-Side Hopping and Connection Persistence

Hopping over addresses seamlessly without interrupting
any active connections was one of our service requirements
(§IV-A). It is cumbersome for server software to change its
service address every minute, and we would rather not modify
server software and cannot break active connections. We
therefore operate the server on a fixed address that is firewalled
from the public Internet. Thus the traffic towards the current
address needs to be translated to the internal address to respond
to the clients. A daemon then uses network address translation
to map the currently active addresses through the firewall to
the internal fixed address. IP6table rules also ensure that once
a connection is established it continues to operate, even after
the server moves to other addresses for new connections.

Chhoyhopper server restricts the access only to the new
clients with right IPv6 address, while continuing to serve
existing clients who previously started access. To summarize
server processing in Figure 1: (i) new flows to the current
and prior address are detected by NAT rules, and establish
new connection state before being passed to the internal server
address, (ii) existing flows are detected by ip6tables rules and
pass through to the internal address, (iii) any other addresses,
including external traffic sent to the “internal” server address,
are dropped by the server’s firewall. When external traffic sent
to the “internal” address, our deployed NAT rule translates
the “internal” address to a different non-responsive address so
that server’s firewall drops those traffic. Thus our system can
defend even if the attackers know the internal service address.

Our NAT-manipulation daemon for server is a simple Python
program that modifies Linux ip6tables. The daemon assigns
the NAT rules to a particular external interface on the server.
Other OSes (like Windows or FreeBSD) would need to use
their own, native NAT mechanisms; that is potential future
work.
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Server

Update ip6table rules, NAT rules and
interface addresses

Update DNS entry based on the current
address

TLS certificate for wildcard domain name

Fig. 3: Server for HTTPS.

E. Client Discovery of the Hopping Address in SSH

The client must compute and use the server’s current IPv6
address to begin a new connection. We assume the server’s
secret key and the salt are known to the client, so the client
does the same hash computation as the server. As with the
server, the client looks up an IPv6 address from DNS and
replaces the low 64 bits with the current temporary hash.

When a client is done with the connection, the server keeps
the existing connection, and the current interface address.
However, after terminating an old connection, the client needs
to make the same computation to get the current address.

To be transparent (§IV-A), our client implementation for
SSH uses a simple Python program which invokes the native
client with appropriate arguments. A client can just use a
command line interface to run the client SSH program.

F. Challenges with HTTPS

In addition to SSH, our system supports HTTPS (application
support requirement in §IV-A). We believe our core hopping
technique is generalizable to many applications. Some appli-
cations require additional support—we extend the core design
of Chhoyhopper to meet the collateral service requirements of
HTTPS in §IV-A.

The HTTPS deployment has two unique challenges. Our
first challenge is to ensure transparency where a user gets the
service like any other HTTPS service using a web browser.

Our second challenge is user demand for TLS authenti-
cation. TLS authentication is required for HTTPS, and our
goal is to support the collateral services for any application
(§IV-A). Since our server hops every minute, it is not feasible
to get an SSL certificate for each IPv6 address. Also, IP-based
TLS does not support wildcard certificates. Thus we cannot
generate a wildcard certificate for a /64 prefix. Traditional use
of a static domain name is not possible as well. A static DNS
name would reveal the hop destination.

We provide transparent access to users with a new browser
extension, then it rewrites the Chhoyhopper web request to the
current hopping address without users able to tell. We currently
provide this extension for Mozilla Firefox. This extension
meets our design requirement for transparency (§IV-A). An
extension for Google Chrome is technically feasible but re-
quires DNS support (we currently use Firefox-specific DNS
APIs).

We solve the certificate problem by getting a TLS certificate
for a wildcard domain name, and then dynamically create
changing hopping name under that wildcard. Next, we describe
the changes in server and client for HTTPS.

G. Server-side Certificate Handling with Hopping HTTPS

The core design of HTTPS is similar to that we mentioned
in §IV-D. HTTPS server also runs NAT rules to translate the
current allowable addresses to the internal server address. It
also runs the ip6tables rules to filter out the traffic that does not
pass the NAT rules to get the internal address. Now we need to
extend the core idea to enable support for TLS authentication
(support for collateral service in §IV-A).

We enable TLS support by getting an SSL certificate for
a wildcard domain name. Then the server opens service at
dynamic domain names under that wildcard. As an example,
the server needs to get an SSL certificate for “*.example.com”
if the domain name is “example.com”.

The server utilizes the same hash algorithm along with the
same secret key, salt value, and timestamp to find out a domain
name under the wildcard. We take 40 characters from this
hash value to make the domain name (any domain name label
can be 63 characters long [1]). The server puts the generated
characters in the wildcard part of the domain name. At every
minute, the server generates a new domain name.

Chhoyhopper server needs to update the DNS entry peri-
odically for the generated domain name. Dynamic DNS maps
the hopping name to the changing IPv6 address, and updates
the DNS entry at a fixed interval. Only clients with the secret
key can guess the hopping URL. Since the server has already
updated a DNS entry for the hopping URL, the clients will
get the right IPv6 address, and pass the filters. The clients
can also authenticate the response because of the wildcard
certificate provided by the server. Besides adding a new DNS
entry, the server also deletes an old entry to limit the number
of DNS entries. Since each subdomain uses a unique name,
the system is not be affected by DNS caching. While updating
DNS every minute has some overhead, the cost is quite modest
and is similar to frequent DNS updates seen in CDNs.

Figure 3 shows the server extension for Chhoyhopper in
HTTPS. The green box shows the design that is common for
all applications. The two blue boxes show that HTTPS requires
extensions for TLS authentication and DNS updates.

H. Client Discovery of the Hopping Address in HTTPS

We already see that Chhoyhopper server opens the service
at a dynamic domain name. A client needs to generate that
domain name to get the intended web page.

Clients use the same technique to generate the domain
name. It uses the same shared secret key, salt value, and
timestamp to an SHA-256 algorithm to get the hash value.
Using the computed hash value, it generates the domain name.

We want an automated way to generate the dynamic
domain name, and use it in the browser to get the web
pages running Chhoyhopper. We provide a browser extension
to hop over dynamic domain names. Our browser exten-
sion is lightweight; takes inputs from the clients about the
Chhoyhopper domain name, shared secret key, and salt value.
When the users type any domain name that matches the
user input for Chhoyhopper base domain name, it generates
the dynamic domain name, and rewrites the request to the
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(a) Server log for SSH.

(b) Client connecting to server.

(c) Unsuccessful connection with a wrong key.

(d) NAT rules in server.

Fig. 4: Client-server interaction for SSH.

generated domain name. For example, when the clients type
“example.com”, the browser extension redirects the request to
“generated hashed chars.example.com”. The browser exten-
sion prevents the recursive redirection by keeping track about
the recent translation.

Since the server has already added a DNS entry, the browser
extension redirects to the current domain name, and DNS
translation is done using the newly added entry.

A web page has multiple links to other web pages. Depend-
ing on the deployment, these links can be relative to the current
page, or they can be a complete link to the other pages. In both
cases, our browser extension will look for the base domain
name and redirects if it finds a match. Thus relative links to
the terminated connections work as well by regenerating a new
domain name. To prevent the URL leaking through a referrer
header [37], we recommend the servers to set its “Referrer-
Policy” to “no-referrer”.

V. EXAMPLE USE

In this section, we discuss the implementation details of
Chhoyhopper. Currently, we provide support for SSH and
HTTPS. We demonstrate our implementation by directly tak-
ing runtime screenshots.

A. SSH

We provide the SSH service without directly modifying the
standard SSH client. At the same time, we want to keep the
Chhoyhopper SSH client simple so that the users can use it
through a command line interface. Thus we provide a script

that takes input parameters for the Chhoyhopper domain name,
secret key, and salt value. Then the script computes the current
IPv6 address, and provides the standard SSH client with the
computed IPv6 address to make the connection.

We also provide a script for the server that takes similar
inputs for internal address, secret key, and salt value. The
server script then periodically assigns interface address, de-
ploys ip6tables and NAT rules for access control, and deletes
obsolete addresses and rules.

Figure 4 demonstrates the implementation of Chhoyhopper
for SSH .

To meet the discovery-resistant requirement (§IV-A), at a
fixed interval, the server opens its service at a temporary
IPv6 address, and drops the prior minute’s active address. The
server log in Figure 4a shows that the server opens service
at an address ending with 11ba (highlighted black). At the
same time, the server also drops the prior running address
ending with 8f48. A client with the same secret key, salt value
and timestamp will recreate the same IPv6 address and suc-
cessfully connect to the server. Figure 4b shows a successful
connection where the client uses the same secret key, generates
the same IPv6 address (see the highlighted address ending
with 11ba), and connects to the server using a command line
interface (transparency requirement in §IV-A). If a client uses
a wrong key, the client cannot make a successful connection.
Figure 4c shows an unsuccessful connection attempt where
the client uses a wrong secret key named “random-secret”, and
makes request to the address ending with 6d5e (not the current
address with 11ba). The server deploys a destination NAT rule
to translate the current IPv6 address to the internal address, and
another rule to keep the existing connections (uninterrupted
service requirement from §IV-A). This translation is shown
in the list of ip6tables NAT rules (highlighted in Figure 4d).
To test the uninterrupted service, we establish a new SSH
connection to a temporary IPv6 address and wait for the
duration until the temporary address stops accepting new
connections. We confirm that the old connection continues
even when the original IPv6 address is not accepting new
connections any more.

B. HTTPS

To meet the application support requirement (§IV-A), we
show how we implement HTTPS, and how it is different from
SSH. For HTTPS, the clients need a browser extension, and the
server needs additional steps like getting a TLS certificate and
updating DNS entries periodically. We also show an example
use case where a client connects to the server using a web
browser.

We provide a browser extension that intercepts the Chhoy-
hopper domain name and redirects the requests to the current
domain name. Different from SSH, clients can provide the
inputs for domain name, salt, and key value using the input
page of the browser extension. The browser saves these inputs,
and uses them later to redirect the clients.

A script on the server updates its IP address (as with SSH).
It also updates dynamic DNS, adding a unique name for each
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new IP address. Before running the script, the server also needs
to generate an SSL certificate for the wildcard domain name.

The client-server interaction for HTTPS is shown in Fig-
ure 5 . Like SSH, the server utilizes similar ip6tables NAT
entries for access control. At the same time, the server adds
a DNS entry for the generated domain name. We can see the
generated domain name with the wildcard part before the first
dot along with the corresponding IPv6 address in Figure 5a
(highlighted in black).

A client needs to use a browser extension for getting the
Chhoyhopper HTTPS service (transparency requirement from
§IV-A). Figure 5b shows the input page for the clients. A client
needs to provide the Chhoyhopper base domain name, secret
key, and salt value. The browser saves these options for future
use.

When a client types the Chhoyhopper base domain name,
the browser checks the saved domain name, and if the browser
finds a match, it generates the current domain name using the
shared secret key, salt value, and timestamp. The browser then
successfully redirects the request to the current domain name
(see the domain name in Figure 5c). Since the server already
updates the DNS entry, the browser will get the current IPv6
address after the DNS resolution. The padlock symbol in the
address bar of Figure 5c indicates the transport layer security
to meet the collateral service requirement (§IV-A).

When a client uses a wrong secret key, the redirection does
not work. The request is then redirected to a different domain
name which cannot get the current IPv6 address (Figure 5d).

VI. ANALYSIS

We analyze our system to find out the risk of discovery
and collision. We show that the chance of getting discovered
or having a collision is vanishingly small, even if there
are millions of servers under the same IPv6 prefix. In the
very unlikely event the active IPv6 address is guessed, the
attackers has at most two minutes to carry out brute-force
password guessing. Address collisions from multiple servers
are exceedingly unlikely and can be completely avoided by
assigning each server a different /64; but in the worst case a
collision prevents access for only two minutes. We also discuss
other run-time costs of our system.

A. Risk of Discovery

To estimate the difficulty of brute-force scanning, consider
a scanner scanning at 100 Gb/s looking for a server hopping
in one /64 with 64B TCP SYNs. At that rate (scanning 2×108

addresses per second) the expected time to discover one server
is about 3000 years, at which point the adversary will have at
most two minutes to exploit it. Since the address space is huge
compared to the scanning rate, we are confident that brute-
force scanning is impractical. Since the address is hopping
randomly, intelligent scanning is not possible.

An adversary that observes traffic will know prior hop
addresses. If the hopping pattern is predictable, such knowl-
edge could be used to discover future hopping addresses.
Our assertion of hopping unpredictability is based on the

(a) Server log for HTTPS.

(b) Client extension.

(c) Redirection in client.

(d) Unsuccessful connection using a wrong key.

Fig. 5: Client-server interaction for HTTPS.

cryptographically security of our hash function, SHA-256. As
of 2022, SHA-256 is regarded as secure, but the algorithm
may need to be replaced in the future.

B. Risk of Collisions

When multiple servers share the same /64 address prefix,
it is possible that they could collide and hop to the same
address. A concerned operator should assign each server a
unique /64 prefix (operators can get a /48 prefix or so, and
then assign a unique /64 prefix to each server). However, we
suggest that odds of collision is so low that collision avoidance
is unnecessary.

Collisions of hopping addresses is equivalent to the well-
known Birthday Problem, but rather than n people in 365
days of the year, we have k servers in 264 addresses. Using
a simplified approximation, the probability of a hash collision
in any given minute is 1− e

−k(k−1)
2N [30]. Using this formula,

the probability of an address mapped into the k of 1 million
addresses is only 1 in 37 million. As we generate an address
every minute, we can expect a collision with these million
servers once in every 70 years. This failure rate is considerably
less than DRAM failures due to cosmic radiation [34].
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C. Run-time Costs

Runtime overhead for Chhoyhopper is usually done out-of-
band with new connections, or is very small.

The server selects new IP addresses every minute, but this
cost is out-of-band of new connections (so it does not affect
clients), and small (a cryptographic hash and local ip6tables
manipulation).

Clients starting a new connection must read the secret and
carry out a cryptographic hash, but this overhead is small
relative to the already required Diffie-Hellman key exchange
and SSH protocol negotiation.

Live connections require IP address translation from the
hopped address to the internal address. This cost is exactly
one NAT mapping. Most cloud services already have at least
two levels of address translation (for example, see VL2 [14]),
so the overhead of an additional mapping is quite modest.

VII. FUTURE WORK AND CONCLUSIONS

Currently, we support SSH client with a Python program,
and HTTPS using a Firefox extension. Potential future work is
to a Chhoyhopper client integrated with OpenSSH, to provide
HTTPS extension support for Chrome, and to port server
support to non-Linux operating systems.

In this work, we provide an implementation of a discovery-
resistant moving target defense named “Chhoyhopper” to
provide security utilizing the huge IPv6 address space. To
the best of our knowledge, this is the first deployment of
a hopping defense with IPv6, applicable for both SSH and
HTTPS. Using our system, a service will hop over different
IPv6 addresses, and a client needs to find the current IPv6
address to connect. Our implementation is publicly available
and we provide support for SSH and HTTPS applications.
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