
Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

Replication in Ficus

Distributed File Systems�

Gerald J. Popeky Richard G. Guy Thomas W. Page, Jr.

John S. Heidemann

Department of Computer Science

University of California Los Angeles

Abstract

Ficus is a replicated general �ling environment for
Unix intended to scale to very large (nationwide)
networks. The system employs an optimistic \one
copy availability" model in which con
icting up-
dates to the �le system's directory information are
automatically reconciled, while con
icting �le up-
dates are reliably detected and reported. The sys-
tem architecture is based on a stackable layers
methodology which permits a high degree of mod-
ularity and extensibility of �le system services.

This paper presents the motivations for replica-
tion and summarizes the case for optimistic concur-
rency control for large scale distributed �le systems.
It presents a brief description of the Ficus �le sys-
tem and concludes with a number of outstanding
issues which must be addressed.

1 Overview

At UCLA, we have been working for some time on
the design and development of an easily installed,
replicated �ling system that can be added to ex-
isting systems. Two fundamental characteristics of
the work are its approach to modularity through a

�This work was sponsored by DARPA under contract

number F29601-87-C-0072.
yAuthor also associated with Locus Computing

Corporation.

stackable �le system architecture; and an optimistic
view of update, in which any �le or directory may
be updated, so long as some copy is available. Con-

icts are addressed when reconnection occurs. The
system, which we call Ficus, is now operational. It
has been constructed in a manner that can be added
to an operating system that provides a faithful im-
plementation of the vnode interface [10], even using
conventional Unix �le systems such as UFS for �le
storage. Various optimizations are possible through
extensions to the basic structure.

In the next section, we summarize the motiva-
tions for our replication work, providing a view of
the goals of the research. The approach to modu-
larity and optimistic operation are then described.
Next, the actual Ficus project is summarized, and
some observations about the utility of these ap-
proaches are o�ered. Finally, a number of other
issues are raised.

2 Motivations for Replicated

Files

In the general purpose and distributed �ling en-
vironment, replication serves at least two impor-
tant purposes: improving performance and increas-
ing availability. Performance improvement occurs
when access to data from a local storage medium is
faster, cheaper, or less subject to congestion than
from a remote store. In our view, a replication so-
lution which does not take this consideration into



Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

account will be limited in applicability. The avail-
ability argument, by contrast, is well known. It
applies both in terms of a general network server,
with replicated components such as mirrored disks,
as well as at the workstation level, where each
workstation may have copies of those critical items
needed to permit isolated operation.

A suitable replication service must enhance avail-
ability in the face of communications outages, as
well as system or storage failures. From our point
of view, network partitioning is a fact of life. It oc-
curs through a variety of means, even when there
ostensibly are multiple communications paths. Ex-
amples abound: failure of the integrity of CSMA
local networks due to a loose terminator, transmis-
sion jamming from errant transceivers, repeater or
gateway failures, errors in routing protocols, or se-
rious tra�c congestion. Communications may be
forcibly delayed until lower cost times of day, an
e�ective failure. Organizational boundaries may
limit communications, as in the airline industry be-
tween reservations systems. In addition, of course,
one also has the expected communications outages.
In all of these cases, local computing continues.
The replication service should enhance this ability.

3 The Optimistic Model

One of the primary di�culties with replication ser-
vices in a distributed environment concerns what to
do about update. The issue is mutual consistency;
keeping the multiple copies of an object consistent
with one another. The usual view blocks copies
from becoming inconsistent, by any of a variety
of methods. Primary copy [1], majority consen-
sus [16], weighted voting [4]1, and quorum consen-
sus [9] are all variants of the same strategy; allow
update to occur in at most one connected environ-
ment. Then propagate that update to other storage
sites when communication is re-established.

Our view is di�erent, motivated by two obser-
vations. First, the conventional strategies decrease
availability for update. As the number of copies

1The large number of variants to weighted voting pub-

lished in the last decade are too numerous to list here.

of an object is increased, the ability to update it
tends to decrease. In a typical Unix �le system,
for example, over 40% of the �le opens are for up-
date [3], and over 6% of directory access is for write
[2], so this e�ect is signi�cant. Second, while up-
date tra�c is signi�cant, the frequency at which
actual con
icting updates occur to data stored in a
general purpose �ling system (excluding directory
information) is believed to be very low. The actual
level of sharing is known to be low in general, and
with the exception of databases, concurrent shar-
ing is hardly measurable in many environments. It
should be noted, however, that these \lack of on-
going sharing" statistics do not in general apply to
directories [3, 2, 11, 12].

These facts suggest a much more optimistic ap-
proach to replication, if a feasible solution can be
fashioned. Imagine an architecture in which up-
date were allowed whenever a copy of the needed
data were available. When multiple copies were re-
connected, if any were out of date, the new version
would be automatically propagated to make them
current. In the rare event that con
icting updates
had occurred to the data �le in question, the prob-
lem would be detected, both versions saved, and
the next higher level in the system (which might
be the user) would be noti�ed.

It is very important to consider carefully how di-
rectories are to be handled in this view, both be-
cause the directory system must maintain its in-
tegrity in the face of independent updates to itself
so that the system can operate successfully; and
because there is a higher likelihood that a given di-
rectory may be updated concurrently by di�erent
clients. Updates to directories (in fact, all support-
ing data structures as well) should be automati-
cally reconciled by the system. In principle this
step might appear easy. After all, one might ar-
gue that the only updates done to directories are
record inserts and deletes. The proper reconcili-
ation of two independently updated versions of a
directory would be to take the union of all the en-
tries, less those which had been deleted during par-
tioned operation. In fact, however, the situation is
rather more complex, due to a host of issues. These
include the asynchronous nature of partitions and
reconnections, the necessity to distinguish between
deletion and creation of an entry, the necessity not



Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

to involve centralized algorithms, and to perform
all necessary corrective actions during normal op-
eration. The implementation of the suite of rec-
onciliation algorithms in Ficus demonstrates that
such a solution is indeed feasible, even in the face
of these requirements.

4 An Approach to Modular-

ity

It would be most attractive if a replication service
such as we summarized above could be easily added
to an existing �ling system. In fact, this observa-
tion generalizes. A �ling system that were struc-
tured in separable layers, analogous to protocol lay-
ers in Unix System V Streams, would have many
advantages. The concept is that of a stack of ser-
vices, with the interface between all layers having
an identical structure, so that one could assemble
the services from an available set of building blocks.
In Streams, one can even dynamically push a new
protocol layer onto an executing stack of protocol
functions.

One could then imagine an operating system's
�le system to be composed of a stack of services:
extent management, data encryption, directory ser-
vices, remote access facility, performance monitor,
replication, etc. An important aspect of such an
approach is the de�nition of the interface. It must
be one that supports full function and allows high
performance both when adjacent layers are in the
same address space on a single machine, and when
separated by network communication. We lay out
a proposal for the stackable layers interface as part
of Ficus.

5 The Ficus Project

Ficus [13] is a set of software packages that may be
installed at the VFS layer of a �le system, where
Sun's Network File System [15] is typically con-
nected. It is self contained, in that it makes no as-
sumptions about the underlying �ling storage sys-

tem other than those which NFS makes. The sys-
tem permits one to replicate �les selectively within
limits set by administrative control. That is, a col-
lection of �le volume replicas are set up at various
storage sites for a given logical �le subtree. A given
�le may be replicated at any subset of the sites host-
ing a volume replica.

Unlike NFS, Ficus guarantees name transparency
among all of its volumes and replicas. This char-
acteristic is achieved without a global replicated
server such as found in AFS. The replicated infor-
mation that is a necessity to achieve name trans-
parency in a robust manner is merely represented
in normal Ficus directories. In this manner, the
system's standard directory reconciliation service is
responsible for maintaining consistency among the
necessary copies [7].

Two distributed algorithms are key to the Fi-
cus architecture. The �rst faithfully detects up-
date con
icts among data objects, and the second
automatically reconciles directory con
icts to pro-
duce a correct integrated result. The con
ict algo-
rithm associates a version vector with each replica
of each object and compares vectors to detect con-

icts [14]. The reconciliation algorithm [8, 5], actu-
ally a family of related procedures, are two phase
distributed algorithms (without coordinators) that
guarantee all updates and deletions to a partially
replicated directory structure (actually a general la-
beled graph structure) are seen by all copies, under
minimum communications assumptions.

The Ficus implementation [6, 13] is divided into
two stackable layers, \logical" and \physical". A
given machine may or may not host either or both
of these layers. The logical layer provides layers
above with the abstraction of a single copy, highly
available �le; that is, the existence of multiple repli-
cas is made transparent by the logical layer. It is
responsible for replica selection, notifying physical
replicas about the existence of updates, and man-
aging reconciliation. The physical layer implements
the abstraction of an individual replica of a repli-
cated �le. It uses whatever underlying storage ser-
vice is available (such as a Unix �le system) to
store persistent copies of �les, pulls over �le up-
dates, and manages the extended set of attributes
about each �le, and each directory entry. When



Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

the �le is stored on the same site as the client, the
logical and physical layers communicate via proce-
dure calls (vnode operations) resulting in minimal
overhead due to the layered architecture. When the
physical storage site is remote, the logical and phys-
ical layers are separated by a communications chan-
nel. The initial Ficus implementation uses NFS to
map vnode operations across address space bound-
aries. Figure 1 shows a �le with two replicas, one
of which is accessed via NFS.

OS Kernel

Physical
Layer

Logical
Layer

NFS

Physical
Layer

UFS UFS

Figure 1: Ficus Stack of Replication Layers

The layered model provides a high degree of 
ex-
ibility in the Ficus architecture. First, since the in-
terface to each layer in the system is the standard
vnode interface, NFS may be inserted between any
pair of layers. In particular, using NFS above the
logical layer makes a replicated �le system available
to any type of machine for which an NFS client im-
plementation exists (e.g., a PC running MS-DOS),
even though no implementation of Ficus exists for
that system. Similarly, using NFS below the phys-
ical layer allows replicas to be stored on any type
of machine that supports an NFS server interface
(e.g., an IBM disk farm on a 3090 running MVS).

Second, the common layer interface means that
additional �le system functionality could be added
to the stack transparently to all other modules. For
example, a layer could be inserted anywhere in the
stack which supports secure �le storage, encrypting

data as it is written and decrypting as it is read.
We are in the process of implementing a measure-
ment layer which records statistics about the tra�c
between any two modules in the stack. Thus stack-
able layers is also a methodology for extensible �le
systems.

6 Conclusions and Outstand-

ing Issues

The modular replication work reported here seems
like a promising component of distributed �ling sys-
tems, especially those which are large or geograph-
ically dispersed. However, while pursuing this re-
search, we encountered a number of other problems,
and as a result have a somewhat di�erent perspec-
tive in some cases. Here we raise a few: synchro-
nization, consistency, and naming.

It is our position that the large scale distributed
�ling arena requires a di�erent approach to con-
currency control from that employed in distributed
databases. In the database view, one guarantees
that either all data objects are updated atomically
as a unit or none are, in a manner that assures seri-
alizable schedules. By contrast, serializability and
atomic transactions are not provided by today's lo-
cal �le systems and are not required, in general,
in their large scale distributed descendants. We
argue that one should not even apply transaction
models to the collection of copies of an individual
object, as that means update (and even, in some
cases, reading) is impossible if any particular copy
is missing. However, distributed �le systems should
provide the hooks whereby higher levels of consis-
tency (up to and including serializability) can be
provided to clients who require it.

Within some region, one may well wish some
form of consistency. For example, on any given
site, it may be important that the client experience
monotonically increasing time, in the sense that the
client never sees data older than data it has already
seen, at least not without warning. One could of
course insist on a \single system image" of repli-
cated data in a very strong sense, as exhibited in
IBM's Transparent Computing Facility. There, the



Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

set of machines in the network cooperate to assure
that all clients see synchronized data, including
concurrent write sharing of �le pages. However, the
speci�c solutions employed there to achieve the sin-
gle system image require global agreements and do
not scale gracefully to very large networks. While
such higher levels of consistency may not be feasi-
ble as a base level of service in a large distributed
system, they may be quite feasible for a limited
subset.

There are many other problems to be considered
too. The directory reconciliation service that en-
ables the optimistic strategy espoused earlier can
be thought of as a general facility to manage loosely
coordinated collections of records, where the se-
mantics of the updates allowed to the records are
restricted. Examples of such collections of records
might include the Unix password �le or certain
databases. How should such a service be made gen-
erally available?

Once a large �ling system is installed, operating,
and depended upon, it is increasingly unlikely that
a \global reboot" to change protocols or make other
globally visible alterations can be tolerated. This
consideration puts a premium on decentralized ar-
chitectures, self identifying protocols and versions,
without global agreements.

A robust naming context system is also needed,
which allows software and potentially replicated ob-
jects to be moved easily, without invalidating ref-
erences (such as hypermedia links) in other ob-
jects. The name service must provide these trans-
parency properties while at the same time being
highly available, and hence replicated and mutually
consistent. We are pursuing each of these outstand-
ing issues in the context of Ficus.

Acknowledgements

Dieter Rothmeier and Wai Mak have played key
roles in the implementation of the Ficus layers and
reconciliation.

References

[1] P. A. Alsberg and J. D. Day. A principle for
resilient sharing of distributed resources. In
Proceedings of the Second International Con-

ference on Software Engineering, pages 562{
570, October 1976.

[2] Rick Floyd. Directory reference patterns in a
UNIX environment. Technical Report TR-179,
University of Rochester, August 1986.

[3] Rick Floyd. Short-term �le reference patterns
in a UNIX environment. Technical Report TR-
177, University of Rochester, March 1986.

[4] D. K. Gi�ord. Weighted voting for replicated
data. In Proceedings of the Seventh Sympo-

sium on Operating Systems Principles. ACM,
December 1979.

[5] Richard G. Guy. Ficus: A Very Large Scale

Reliable Distributed File System. Ph.D. disser-
tation, University of California, Los Angeles,
1990. In preparation.

[6] Richard G. Guy, John S. Heidemann, Wai
Mak, Thomas W. Page, Jr., Gerald J. Popek,
and Dieter Rothmeier. Implementation of the
Ficus replicated �le system. In USENIX Con-

ference Proceedings, pages 63{71. USENIX,
June 1990.

[7] Richard G. Guy, ThomasW. Page, Jr., John S.
Heidemann, and Gerald J. Popek. Name trans-
parency in very large scale distributed �le sys-
tems. In IEEE Workshop on Experimental

Distributed Systems, October 1990.

[8] Richard G. Guy and Gerald J. Popek. Recon-
ciling partially replicated name spaces. Tech-
nical Report CSD-900010, University of Cali-
fornia, Los Angeles, April 1990.

[9] Maurice Herlihy. A quorum-consensus repli-
cation method for abstract data types. ACM

Transactions on Computer Systems, 4(1):32{
53, February 1986.

[10] S. R. Kleiman. Vnodes: An architecture for
multiple �le system types in Sun UNIX. In
USENIX Conference Proceedings, pages 238{
247. USENIX, June 1986.



Appeared in the Proceedings of the
Workshop on Management of Replicated Data,
November 1990, pages 20-25

[11] �ivind Kure. Optimization of �le migra-
tion in distributed systems. Technical Report
UCB/CSD 88/413, Unviversity of California,
Berkeley, April 1988.

[12] John K. Ousterhout, Herv�e Da Costa, David
Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A trace-driven analysis
of the UNIX 4.2 bsd �le system. Technical
Report UCB/CSD 85/230, UCB, 1985.

[13] Thomas W. Page, Jr., Gerald J. Popek,
Richard G. Guy, and John S. Heidemann.
The Ficus distributed �le system: Replication
via stackable layers. Technical Report CSD-
900009, University of California, Los Angeles,
April 1990.

[14] D. Stott Parker, Jr., Gerald Popek, Gerard
Rudisin, Allen Stoughton, Bruce J. Walker,
Evelyn Walton, Johanna M. Chow, David Ed-
wards, Stephen Kiser, and Charles Kline. De-
tection of mutual inconsistency in distributed
systems. IEEE Transactions on Software En-

gineering, 9(3):240{247, May 1983.

[15] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design
and implementation of the Sun Network File
System. In USENIX Conference Proceedings,
pages 119{130. USENIX, June 1985.

[16] R. H. Thomas. A solution to the concurrency
control problem for multiple copy databases.
In Proceedings of the 16th IEEE Computer So-

ciety International Conference. IEEE, Spring
1978.


