
Low-latency Synchronization of
Loosely-coupled Sensornet Republishing

USC/ISI Technical Report ISI-TR-660, April 2009

Unkyu Park and John Heidemann
{ukpark,johnh}@isi.edu

Information Sciences Institute

University of Southern California

Abstract
Today many individual deployments of sensornets are

successful, but they will have much greater impact when,
rather than standing alone, they share data across deploy-
ments so each can build upon the others. We expect data
to be shared over the Internet, and as the number of pro-
cessing and reprocessing steps grows, timely data synchro-
nization is increasingly important. Today, such sharing is
often hard-coded or driven by fixed-interval polling. Fixed-
interval polling can provide poor worst-case performance
(mean latency approaching the data generation period), and
best performance requires careful manual configuration of
both poll period and phase. We instead propose Data Gen-
eration Tracking (DGT), a new family of adaptive polling
algorithms that learn and predict good times to pull data to
minimize both latency and unfruitful queries. Our approach
avoids manual configuration and automatically adapts to out-
ages and changes in data generation rate. To evaluate our
work, we examine four sensornet deployments and develop
a rough model of sensornet data generation. We then use
this model and replay of real traces to evaluate DGT, find-
ing that, depending on application, its median latency is only
10–30% of that of fixed-interval polling, with a configurable
rate of network load that is the same or slightly higher.

1 Introduction
Sensor network applications have been proposed and are

helping scientists with their research [24, 23, 25, 12]. As a
new, automated instrument, sensornets enable collection of
data that has previously been too expensive to acquire in ar-
eas of micro-climate monitoring [24], animal habitat [23],
geology [25], and similar areas [12]. These deployments are
undertaken by different research groups, each to accomplish

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

their own specific objective. While these research groups
often make their data available, reuse of data is rare, and col-
laboration across multiple sensornets is even rarer. Even ig-
noring issues of data ownership, today it is too cumbersome
to easily share data, even for scientists studying overlapping
subject areas.

We anticipate that data sharing represents the next phase
of sensornet development. Our goal is not just to allow sin-
gle projects to interconnect isolated sensor network patches,
but to allow different research groups to easily share their
data. Moreover, broad participation and interest often arises
when the barrier to sharing sensor data is sufficiently low that
casual users and amateurs can participate and share data, fos-
tering the citizen scientist [20].

In the limit, we expect individual users will share sensor
data, the blogging-inspired vision of slogging or sensor log-
ging first described by Mark Hansen [3]. Building on the
Internet as a powerful tool to date to share data, we seek
to blend sensornets into the Internet architecture, building a
Sensor-Internet. Several groups have recently begun explor-
ing a framework of sharing sensor data over the web and the
Internet [2, 14, 17].

While individual sensors are sometimes of interest, the
data becomes much more compelling when it is aggregated
and processed—we call such processing republishing. Much
as important results “bubble up” from distributed cross-
linking in blogs, we seek a similar milieu of sensor data. We
expect data from many different sources comes together to
form a rich world where sensor values are checked against
each other, filtered, corrected, combined and divided, and in-
dexed, not just by the sensor owners but potentially by any-
one with access to the data. We have described our first steps
towards this approach previously [20, 19].

Figure 1 shows an example of what we hope will be-
come more common: temperature data is generated from
dozens of sources, some mote-like sensors, PCs or propri-
etary weather stations, and others “scraped” from websites,
and each stream is published to a sensor log or slog. One re-
publishing step corrects errors. Another user fuses this data
from its many different storage locations and produces evolv-
ing temperature maps for a region.

Distributed, stream data immediately raises the question
of synchronization between sites: how do different sites as-

republishing

Im
a

g
e

R
e

co
g

n
itio

n

Temperature Publishing

Raw
87.1

?7.1

87.?

F
ix

in
g

 D
ig

its

Repair with image

Corrected

87.1 ±0.1

87.1 ±0.1

87.5 ±0.5

Raw

87.1

?7.1

87.?

F
ix

in
g

 D
ig

its

Digit Repair

Corrected

87.1 ±0.1

87.1 ±0.1

87.5 ±0.5

Raw

87.1

?7.1

87.?

republishing

TempMap

Interpolatepoint data into a

complete temperature map

Figure 1. A sensor-sharing example: data is published, republished with corrections, then republished again into a map.

sure getting the correct data rapidly? Fortunately, data con-
sistency problems can be easily avoided since data is im-
mutable; each element is timestamped, and changes produce
new data streams rather than in-place updates. Thus the pri-
mary problem is data latency: how do different sites know
when fresh data is available? When data is published, pro-
cessed, then republished, does latency accumulate? How do
data consumers manage source outages? And these ques-
tions must be considered not just for simple data pipelines
(single source, single result), but also for consumers that fuse
data from multiple sources.

Our paper proposes Data Generation Tracking (DGT) to
support low-latency synchronization for distributed process-
ing of sensor data (Section 6). In a custom system this task
is straightforward, since the data creator can push the data to
a single consumer. To encourage data sharing, we wish to
move as much of the cost of consumption to the consumer,
and in a large, distributed environment we do not believe data
generators can track all consumers. While today ad hoc sys-
tems often simply pull for data at fixed intervals, causing cu-
mulative latency if consumption is not carefully tuned (Sec-
tion 4.1). Instead, we show that each consumer can model
data generation and predict when new data is likely to ar-
rive. These predictions provide much lower latency than
fixed polling, and they reduce unfruitful queries (Section 7).

Although tracking the data source is conceptually sim-
ple, we find that the details of the data model have a sig-
nificant effect on the savings we obtain; in Section 6.1 we
show several small variations that result in significant perfor-
mance differences (Section 7.2). A second challenge is that
long-term data collection systems accommodate changes in
data generation over time and outages. We evaluate how
Disruption-Tolerant Networking approaches interact with
synchronization (Section 7.6). Finally, while with effective
synchronization, consumers ask for data immediately after
it is generated, but in very large systems this synchroniza-
tion creates a “thundering herd” of requests that can swamp
a publisher. We propose modest, intentional desynchroniza-
tion to mitigate this problem (Section 6.4).

We wish to evaluate our approaches against typical sen-
sor networks traffic. However, to our knowledge there are
today no published models of long-term sensornet deploy-
ments. We therefore develop an approximate model from
more than a year of four different long-running sensornet de-

ployments. Although the goal of each system is to gener-
ate data at a fixed, regular interval, we find the realities of
outages and clock drift require a more sophisticated model
(Section 5.1). We validate our model against these four de-
ployments, finding that it is far from perfect, but much closer
to reality than a simple periodic model (Section 5.2).

Finally, we use this traffic model and replays of the four
deployments to quantify the benefits of improved synchro-
nization in Section 7. While fixed-interval polling can do
reasonably well, particularly when manually tuned to the
data source, it can have very bad worst-case performance
(mean latency equal to the polling period) if tuned to match
the period but out-of-phase with the source. The specific re-
sults depend on the application, its median latency is only
10–30% of that of fixed-interval polling. Variants of DGT
can be selected to prefer reducing latency or network over-
head. DGT-L, optimized for low network overhead, gets
around 50% the latency of fixed and generates 5% fewer un-
necessary server requests. A moderate configuration, DGT-
N, gets 12% of the latency but with about 20% additional
unnecessary requests.

The two main contributions of this paper are first, to ex-
plore how data generation tracking can provide low-latency
distribution of sensor data across network of republishers.
Second, we present the first traffic models from real, long-
term deployments of sensor networks.

2 Related Work
Our work builds on previous efforts to share sensornet

data over the Internet, and is inspired by RSS-style sharing
in Internet blogs. It is also similar to workflow in large sci-
entific applications. We examine each of these areas next.

2.1 Sharing Sensor Data over the Internet
Several research efforts are exploring how sensornets and

the Internet can interact: IrisNet [10], SenseWeb [18, 27, 14],
GSN [1], Simple Sensor Syndication [4], Reddy et al. [20].

IrisNet considers Internet-side storage of XML-tagged
data from PC-connected sensors [10]. It uses a hierarchy
of XML databases to enable search over fields. They recog-
nize the need for distributed administration of storage but do
not provide a solution. SenseWeb is a software infrastructure
for sharing multiple sensor streams and exploration of envi-
ronmental measurement. It allows users to publish heteroge-
neous sensor data and share them with others. Our work has

similar goals as IrisNet, particularly in distributed manage-
ment, and we share SenseWeb’s goals of sharing sensor data
on the Internet, and we could build on SenseWeb’s storage
and visualization capabilities. Both IrisNet and SenseWeb,
however, pull data at fixed intervals. We instead develop an
adaptive polling algorithm to reduce data latency. We also
emphasize the need for multiple levels of data processing
with republishing.

GSN is a middleware design to integrate heterogeneous
sensor networks [1]. GSN provides an abstraction of sensor
network that separates the sensor data from the specific hard-
ware and software used in the sensor network. GSN stores
sensor data at GSN nodes and provides data processing spec-
ified by SQL. A peer-to-peer network indexes sensor data, al-
lowing efficient discovery of GSN nodes based on data type
and range. Both our work and GSN assume there will be
multiple processing steps; we propose adaptive polling will
reduce latency relative to GSN’s fixed-interval polling.

Simple Sensor Syndication places sensor data over RSS
and has shown how users can act in response to these
feeds [4]. Although sensor data can be accessed by any RSS
reader, they do not discuss data timeliness. Again, we be-
lieve RSS would benefit from our adaptive polling approach;
our approaches should be applied to their RSS-based mech-
anisms.

Finally, in Reddy et al. [20] we show the components of
a system for sharing and searching Internet data. We later
extended this system to track data use as it is processed and
republished [19]. However we have not examined latency
reduction until now.

We think synchronous data retrieving can benefit all
Sensor-Internet systems by detecting and delivering new sen-
sor data rapidly.

2.2 RSS Feeds Retrieval and Aggregation
Problems

Sharing sensor data over the Internet has much in com-
mon with sharing blog entries.

Sia et al. exploit the change characteristics of RSS post-
ings in fine-grained time and apply a stream specific polling
policy to detect new RSS feeds rapidly [22]. They showed
that an adaptive polling schedule monitors RSS feeds effi-
ciently. We also pull the source data with a polling policy
customized to each RSS stream to reduce the detection la-
tency of new data. While they find the optimal timing of pull
for a given number of pulls per period, our polling policy
tracks the each data point and predicts the time that the next
one will be published. The main difference in our tracking
approaches is that blogs show wide variance in publish times
because content is usually human generated. Sensor data,
however, is often fairly regular as we show in Section 5.

Most RSS readers poll the server regularly. A common
practice is to poll at the top of every hour, concentrating traf-
fic and harming performance [6]. Several approaches have
been proposed to improve scalability of RSS servers to many
clients. First, they try to reduce the unnecessary polls with
a larger update interval. Most RSS readers today use a fixed
update interval, independent of the stream update rate. The
server may also provide a Time-To-Live (TTL) to clients, an

estimate of when new data is likely to arrive [26]. Other re-
searchers have suggested replacing HTTP-based RSS feeds
with other approaches, such as distributed hash trees. While
these approaches reduce overall load, none directly surges
due to synchronized traffic. In Section 6.4 we propose use
of intentional jitter in client request rates for sensor streams;
this same approach would work well for RSS streams.

Stream Feeds [7] brings the sensor data to Internet using
a simple abstraction that is expressed in URL. They allow
users to access both historical data and the real-time updates
with selective push-and-pull retrieval method. They use a
push-based delivery mechanism for new data. Push-based
mechanisms provide very low latency, but we believe they
place an unacceptable burden on the data creator. We there-
fore explore synchronized, pull-based methods.

Yahoo Pipes is a web-based GUI tool for creating custom
processing of RSS feeds, including aggregation and filter-
ing [28]. It is therefore closest to our concept of multiple
steps of republishing. Unlike our work, though, they may
assume a centrally managed compute infrastructure, while
we believe a distributed scheme is essential if sensor sharing
is to spread beyond a single company.

2.3 Scientific Workflow
Scientific workflow allows scientists to access and analy-

sis of massive scientific data which are typically distributed,
and heterogeneous [21, 15]. Workflow systems today sup-
port large scientific computations, often on large grid com-
puters. Most workflow systems assume analysis of large,
stored, and static datasets. With such datasets, synchroniza-
tion is not critical since there are few items to synchronize
and they are ready at computation start. We instead focus on
streams of sensor data that evolve continuously and depend
on good synchronization for low latency.

3 Background about Sensor Sharing over the
Internet

As described above in related work (Section 2.1), there
are several current proposals to share sensor data over the
Internet. Our approaches could build upon many of these ex-
isting systems. Since each of the existing systems use differ-
ent terminology for similar concepts, we define the terminol-
ogy we use in this paper. As we introduce our terminology
we discuss our assumptions about the sensor data sharing
ecosystem. We then introduce four sensornet deployments
that provide datasets and motivate our work.

3.1 Components of sensor data sharing
Figure 2 shows several scenarios for how users might

share sensor data over the Internet.
Our basic assumption is that sensors generate data, while

publishers connect sensors to the Internet. If sensors run
a custom, non-IP network protocol, publishers function as
gateways. If not, the sensor and publisher may be logical
functions that are combined on a single machine. Figure 2
suggests that sensors could be traditional mote networks, full
IP-connected sensors (possibly also motes [11]), individual
Internet-connected PCs, or even mobile telephones.

On the Internet, data is kept in sensor data stores, or sen-
sor stores for short. Our central assumption is that there will
be multiple sensor stores. We believe diversity is essential if

republisher:

transform the existing data

the

Internet

users

mote
sensornet sensornet

mobile phones or personal computerssensors:
sense the environments

sensor publisher:

send collected data to sensor store

sensor store:
repository for all data

republisher

Figure 2. Components of sensor data sharing over the
Internet.

sensing is commonplace; and anticipate both large, central-
ized stores that host data for many users, and small stores
run by individual researcher projects or hobbyists. Such di-
versity is common in both web and blog hosting, and we
already see it emerging with some sensor data.

Finally, in addition to publishers who post sensor data di-
rectly, we anticipate republishers that process existing data
and make the results available to others. The essential ele-
ment of republishers is that they make their analysis available
by placing it in a sensor store just like direct publishers. With
this step we hope to enable value-added analysis of sensor
data with examples such as data aggregation, filtering, statis-
tical estimation, vetting, and error suppression.

3.2 The Republishing Ecosystem
Our key assumption about a successful sensor data shar-

ing ecosystem is that there are many independent groups
publishing and republishing (processing) the data, and that
there may be multiple levels of republishing between raw
data and results observed by users.

The implication of this diversity is that our system must
be loosely coupled. In integrated systems run by a single or-
ganization, a data publisher can often coordinate with data
consumers, either pushing or pulling data. We instead min-
imize the effort imposed on the publisher, with the goal of
minimizing publisher costs and so encouraging publishing.
We therefore focus on data consumers that pull data from
publishers so that publisher need not track each consumer.

The implication of multiple levels of publishing is that we
must support efficient data transfer in each step of the repub-
lishing chain. Today data is often generated and processed
on a regular, periodic basis. Such fixed-interval publishing
can easily accumulate delay at each step.

Our ultimate goal is to support a rich ecosystem of data
generation and consumption. We next examine the chal-
lenges of this ecosystem and its implications.

3.3 Sensornet deployments motivating repub-
lishing

On the surface, efficiently sharing data seems easy—one
can just post the data to a website, and data will arrive reg-
ularly. Real deployments provide much more interesting be-
havior.

We consider datasets from four different deployments in
this paper as shown in Table 1.

data
generation data

publishing data
use

publishing
latency

use
latency

time

Figure 3. Events and latencies in publishing.

Our primary dataset is Temperature, an urban temperature
monitoring deployment running for 12 months [20]. Data
comes from two classes of sensors: most are connected to
personal computers operated by individuals, others are data
collected indirectly from websites that report data from pro-
fessional or hobbyist weather stations. One artifact of the di-
versity of sensor owner is that sensors provide very different
reliabilities: some running for months like clockwork, and
others attached to laptops providing data only for a few hours
at a time. Data is often processed through multiple steps
to clean up errors as shown in Figure 1. This dataset best
matches our model of a successful sensor sharing ecosys-
tem, since data comes from many independent providers and
there are several republishing steps.

Our second dataset is Habitat, a multi-year deployment
monitoring the habitat of a nature reserve [23]. Sensors mea-
sure environmental conditions (temperature, humidity, etc.)
and cameras collect images of animals in their homes. Un-
like Temperature, this dataset is centrally managed and cu-
rated.

Third, we consider Seismic. This data represents data
from seismic sensors watching for earthquake activity [13].
PC-class sensors are deployed over a long (more than
300km) transect, forwarding data over point-to-point 802.11
and ultimately through a DSL gateway to the Internet. From
there, data passes through two processing steps at different
institutions. This deployment uses an implementation of
Disruption Tolerant Networking, both to handle forwarding
outages and to batch transmissions over the DSL line. We
selected this dataset because of its use of DTN and its 4-step
processing.

Finally, we consider Location, a small (2-sensor) deploy-
ment. PC-class sensors track their location with GPS and re-
lay data to the Internet using a simple DTN-like system built
with rsync. We selected this dataset to observe an alternative
implementation of DTN.

4 Republishing Challenges
Researchers have made significant progress in the mech-

anisms for sharing sensor data over the Internet (see Sec-
tion 2.1). However, we see three significant challenges to
enabling an ecosystem of sharing: republishing efficiently,
managing long-term faults, and characterizing sensor traffic.

Efficient data sharing should minimize network usage and
propagate data quickly. Figure 3 shows the three events help
characterize data latency: data is generated at the server, it
is published to an Internet-connected data store, and then it
is consumed by a user or a republisher. To minimize over-
all latency, we must separately consider publishing latency,

Disruption Duration
Dataset Description Tolerant Sensors (months)
Temperature temperature monitoring in an urban area [20]. No 5–20 12
Habitat wildlife habitat monitoring [23] Yes 16 12
Seismic seismic monitoring over a 300km transect [13] Yes 45 30
Location long-duration GPS monitoring Yes 2 2

Table 1. Sensornet deployment datasets considered in this paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Mean Use Latency (s)

260 280

polling interval
 = 300

320 340

Figure 4. Mean latency for fixed-interval polling of data
generated every 300s, as polling interval and phase vary
(pss = 0.95, pfs = 0.80).

the time from data generation to publishing on the Internet,
and use latency, the time from availability via publishing to
consumption by a user.

We next see how republishing synchronization can reduce
use latency, how disruption-tolerant networking affects pub-
lishing latency, and how we need models of sensor traffic to
evaluate both.

4.1 Republishing Synchronization
How should a consumer coordinate with its publisher of

sensor data? Direct triggers are possible in centrally con-
trolled systems, but in loosely coupled systems a consumer
often must poll the publisher.

In many cases sensor data is generated regularly, perhaps
every minute or hour. It is natural to assume a data con-
sumer would therefore also query for data at a fixed rate.
Figure 4 shows the mean latency for fixed-period polling of
a source generating new data every 300s. (This data is gener-
ated artificially using the model we describe in Section 5.1.)
First, we show how the fixed interval polling policy works.
The penalty of this simple approach is that each step incurs,
on average, latency equal to half of the polling period. In
a multi-step republishing world, this poor synchronization
causes significant processing latency.

One could improve latency by polling for updates very
frequently. Yet frequent checks waste network and CPU
resources—while polling 300s data every 5s provides only
2.5s mean latency, it means that 98% of all requests are un-
necessary!

A better idea would be to poll at the same period in which
data is generated. Polling data every 300s, just after it is

time

wall−clock pacing

wall−clock pacing

delay pacing

delay pacing

Figure 5. Two implementations of periodic data collec-
tion, wall-clock and delay pacing, with fixed collection
times (top) and varying collection times (bottom).

generated, gives near-zero latency. However, it is essen-
tial to match not just the period, but also the phase of data
generation—polling just before data is generated gives the
worst-case latency of 299s for every observation.

While the effort of synchronizing period and phase seems
sufficient, real deployments are much more difficult. Peri-
ods may change if the system is reconfigured; such changes
must be updated at all consumers. Phase may have to be re-
synchronized if either publisher or consumer reboot. If data
generation is temporarily delayed due to high load, the cor-
rect phase for the consumer may change. Figure 5 shows
how subtle implementation differences can cause variation.
Pacing can be implemented by relating sampling to fixed in-
tervals of wall-clock time (wall-clock pacing), or by fixed
delay between samples (delay pacing). With delay pacing,
the exact timing depends on the time it takes to collect obser-
vations and the system hardware. In the bottom example of
Figure 5, a longer collection time for the middle sample (the
dark boxes) causes the periodicity of delay pacing to vary,
and to diverge from wall clock pacing (compare the timing
of the dark dashes sample at the bottom right to samples with
wall-clock pacing or consistent sample times above). For all
these reasons we conclude that system management can be
significant for fixed-interval polling.

Because of these challenges of high latency, unnecessary
network usage, and significant management cost, we believe
fixed-interval polling is difficult for a single sensor and con-
sumer, and untenable with many sensors and multiple lev-
els of republishers. We therefore propose Data Generation
Tracking (DGT) to provide adaptive synchronization. We
explore DGT in Section 6.1.

Finally, with either manual or adaptive synchronization, a
successful system will have many data consumers. If all con-
sumers are perfectly synchronized with the publisher, load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

1min 2hours 1day 1month
C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

Mean Publishing Latency (s)

Habitat

Location

Seismic
(Good)

Seismic
(Heavy DTN)

Figure 6. Mean publishing latency (time from data gen-
eration to Internet availability) for three datasets.

at the publisher becomes very bursty—consumers become
regular flash crowds. We therefore also propose intentional
de-synchronization to spread load when necessary in Sec-
tion 6.4.

4.2 Disruption Tolerant Networking
The goal of many sensornet deployments is delivering

data to scientists, so sensornets are often designed to cope
with network and server outages. Delay/Disruption-Tolerant
Networking is an approach to data transfer where interme-
diate nodes buffer and retransmit data to mitigate large de-
lays and disconnection [8]. Here we consider DTN as an
approach that encompasses many implementations, ranging
from the Disruption Tolerant Shell [16] to manually copying
data with physically carried disks (“sneakernet”).

DTN affects publishing latency, the time between data
generation and when it appears in an Internet-based data
store. Figure 6 shows distributions of publishing latency for
the three datasets we consider that use DTN-approaches for
publishing. All deployments show a long tail where some
data arrives well after it is generated; this data would be lost
in a system without DTN. Yet the deployments see very dif-
ferent mean publishing latencies: less than a minute, two
hours, a day, and even a month for the sneakernet subset of
Seismic.

DTN poses a challenge to efficient data sharing because
data appears in bursts at unpredictable times. In addition,
sensors shift between on-line, regular updates to off-line,
batched updates. These challenges motivate our bimodal
model of publisher tracking in Section 6.3.

4.3 Need to Understand Sensor Data Streams
To improve synchronization and to cope with artifacts due

to disruption-tolerant networking, we must understand the
sensor data stream.

Many sensornets target regular sensing intervals. Ideally,
temperature taken every 300s will appear every 300s. How-
ever, in real deployments, many things conspire against such
regularity; delays occur due to system or network load, out-
ages occur due to failures, and observations drift due to im-
perfect clocks and software changes and restarts. The Tem-
perature dataset targets 300s collection intervals, yet Figure 7
shows it is far from perfect—we see some jitter around the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 300 600 900 1200 1500

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Inter-publishing Times (s)

bay-st-in
tabor-st-in

Figure 7. Distribution of inter-publish times (time be-
tween publish events) for two sensors (dataset: Tempera-
ture).

nominal 300s interval, and some percentage of reports are
missing, resulting in interarrivals at multiples of 300s. We
see similar variation in our other deployments.

We therefore next develop models of sensor traffic to un-
derstand what real-world traffic looks like. We use these
models to drive our synchronization algorithms and gener-
ate artificial traffic.

5 Modeling Sensor Publishing
Our goal is to track and predict the flow of a sensor data

stream to a publisher. We next develop a model of sensor
publishing, then show that it provides a reasonable fit to the
datastreams in the four deployments we consider. We will
use this model in Section 6 to develop a predictive synchro-
nization algorithm.

Our basic model is inspired by Figure 7: we expect some
jitter in each interval, and some lost reports. We formal-
ize this model below, and use it in our synchronization algo-
rithm.

We have also observed that long-term outages are a third
component of sensornet deployments. Long-term outages
have many root causes. In the four deployments we see out-
ages from hours to months, from reasons including laptop-
connected sensors, software troubles, and failure of inacces-
sible sensors. Because of this diversity of causes we do not
try to model long-term outages.

We do not intend our model to be perfectly accurate, but
merely good enough to support better synchronization. Af-
ter we present the model, we quantify its accuracy in Sec-
tion 5.2. We also later extend it to support bimodal distribu-
tions in Section 6.3.

5.1 Formalizing the Publishing Model
Our publishing model captures two aspects of publishing:

jitter around expected arrival times, and short-term failure to
report. Jitter is usually due to load at the sensor, network,
or data store; it can occur randomly or systematically as de-
scribed in Section 4.1. Short-term outages are often due to
sensor malfunction, network outages, brief sensor or datas-
tore maintenance or reboots.

One can express inter-publish times as:

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a
b
lit

y
 o

f
fa

ilu
re

-s
u
c
c
e
s
s

Probablity of success-success

Temperature
Habitat

Figure 8. Correlation of data publishing probability for
each sensor in two deployments (Temperature and Habi-
tat).

I = (k+1)λ+ j (1)

where k is the number of consecutive failures, λ is the target
publishing period, and j represents random jitter.

The simplest possible model is to assume there are no fail-
ures. That is, k= 0. We call this model the non-failure model.

If we assume a fixed probability of success to publish,
ps, then k, the number of consecutive failures is a random
variable with a geometric distribution:

P(k; ps) = (1− ps)
kps (2)

We call this model the geometric model.
Although we began with this simple geometric model, we

found it provided a poor match to real-world deployments
because failure is not completely independent. Even ignor-
ing long-term failures, we see runs of lost sensor values. One
cause would be maintenance on a sensor or data store that
lasts longer than the sensing period. Instead, we see that
when data is published successfully, the next data is also
likely to be published, while if the previous data was lost,
the next is less likely to be successful.

We model this correlation with a two-state Markov chain,
where the states are the success or failure of the last publish
attempt:

P =

(

pss (1− pss)
pfs (1− pfs)

)

(3)

where pss is probability of success after a successful pub-
lish, and pfs is probability of success after failure.

Figure 8 shows the correlated loss probabilities for all
sensors in two deployments. We see that pss is consistency
higher than pfs, showing that it often takes some time to re-
cover after failure. We also see that most Habitat sensors
have similar loss characteristics, while Temperature sensors
have a wider range of reliability. This variation corresponds
to centralized and independent sensor ownership and opera-
tion.

Our complete sensor model therefore incorporates corre-
lated loss:

P(k; pss, pfs) =

{

pss for k = 0

(1− pss)(1− pfs)
k−1pfs for k > 0

We use this two-state Markov model for simulations of
sensor data and to motivate our synchronization algorithm.
To get artificial traffic that models a given deployment we
compute pss and pfs from long-term traces.

As described above, we do not attempt to model long-
term failure. We define long-term failures as consecutive
failures of more than m publishing attempts, currently set-
ting m = 5. To prevent long-term outages from polluting our
estimates of short-term failures, we ignore outages longer
than m when computing empirical values of pss and pfs from
a given sensor deployment.

Now we consider the publishing jitter, j. Prior work has
shown Laplace distributions provide a good model of net-
work jitter [9, 29, 30, 5]. Although publishing jitter includes
processing components as well as jitter due to the network,
we find a Laplace distribution fits our observations well. The
PDF of jitter model is therefore:

j ∼
1

2b
e−
|x−a|
b (4)

where a is the mean of the jitter, b =
√

σ2/2, and σ2 is the
variance.

5.2 Model Accuracy
In this section we evaluate our models against alternatives

using our deployments.

In each case we compute our correlated failure model to
fit the data, then generate artificial sensor data of the same
duration using our model compare against the real trace.
Since the parameters are computed from the data we expect
some fit, but our model is much similar than reality. We
compare two components of the model: the number of con-
secutive failures, and jitter around the target publish rate.

First, we evaluate the accuracy of the failure component
of the model. We assume an interarrival time which is much
longer than expected indicate a missed publish attempt, so
we can then count the number of consecutive publishing fail-
ures by analyzing the interarrival times. Let the i th published
data arrive at time Ti, so the interarrival time of i th data is
Ii = Ti − Ti−1. We then compute the number of failures by
considering an interarrival in the range from (h+ 0.5)×λ to
(h+ 1.5)× λ to represent h consecutive failures where λ is
the expected publishing interval. We compare the number of
consecutive failures between model and traces from deploy-
ments we observe. We define a correct model fit using the
Chi-squared test statistic with 0.05 significance:

Error f ailuremodel =

m
∑

h=0

(Modelh−Observedh)
2

Modelh
(5)

wherem is the maximum number of consecutive failures that
we considered. Modelh and Observedh are the number of h-
consecutive failures in the model and observed data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
u
lu

m
a
ti
v
e
 D

is
tr

ib
u
ti
o
n

Model Error for Consecutive Failures (# of Events)

Non-failure Model
Geometric Model

2-state Markov Model
Chi-squre (0.05 significance)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
u
lu

m
a
ti
v
e
 D

is
tr

ib
u
ti
o
n

Model Error for Consecutive Failures (# of Events)

Non-failure Model
Geometric Model

2-state Markov Model
Chi-squre (0.05 significance)

Figure 9. Evaluation of accuracy in modeling consecutive
failures from Temperature (top) and Habitat (bottom).

We compare our proposed two-state Markov failure
model with our two simpler models, non-failures and and
the geometric (uncorrelated) failure model. The failure er-
ror of simple model is not mathematically stable because the
Modelh = 0 for h > 0, so we add a single failure to prevent a
division by zero.

Figure 9 shows the CDF of failure errors of each sensor in
the Temperature and Habitat datasets. We first observe that
the two-state model is a statistically good fit only for about
half of the temperature dataset, and for none of the Habitat
sensors (comparing the Chi-squared threshold against the er-
ror for sensors in each model). This result suggests that out-
age durations are not geometric (as per our two-state model),
but follow some other distribution.

However, this analysis strongly suggests that our two-
state model is significantly better than either of the simpler
models. Although inaccurate, our model is close enough to
serve as inspiration for our synchronization algorithm.

Second, we evaluate the jitter component of our model.
To isolate jitter, we measure how much each publication dif-
fers from a fixed period (λ, both empirically and with either
a normal or Laplace distribution.) We fit each model using
maximum-likelihood estimation of parameters.

We show data for jitter around λ and 2λ for a single sen-
sor in Figure 10. (Other sensors in that and other datasets
are generally similar.) We can see visually that the Laplace
distribution is a better fit than Gaussian. The Kolmogorov-
Smirnov (K-S) distance between empirical data and the nor-
mal distribution is 0.1985, while with Laplace it is 0.1475.
Although neither distribution is a statistically strong match

260 280 300 320
0

0.2

0.4

0.6

0.8

1

Interval (s)

C
D

F

Empirical CDF

Empirical
Normal
Laplace

540 560 580 600 620
0

0.2

0.4

0.6

0.8

1

Interval (s)

C
D

F

Empirical CDF

Empirical
Normal
Laplace

Figure 10. Jitter model fit to the real data (dataset: Habi-
tat, sensor: 9NN): jitter around λ (top) and wider jitter
around 2λ (bottom).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Jitter Model Error

Normal
Laplace

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Jitter Model Error

Normal
Laplace

Figure 11. Jitter model error in Temperature (top) and
Habitat (bottom).

Figure 12. State diagram of DGT-A (Hit always go to
success state).

(they reject the null hypothesis), Laplace is the closer.
We found similar results examining jitter around the other

failure multiples (from 2λ to 5λ). Figure 11 shows the jitter
model error of every sensor stream in both Temperature and
Habitat datasets. In almost all cases, Laplace fits better than
normal. Overall, we conclude that our model captures jitter
accurately.

6 Synchronization Algorithms
We next describe Data Generation Tracking (DGT), our

algorithm to improve synchronization. We first present the
basic algorithm with several small extensions. We then
present Bimodal DGT to support sensornets distributing data
with disruption-tolerant networking. Finally, we present In-
tentional Desynchronization, a load distribution strategy for
very popular publishers.

6.1 Basic Data Generation Tracking (DGT)
Since we cannot know for certain when future data will

appear, the basic idea of DGT is to track prior publication
history to make a best effort prediction of when new data
is likely to arrive. Our goal is to improve on the latency of
simple period polling, while not producing too many poll
misses—requests that find no new data present.

Our overall approach is inspired by our observations from
sensor data streams as shown in Figure 7. Those observa-
tions influenced our model of data streams in Section 5 that
considers short-term outages and jitter, and that recognizes
but does not attempt to capture long-term outages.

In DGT, each client models the median and standard de-
viation of inter-publish times in the sensor stream. At the
top level, DGT predicts that the next sensor value will be
published with the same period, simply adding the median
inter-publish estimate to the last publish time. We account
for jitter in two ways. First, DGT optionally alters its predic-
tion by adding one standard deviation to this estimate, giving
data a little extra time to arrive. Second, if DGT finds new
data has not yet been published, it does zero, one, or two fast
retries to see if data arrives after a short delay. If we do not
find data after accounting for jitter, DGT assumes we have
lost a sample and polls again after the next period, a period
retry. To account for extended outages, DGT backs off the

interval of period retries exponentially. Figure 12 shows how
DGT attempt these retries. We describe more detail below.

DGT is composed of channel modeling (Algorithms 1)
and adaptive retry (Algorithm 2). However, it also includes
several sub-algorithms: back-off, more-data immediate pull,
and phase adjustment. In addition, in the next section we
explore bimodal DGT to handle deployments that use DTN,
and then intentional desynchronization to handle very large
numbers of consumers.

The core DGT tracking and adaptive retry algorithms are
in blocks (1) and (5), respectively. We track the stream by
recording publish time median and standard deviation. To
compute median, we keep a window of the last 20 publish-
ing times (not shown in the pseudo-code). (We previously
used mean inter-publish time instead of median, since times
have a long-tail, median better represents the process.) It
is important that we track data publish-to-publish times, not
use-to-use times (as defined in Figure 3), since use-to-use
time will be zero if we catch up on a burst of previously un-
read sensor values.

Adaptive retry is the long block (5), where DGT counts
failures in each mode (fast retry, period retry, and bimodal
retry discussed below). Each stage has a different retry time,
and a different number of unsuccessful attempts that cause it
to fall into the next mode. Fast retries quickly, spaced by ob-
served standard deviation. Fast retries are useful for catching
overly aggressive polling in DGT-A and DGT-L, since those
variants expect to have query miss rates of 70% or 50% in
their goal of minimizing latency.

Period and bimodal retries (but not fast retries) back-off
exponentially (steps (6) and (7)). We use exponential back-
off to tolerate extended outages, balancing latency after an
uncertain down-time with query hit rate. To prevent back-
off from becoming excessive, we cap back-off to a reason-
able value, currently two days (step (8)). Finally, as we
move between different back-off modes, we adjust timing
with next_delay_bias to account for retries done at more
rapid modes.

We use more-data immediate pull to quickly
catch up after multiple sensor values were pub-
lished. When sensor data is returned, we also signal
result.has_more_data_already(), allowing the client
to immediately request additional results. Such immediate
processing occurs when a sensor comes back on-line, or a
DTN system delivers a burst of data after a disruption.

Finally, we do phase tracking as well as tracking the pe-
riod of data streams. We expect phase adjustment to cor-
rect for sensors that are rebooted or otherwise dramatically
change when they report data. Step (4) implements phase
adjustment, since after a successful query we “rebase” our
timing on the publish time of the data, not the current time.

6.2 DGT Variants: Latency vs. Hit Rate
We have three variants of DGT, aggressive, normal, and

lazy (DGT-A, DGT-N, and DGT-L). Aggressive attempts to
reduce latency by polling one standard deviation before the
data is expected, normal when it is expected, and lazy one
standard deviation late. These algorithms therefore trade
query misses for lower latency, as we show in Section 7.3.

 0

 0.2

 0.4

 0.6

 0.8

 1

C
u

c
u

m
la

ti
v
e

 P
ro

b
a

b
ili

ty
 o

f
A

rr
iv

a
l

Normalized Publishing Time

median
50.0%

-σ

σ

93.2%

6.8% > σ

6.8% < - σ

Figure 13. Selection of target polling times in DGT vari-
ants against an idealized Laplace distribution.

The algorithms are all slight variants of the same code, set-
ting VARIANT_BIAS and VARIANT_FAST_TRIES to control
when polling is done after a success. The more aggressive
variants do fast retries to account for expected query misses,
as we discuss below.

The DGT variants poll at different times relative to the
estimated of next data. DGT-N polls at the median, and so
by definition it will require a retry 50% of the time; it retries
after one standard deviation. Because DGT-A is aggressive,
it retries twice before giving up and doing a period retry.
Assuming jitter follows a Laplace distribution (our closest
fit, and a tighter distribution than Gaussian), analysis shows
that about 7% of events occur at µ−σ, and 7% after µ+σ.
Figure 13 shows where we expect each variant to pull.

We considered giving each variant an extra retry. Doing
so would reduce latency for 6.8% of the time that is delayed
by more than one standard deviation past median, but at the
cost of lower hit percentage. Further exploration of this op-
tion is future work.

6.3 Bimodal DGT
We found that basic DGTworks well for several of the de-

ployments that we looked at. However, when we examined
Seismic, we found that it published data with two different
periods. To minimize their impact on other users of the net-
work, they batch sensor data collected during the daytime
and send it all at night. During nighttime hours the publisher
sends data from the sensors immediately. This transmission
pattern represents one policy made possible by disruption-
tolerant networking.

Such bimodal operation is a poor match for basic DGT. It
will learn the nighttime pattern, but then repeated miss dur-
ing the day.

To better manage bimodal publishers, we extended DGT
to support bimodal operation. For bimodal operation, we
track bimodal_median in Algorithm 1 block (1), and fail-
over to the bimodal estimate after repeated misses in block
(7). We will show this approach help to reduce poll misses
for Seismic in Section 7.6.

6.4 Intentional Desynchronization
The goal of DGT is to synchronize consumers with the

publisher to minimize use latency. While minimizing la-
tency for clients, good synchronization maximizes the load
on the server by concentrating all requests at the same time.
This problem has been observed in RSS readers, where many

Algorithm 1 DGT: Data Generation Tracking Algorithm

Variables:
estimated median, estimated standard deviation
retry mode = {SUCCESS,FAST,PERIOD,BIMODAL}
retry count
previous time
next delay, next delay bias
Constants:
VARIANT BIAS = -1, 0, 1
VARIANT FAST TRIES = 2, 1, 0 for DGT-A, DGT-N, DGT-L
PERIOD TRIES = 7
DELAY CAP = 2 days

initialization: all variables are zero, retry mode = SUCCESS
loop

wait until previous time + next delay + next delay bias;
next delay bias = 0;
previous time = current time();
result = request data from source();
if (result == SUCCESS) then
// *** (1) TRACKING THE STREAM
success time = current time();
if (retry mode == BIMODAL) then

update bimodal median;
else

update estimated median and estimated standard deviation;
end if

retry mode = SUCCESS;
next delay = estimated median + VARIANT BIAS * esti-
mated standard deviation;
if (result.has more data already()) then
// *** (2) MORE DATA IMMEDIATE PULL
next delay = 0;

end if
// *** (3) INTENTIONAL DESYNCHRONIZATION
next delay += uniform random (0, result. desync interval);
// *** (4) PHASE ADJUSTMENT
previous time = result.data publish time;

else
call the retry method();

end if
end loop

readers poll for content at the top of every hour [6]. As a
result, a successful stream of sensor data with many syn-
chronized clients will subject itself to the equivalent of a
distributed denial-of-service attack for each published data
item.

To address this problem we provide intentional desyn-
chronization in step (3) of Algorithm 1. Each publisher re-
turns a recommended desynchronization interval along with
successful data. Clients then intentionally jitter future re-
quests uniformly over this interval, allowing the sensor store
to distribute load as required.

We choose to distribute desynchronization from the sen-
sor data store. In principle, data consumers could esti-
mate the need for desynchronization based on poor response
times, but such an estimate could at best correct the problem
after the fact. The sensor store has exactly the information
about load, and can make an informed judgment about how
widely load should be distributed. We expect the sensor store
to track its incoming request queue and increase the spread
as queue time rises.

Algorithm 2 DGT: retry method()

// *** (5) ADAPTIVE RETRY after failure
if (retry mode == SUCCESS) then
// for a failure after a success, try fast retries
retry mode = FAST;
retry count = 0;
next delay = estimated standard deviation;

end if
if (retry mode == FAST) then
// continue fast retries until we have too many
retry count++;
if (retry count > VARIANT FAST TRIES) then
// after too many fast retries, try next period
retry mode = PERIOD;
retry count = 0;
next delay = estimated median;
next delay bias = current time() - success time;

end if// (no backoff with fast retries)
end if
if (retry mode == PERIOD) then

// continue fast retries until we have too many
retry count++;
if (retry count > PERIOD TRIES) then
// after too many period retries, try bimodal
retry mode = BIMODAL;
retry count = 0;
next delay = bimodal median;
next delay bias = current time() - success time;

else if retry count > 1 then
next delay ∗ = 2; // *** (6) BACKOFF

end if
end if

if (retry mode == BIMODAL) then
if (retry count > 1) then

next delay ∗ = 2; // *** (7) BACKOFF
end if

end if

7 DGT Evaluation
In this section we evaluate our synchronization algorithm

using both the models we presented in Section 5.1, and trace
data from the four datasets in Table 1. Our goal is to com-
pare DGT to today’s widely-used fixed-interval polling, also
evaluate the differences in the DGT variants, and show how
disruption tolerance changes our results.

7.1 Metrics
We evaluate performance with four different metrics, each

of which tests slightly different aspects of the performance.
In general we evaluate use latency (defined Figure 3); we
often drop the “use” when not ambiguous.

Our primary metric is median use latency, the 50% per-
centile value of latency of all data retrievals from a sensor
or all sensors in a dataset. We generally prefer median as
a statistic over mean because DGT has occasional long la-
tencies (for example, after an outage). Such outliers make
means misleadingly high.

We use mean use latency when the distributions lack long
tails.

We do care outliers, so we directly measure the spread of
latencies with variance of use latency.

Latency is minimized by polling frequently, yet we need
to balance overhead on the network and publisher. We there-
fore measure hit percentage, the fraction of queries for data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500 550 600

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Use Latency (s)

FIX-IP
DGT-N
DGT-L

Figure 14. Use latency of all sensor publishings from one
reliable sensor (dataset: Temperature, sensor: vir-in).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500 550 600

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Use Latency (s)

FIX-IP
DGT-N
DGT-L

Figure 15. Use latency of all sensor publishings from one
unreliable sensor (dataset: Temperature, sensor: 014-in).

that return data, as opposed to simply reporting no new data
is available.

7.2 Comparing Fixed Interval and DGT
First we want to compare fixed-interval polling with our

improved synchronization algorithms using data from real
sensors.

Recall that in Section 4.1 and Figure 4 we shows that
fixed-interval polling is difficult to do well. By default, la-
tency is half the polling interval if the periods do not match.
If periods match, then latency is governed by the relative
phases, but phases require effort to keep aligned, and minor
changes in phase (for example, moving just before or after
the update time) causes huge changes in latency. And with a
poor choice of phase, latency can be systematically bad (or
good).

Figure 4 showed simulation data for an exhaustive com-
parison of phase and a range of periods. Turning to real de-
ployments, Figures 14 and 15 compares fixed-interval with
DGT for two different real-world sensor with a target pub-
lishing interval of 300s. For each figure, we replay the pub-
lish times of this sensor to measure use times of a consumer
using fixed or each of two versions of DGT.

These examples show three things. First, real fixed-
interval polling shows a range of latencies. We did match the

data generation period, but did not attempt to match phase
with data generation time as manual matching is too labor
intensive. Figure 15 shows near linear latencies because this
sensor was frequently restarted and each restart has a differ-
ent relative phase. The sensor in Figure 14 was quite stable
for weeks at a time, so latencies there show several more
common values (around 40s, 140s, 200s, and 250s). These
represent long periods where the consumer and the publisher
run at the same relative phase.

Second, we see that DGT works very well at reducing use
latency. The median latency with DGT is about one-tenth to
one-third that of fixed interval for either sensor (14s vs. 232s
in Figure 14, 18 or 50s vs. 150s in Figure 15). Regardless of
initial setting, DGT learns to track either publisher.

Finally, we see that DGT occasionally has latency worse
than fixed polling. For the stable sensor (Figure 14), this
happens very rarely, less than 5% of the time. For the unsta-
ble sensor, latency is worse 20–30% of the time. These large
latencies are caused by DGT’s backoff algorithm, when it
waits up to 27× the publishing interval. This cost is worse
with an unreliable sensor where outages and large backoff is
more frequent.

These figures show two representative sensors of the
many we examined. We compare fixed polling and DGT
more systematically in Section 7.4 where we explore a wide
range of failure conditions in simulation.

7.3 Comparing DGT Variants in Several De-
ployments

Section 7.2 compared fixed and two variants of DGT for
two specific sensors.

We next turn to all sensors in each of our datasets to com-
pare the DGT variants and fixed polling in real-world condi-
tions. We compare not only latency, but also hit percentage
to study how performance and overhead trade off.

Figures 16, 17, and 18 show latency (top) and high per-
centage (bottom) for three deployments, Temperature, Habi-
tat, and Seismic. We omit Location due to space limitation;
its results are similar. In each case, we play back the dataset
through each algorithm to evaluate latency and hit percent-
age.

The qualitative comparisons of these deployments are
fairly similar. Across each dataset, all variants show much
lower latency than fixed polling. Only Seismic shows a few
outliers with greater latency. This result suggests that the un-
reliable sensor in Figure 15 is unusual, most sensors in most
deployments are more regular.

Comparing variants, DGT-A consistently shows the low-
est latency, with DGT-N and -L usually close. Only in Habi-
tat, does DGT-L show significantly worse latency than the
others; we plan to examine this case more closely.

These figures are the first to show hit percentages, the
fraction of requests that find fresh data. DGT sometimes
shows better or worse hit percentages relative to fixed
polling, depending on the deployment. When comparing
DGT variants, as predicted by Figure 13, DGT-A always has
a lower hit percentage than -N and -L, although the quantita-
tive difference depends strongly on the deployment and does
not match the Laplacian prediction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Median Latency (s)

FIX-IP
DGT-A
DGT-N
DGT-L

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
Hit Percentage

FIX-IP

DGT-A DGT-N

DGT-L

Figure 16. Performance comparison of different polling
policies with traces (dataset: Temperature), latency (top)
and hit percentage (bottom).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Median Latency (s)

FIX-IP
DGT-A
DGT-N
DGT-L

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Hit Percentage

FIX-IP

DGT-A DGT-N

DGT-L

Figure 17. Performance comparison of different polling
policies with traces (dataset: Habitat), latency (top) and
hit percentage (bottom).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Median Latency (s)

FIX-IP
DGT-A
DGT-N
DGT-L

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Hit Percentage

FIX-IPDGT-A

DGT-N

DGT-L

Figure 18. Performance comparison of different polling
policies with trace (dataset: Seismic), latency (top) and
hit percentage (bottom).

Overall we conclude from analysis of these deployments
that DGT is a strict improvement over fixed polling, offer-
ing greatly reduced latency with only moderate decrease in
hit percentage. The DGT variant can be chosen based on
preference in the latency/hit percentage trade-off. Since in
most cases DGT-L provides reasonable latency and good hit
percentage, we suggest that as a default.

7.4 Synchronization Performance over Many
Loss Conditions

We just examined DGT performance in several deploy-
ments (Section 7.3), but those cover only four specific use
scenarios. To more fully explore DGT performance under a
range of loss conditions we turn to simulation with artificial
and controlled traffic patterns.

Using the traffic model we describe in Section 5, Fig-
ures 19 and 20 show two “slices” through the parameter
space. Each graph looks at a wide range of failure probabil-
ity (governed by pss), while Figures 19 recovers more slowly
after loss than Figure 20 (pfs = 0.6 rather than pfs = 0.8),

For each graph we ran 100 simulations for each configu-
ration. DGT points omit confidence intervals because they
were very small. For fixed-publishing we report the best and
worst simulation cases as well as the mean of all simula-
tions. Publishing interval is 300s, so the best possible case
would be around 1s latency and worst would be 299s (phases
aligned); the best and worst cases we report represent those
of randomly chosen phases.

Evaluation of latency (the left graphs) shows that our con-
clusions from real-world deployments hold over this wide

range of simulation parameters. In addition, when reliabil-
ity is good (around pss > 0.8), it shows that DGT latency is
as low as, or lower than the best phase of the fixed-interval
cases we chose randomly.

Hit percentages (the right graphs) again vary, with DGT-
L generally doing much better than typical fixed-interval
polling, while DGT-A has more misses. Hit percentage of
DGT-A and DGT-N are lower not only because the poll be-
fore the data is likely to be there, but then they also do 2 or 1
fast retries if they miss.

To get a better idea of consistency in results, the mid-
dle graphs show standard deviation of latency. We see that
DGT-L can be quite consistent, even more than the average
fixed-polling interval, when when reliability is good (around
pss > 0.8), This observation supports our claim that DGT
does particularly well with stable data sources.

From these results we conclude that DGT provides much
lower latency and reasonable hit percentage for a wide range
of loss characteristics.

7.5 Validity of Simulation Observations
The results of Section 7.4 are based on simulations us-

ing our traffic model, but in Section 5.2 we showed that our
model is not a perfect fit for reality. For example, we do not
attempt to model long outages.

To see if the known approximations of our model change
the conclusions from our simulation, Figure 21 compares
DGT performance from trace playback (gray bars on the
right) to simulations using parameters instantiated from the
same trace. The figure shows that, although there are small
differences in absolute performance, our conclusions about
the relative performance of the algorithms is unchanged.

We found similar results when we compare simulations
and playback of other relatively stable sensors. We expect
greater divergence from unstable sensors (such as that shown
in Figure 15), since the model does not attempt to capture
long-term outages.

7.6 Bimodal DGT and Disruption Tolerant
Networking

Finally, we consider Bimodal DGT and how it interacts
with deployments using Disruption Tolerant Networking.
For this study we focus on the Seismic dataset since it makes
the heaviest use of DTN. While some sensors in Seismic are
always available, others batch reports and send them once a
day for policy reasons, and others employ manual data mul-
ing and report batches of data aperiodically. Such variation
makes it difficult for DGT to track data arrival times, and
motivated Bimodal DGT to try and capture both individual
sensor readings and the daily patterns.

Figure 22 shows the comparison of two fixed-interval
polling configurations (at 1 day and 1 hour), DGT-L with
bimodal operation disabled, and Bimodal DGT-L. In this
case we selected one of the six sensors that was providing
batched, daily reports. In this case, fixed polling is always
successful (hit percentage 100%), but latency is nearly half a
day. Mean latency drops to 18 minutes with hourly polling,
but the hit percentage drops to 51%.

Applying non-bimodal DGT-L to this scenario gives per-
formance as good as hourly polling (DGT-L mean latency is

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
e

a
n

 L
a

te
n

c
y
 (

s
)

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Wrost)
DGT-A
DGT-N
DGT-L

 0

 50

 100

 150

 200

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
L

a
te

n
c
y
 S

td
d

e
v
 (

s
)

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Worst)
DGT-A
DGT-N
DGT-L

 0

 20

 40

 60

 80

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

H
it
 P

e
rc

e
n

ta
g

e

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Worst)
DGT-A
DGT-N
DGT-L

Figure 19. Performance comparison of different polling policies with moderate recovery (pfs = 0.60): latency (left),
standard deviation of latency (center) and hit percentage(right).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
e

a
n

 L
a

te
n

c
y
 (

s
)

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Wrost)
DGT-A
DGT-N
DGT-L

 0

 50

 100

 150

 200

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

L
a

te
n

c
y
 S

td
d

e
v
 (

s
)

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Worst)
DGT-A
DGT-N
DGT-L

 0

 20

 40

 60

 80

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

H
it
 P

e
rc

e
n

ta
g

e

Probability of success-success

FIX-IP(Average)
FIX-IP(Best)

FIX-IP(Worst)
DGT-A
DGT-N
DGT-L

Figure 20. Performance comparison of different polling policies with faster recovery (pfs = 0.80): latency (left), standard
deviation of latency (center) and hit percentage(right).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

FIX-IP DGT-L DGT-N DGT-A

M
e

a
n

 L
a

te
n

c
y
 (

s
)

Polling Policy

simulation
real data

 0

 20

 40

 60

 80

 100

 120

 140

FIX-IP DGT-L DGT-N DGT-A

L
a

te
n

c
y
 S

td
d

e
v
 (

s
)

Polling Policy

simulation
real data

 0

 20

 40

 60

 80

 100

FIX-IP DGT-L DGT-N DGT-A

H
it
 P

e
rc

e
n

ta
g

e

Polling Policy

simulation
real data

Figure 21. Comparing simulation and trace playback results for one sensor (dataset: Temperature, sensor: vir-in) for
latency (left), standard deviation of latency (center), and hit percentage (right).

 0

 2

 4

 6

 8

 10

 12

FIX-1DAY FIX-1HR DGT-L Bimodal-DGT-L

M
e

a
n

 L
a

te
n

c
y
 (

h
o

u
r)

 0

 20

 40

 60

 80

 100

FIX-1DAY FIX-1HR DGT-L Bimodal-DGT-L

H
it
 P

e
rc

e
n

ta
g

e

Figure 22. Comparing DGT-L with and without bimodal
operation to two periods of fixed polling, mean latency
(top), and hit percentage (bottom). (Dataset: Seismic,
sensor: PE48).

16 minutes), but with an even lower hit percentage. This
problem occurs because DGT trains on the short interval
when data is appearing during connectivity, but then it suf-
fers many misses as it backs off during the day.

Bimodal-DGT-L, by comparison, learns both periods and
so provides about the same latency (mean of 24 minutes), but
with a much better hit percentage (59%). Bimodal-DGT still
will suffer several misses while it times out during a daily
outage, but it knows to take a long (bimodal) pause at that
point.

We conclude that bimodal-DGT is important if both good
hit percentage and low latency are desired.

8 Conclusions

In this paper we described the problem of synchronizing
sensor publishers and consumers. While sensornets have tra-
ditionally generated data and consumed it by polling at fixed
intervals, that approach adds significant latency for each pro-
cessing step. To promote a rich environment with many peo-
ple generating, consuming, and republishing data, we intro-
duced Data Generation Tracking, and approach that allows
data consumers to synchronize efficiently with publishers.
Imposing very little cost on publishers, we showed that this
approach reduces median latency in each processing step to
10-30% of what fixed-interval polling would require, in four
real-world deployments.

Acknowledgment

This work is supported by National Science Foundation
(NSF) grants CNS-0626702, Sensor-Internet Sharing and
Search.

We thank Deborah Estrin and Martin Lukac (UCLA) and
Fabio Silva (USC/ISI) for providing access to three of our
datasets and answering questions about their deployments.

We thank Mark Hansen and Junghoo Cho for the discus-
sions that helped motivate this work.

9 References
[1] Karl Aberer, Manfred Hauswirth, and Ali Salehi. A middleware for

fast and flexible sensor network deployment. In VLDB, pages 1199–
1202, 2006.

[2] Anonymous. Untitled. (Reference omitted for review).

[3] Kevin Chang, Nathan Yau, Mark Hansen, and Deborah Estrin. Sensor-
base.org - a centralized repository to slog sensor network data. 2006.

[4] M. Colagrosso, W. Simmons, and M. Graham. Demo abstract: Simple
sensor syndiciation. In Proceedings of the Fourth ACM SenSys Con-

ference, pages 377–378, Boulder, Colorado, USA, November 2006.
ACM.

[5] Edward J. Daniel, Christopher M. White, and Keith A. Teague. An
inter-arrival delay jitter model using multi-structure network delay
characteristics for packet networks. In the 37th Asilomar Conference

of Signals, Systems, and Computers, volume 2, pages 1738–1743,
November 2003.

[6] Chad Dickerson. Rss growing pains. http://www.infoworld.com/-
article/04/07/16/29OPconnection 1.html, July 2004.

[7] Robert F. Dickerson, Jiakang Lu, Jian Lu, and Kamin Whitehouse.
Stream feeds - an abstraction for the world wide sensor web. In IOT,
pages 360–375, 2008.

[8] Kevin Fall and Stephen Farrell. DTN: An architectural retrospective.
26(5):828–837, June 2008.

[9] Cathy A. Fulton and San qi Li. Delay jitter first-order and second-
order statistical functions of general traffic on high-speed multimedia
networks. IEEE/ACM Transactions on Networking, 6(2), April 1998.

[10] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan
Seshan. Irisnet: An architecture for a worldwide sensor web. IEEE

Pervasive Computing, 02(4):22–33, 2003.

[11] Jonathan W. Hui and David E. Culler. Ip is dead, long live ip for
wireless sensor networks. In SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 15–28, New
York, NY, USA, 2008. ACM.

[12] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel
Goraczko, Allen K.Miu, Eugene Shih, Hari Balakrishnan, and Samuel
Madden. CarTel: A Distributed Mobile Sensor Computing System. In
4th ACM SenSys, Boulder, CO, November 2006.

[13] Allen Husker, Igor Stubailo, Martin Lukac, Vinayak Naik, Richard
Guy, Paul Davis, and Deborah Estrin. Wilson: The wirelessly linked
seismological network and its application in the middle american sub-
duction experiment. May/June 2008.

[14] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. SenseWeb: An
infrastructure for shared sensing. 14(4):8–13, October 2007.

[15] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao.
Scientific workflow management and the kepler system: Research ar-
ticles. Concurr. Comput. : Pract. Exper., 18(10):1039–1065, 2006.

[16] Martin Lukac, Lewis Girod, and Deborah Estrin. Disruption tolerant
shell. In CHANTS ’06:Proceedings of the SIGCOMM workshop on

Challenged networks, pages 189–196, Pisa, Italy, September 2006.
ACM.

[17] Suman Nath, Amol Deshpande, Yan Ke, Phillip B. Gibbons, Brad
Karp, and Srinivasan Seshan. IrisNet: An architecture for internet-
scale sensing services.

[18] Suman Nath, Jie Liu, and Feng Zhao. Challenges in building a por-
tal for sensors world-wide. In First Workshop on World-Sensor-Web,
Boulder,CO, October 2006. ACM.

[19] Unkyu Park and John Heidemann. Provenance in sensornet republish-
ing. In Provenance and Annotation of Data and Processes: Second In-
ternational Provenance and Annotation Workshop, IPAW 2008, pages
280–292, Salt Lake City, Utah, USA, June 2008. Springer Verlag.

[20] Sasank Reddy, Gong Chen, Brian Fulkerson, Sung Jin Kim, Unkyu
Park, Nathan Yau, Junghoo Cho, and John Heidemann Mark Hansen.
Sensor-internet share and search—enabling collaboration of citizen
scientists. In Proceedings of the ACM Workshop on Data Sharing and

Interoperability on the World-wide Sensor Web, pages 11–16, Cam-
bridge, Mass., USA, April 2007. ACM.

[21] Kepler project. http://kepler-project.org/.

[22] Ka Cheung Sia, Junghoo Cho, and Hyun-Kyu Cho. Efficient monitor-
ing algorithm for fast news alerts. IEEE Transactions on Knowledge

and Data Engineering, 19(7):950–961, 2007.

[23] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Ander-
son, and David Culler. An analysis of a large scale habitat monitoring
application. In SenSys ’04: Proceedings of the 2nd international con-
ference on Embedded networked sensor systems, pages 214–226, New
York, NY, USA, 2004. ACM.

[24] Igor Talzi, Andreas Hasler, Stephan Gruber, and Christian Tschudin.
Permasense: investigating permafrost with a wsn in the swiss alps.
In EmNets ’07: Proceedings of the 4th workshop on Embedded net-

worked sensors, pages 8–12, New York, NY, USA, 2007. ACM.

[25] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo,
Jeff Johnson, Mario Ruiz, and Jonathan Lees. Deploying a wire-
less sensor network on an active volcano. IEEE Internet Computing,
10(2):18–25, 2006.

[26] Dave Winer. RSS 2.0 Specification. http://blogs.law.harvard.-
edu/tech/rss, 2002.

[27] A.Woo, S. Seth, T. Olson, J. Liu, and F. Zhao. A spreadsheet approach
to programming and managing sensor networks. Proc. of the Fifth Int.
Conf. on Info. Processing in Sensor Networks, pages 424–431, 2006.

[28] Yahoo. Yahoo Pipes. http://pipes.yahoo.com/pipes/.

[29] Tomi Yletyinen and Raimo Kantola. Voice packet interarrival jitter
over ip switching. In SBT/IEEE International Telecom Symposium

ITS ’98, volume 1, pages 16–21, 1998.

[30] Li Zheng, Liren Zhang, and Dong Xu. Characteristics of network
delay and delay jitter and its effect on voice over ip (voip). In IEEE

International Conference on Communicaitons ICC, volume 1, pages
122–126, 2001.

