
Cache Me If You Can:
Effects of DNS Time-to-Live (extended)

USC/ISI Technical Report ISI-TR-734b

May 2019 (updated September 2019)

Giovane C. M. Moura (1) John Heidemann (2) Ricardo de O. Schmidt (3) Wes Hardaker (2)
1: SIDN Labs and TU Delft 2: USC/Information Sciences Institute 3: University of Passo Fundo

ABSTRACT
DNS depends on extensive caching for good performance, and ev-
ery DNS zone owner must set Time-to-Live (TTL) values to control
their DNS caching. Today there is relatively little guidance backed
by research about how to set TTLs, and operators must balance
conflicting demands of caching against agility of configuration. Ex-
actly how TTL value choices affect operational networks is quite
challenging to understand due to interactions across the distributed
DNS service, where resolvers receive TTLs in different ways (an-
swers and hints), TTLs are specified in multiple places (zones and
their parent’s glue), and while DNS resolution must be security-
aware. This paper provides the first careful evaluation of how these
multiple, interacting factors affect the effective cache lifetimes of
DNS records, and provides recommendations for how to configure
DNS TTLs based on our findings. We provide recommendations
in TTL choice for different situations, and for where they must be
configured. We show that longer TTLs have significant promise
in reducing latency, reducing it from 183ms to 28.7ms for one
country-code TLD.

CCS CONCEPTS
• Networks→ Network measurement; Naming and address-
ing.

KEYWORDS
DNS, recursive DNS servers, caching

ACM Reference Format:
Giovane C.M.Moura, JohnHeidemann, Ricardo deO. Schmidt,WesHardaker.
2019. CacheMe If You Can: Effects of DNS Time-to-Live (extended) : USC/ISI
Technical Report ISI-TR-734bMay 2019 (updated September 2019) . In .ACM,
New York, NY, USA, 15 pages.

1 INTRODUCTION
The Domain Name System (DNS) [33] is a core component of the
Internet. Every web page and e-mail message requires DNS informa-
tion, and a complex web page can easily require information from a

This technical report was originally released in May 2019 and was updated in Septem-
ber 2019 with with numerous editorial changes from the ACM IMC 2019 version.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISI-TR-734b, May 2018, Marina del Rey, California, USA
© 2019 Association for Computing Machinery.

dozen or more DNS lookups. The DNS provides a low-latency, dis-
tributed database that is used to map domain names to IP addresses,
perform service location lookups, link distributed portions of the
DNS together, including in-protocol integrity protection using in-
protocol DNS key storage, linking and verification algorithms.

With this central position, often serving as the initial transaction
for every network connection, it is not surprising that DNS per-
formance and reliability is critical. For example, DNS performance
is seen as a component of web browsing that must be optimized
(for example, [50]), and DNS services providers compete to pro-
vide consistent, low-latency services around the world. Even in
less-latency sensitive services, such as the authoritative service for
the Root DNS, reducing latency is still a desired goal [47]. DNS
must always work, and failures of major DNS resolution systems
frequently makes public newspaper headlines. In 2016, when a
Distributed Denial-of-Service (DDoS) attack led to problems at a
DNS provider, it resulted in disruptions to multiple popular pub-
lic services (including Github, Twitter, Netflix, and the New York
Times) [41].

DNS is also often used to associate clients with near-by servers
by large content providers [10] and in Content-Delivery Networks
(CDNs) [12]. In this role, DNS helps both performance and reliability,
associating clients to nearby sites [47, 54], and implementing load
balancing, both to reduce latency, and to control traffic to support
site maintenance and react to DDoS attacks [36].

It is not surprising that DNS has developed a complex infras-
tructure, with client software (the stub resolver, provided by OS
libraries) that contacts recursive resolvers (a type of DNS server
that can iterate through the DNS tree for answers), which in turn
contact authoritative servers (which hold the answers being sought).
Large-scale recursive and authoritative resolvers are often carefully
engineered, with pools of servers operating behind load balancers,
sometimes in multiple layers [48], often employing IP anycast [1].

Caching is the cornerstone of good DNS performance and relia-
bility. A 15ms response to a new DNS query is fast, but a 1ms cache
hit to a repeat query is far faster. Caching also protects users from
short outages and can mute even significant DDoS attacks [36].

Time-To-Live values (TTLs) of DNS records control cache dura-
tions [33, 34] and, therefore, affect latency, resilience, and the role
of DNS in CDN server selection. While caching DNS servers and
anycast have been extensively studied, surprisingly, to date there
has been little evaluation of TTLs. Some early work modeled caches
as a function of their TTLs [26], and recent work examined their in-
teraction with DNS [36], but no research provides recommendations
about what TTL values are good.

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

Determining good TTL values for DNS is surprisingly challeng-
ing. A fundamental tension exists between short and longer TTL
values. Short TTLs allow operators to change services quickly, as
part of regular operation for load balancing in CDNs, or perhaps
to redirect traffic through a DDoS scrubber. Yet, long TTLs reduce
latency seen by clients, reduce server load, and provide resilience
against longer DDoS attacks.

Not only is there no “easy” optimal setting, but performance of
modern DNS (with its effects on web browsing) is affected bymany
TTLs, since full resolution of a DNS name may require dozens of
lookups across several organizations, all potentially using different
TTLs. As a distributed database, TTLs are given in both the parent
and child at a delegation boundary, and these may differ. In addition,
responses come in different flavors, with some values labeled as
authoritative, and others labeled as hints (“additional”). Finally, DNS
records sometimes depend on the freshness of other records, which
can be used as the basis of multiple points of attack. These concerns
have been exploited as part of sophisticated DNS hijacking to open
user accounts [28].

While there has be some study of what clients see (§7), there
has been only limited academic study of operator options and their
effects. Since operational requirements vary and choices are affected
by components run by multiple parties, it is not surprising that, to
our knowledge, there is no operational consensus for what TTL values
are reasonable. Lack of consensus and an operational preference
for “if it ain’t broke, don’t fix it”, results in a large range of values
in practice (§5), and offers new deployments limited guidance for
choosing TTLs.

The goal of this paper is to fill this gap. First, we explore how
these many factors influence what TTL is used by recursive re-
solvers (§2). Second, we provide recommendations about good TTL
values to zone operators for different scenarios, in light of user
experience and resilience. Our work complements prior work that
studied how recursive resolvers handle caching (see §7). We use
both controlled experiments and analysis of real-world data to make
informed recommendations to operators.

Our first contribution shows what the effective TTL is as a result
of TTLs stored in different places (§3) across multiple, cooperating
records (§4). Second, we examine real-world DNS traffic and de-
ployments to see how current use compares to our evaluation, and
how operators choose TTL values and how their choices between
short and long TTLs affect latency and operator flexibility (§5).

Finally, we show that DNS TTLs matter, since longer TTLs allow
caching, reducing latency and traffic (§6.2). We outline the trade-
offs and provide recommendations (§6): those using CDNs or load
balancers may require short TTLs (5 or 15 minutes), but most others
should prefer longer TTLs (a few hours).

Discussion of our early results with operators prompted increase
in their TTLs, and we show that the median latency drops from
183ms with their earlier short TTLs, to only 28.7ms now that
longer TTLs enable better caching. While these specific results are
from one ccTLD (.uy, §5.3), our crawls (§5.1) and discussion with
operators (§5.2) suggest our results apply elsewhere.

Wewill make themajority of datasets available at no charge. Ripe
Atlas datasets are public, and only data from .nl cannot be released.
Our measurements are all about public network infrastructure and
pose no ethical or privacy issues.

2 OUR QUESTION: WHICH TTLS MATTER?
DNS caching appears simple, with each record cached up to a given
time-to-live. However, the reality is more complex: DNS records
come from several places and resolution requires traversing multi-
ple names and types. We next look systematically at each source of
information and determine which, in practice, takes priority.

First, records are duplicated in multiple places, sometimes with dif-
ferent TTLs. Specifically, DNS records that cross delegation bound-
aries are in both the parent and the child zone and can have different
TTLs. In §3 we examine if recursives in the wild prefer TTL values
provided by the parent or child.

Second, resolution of a fully qualified domain name (FQDN) re-
quires identifying authoritative servers (NS records) and their IP ad-
dresses (A or AAAA records) for each part of the FQDN . FQDN traver-
sal raises two factors. First, communicating with an authoritative
server requires knowing its IP address(es), but the NS and A/AAAA
records for it may also have different TTLs. Second, records for it
may be in bailiwick (when they are under the domain being served,
so ns.example.org is in bailiwick of example.org [22]) or out of
bailiwick (ns.example.comwould not be in bailiwick of example.org).
These factors interact: some recursive resolvers discard in-bailiwick
A/AAAA records when the NS record expires, as we show in §4.

The answer to these questions should be given in the DNS specifi-
cations. Unfortunately early specificationswere somewhat informal,
and implementations varied in practice. The original DNS specifica-
tions left precedence unspecified [33, 34], while RFC2181 later gave
the child zone’s Authoritative Answers priority over the parent’s
glue [15], but did not require that both be fetched. DNSSEC [6, 7]
confirms that authoritative TTL values must be enclosed in and
verified by the signature record, which must come from the child
zone. Thus our question is: Do resolvers in the wild follow these
specifications for TTL priorities?

Answering these questions is also important to understand who
ultimately controls a zone’s caching.

3 ARE RESOLVERS PARENT- OR
CHILD-CENTRIC?

We first examine how DNS handles records that are served from
multiple places, to determine what controls caching. The DNS is a
distributed database with portions of the hierarchy (zones) managed
by different organizations through delegation.Glue records duplicate
content from a child zone in the parent, either for convenience or
out of necessity, if the authoritative server for the child zone is
named only in that child’s zone (in-bailiwick). A recursive resolver
much choose which TTL it prefers (parent or child) based on several
factors described below in §3.1.

We examine this question with a case-study and wild traffic
observed from the edge and from authoritative servers for a country
code TLD. We reach two key results of cross-zone TTLs: first,most
recursive resolvers are child-centric, trusting the TTL in the
child zone’s authoritative server over the glue in the parent zone.
Depending on the measurement technique, just 52% (§3.4, .nl from
the authoritative) to 90% (§3.2, .uy from RIPE Atlas) of queries are
child-centric.

Our second finding is that enough queries are parent-centric,
so parent TTLs still matter. Although only 10 to 48% of queries
are parent-centric, one must set TTLs the same in both parent and

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

Q / Type Server Response TTL Sec.
.cl / NS k.root-servers.net a.nic.cl/NS 172800 Auth.

a.nic.cl/A 172800 Add.
a.nic.cl/AAAA 172800 Add.

.cl/NS a.nic.cl a.nic.cl/NS 3600⋆ Ans.
a.nic.cl/A 43200 Add.
a.nic.cl/AAAA 43200 Add.

a.nic.cl/A a.nic.cl 190.124.27.10/A 43200⋆ Ans.
Table 1: a.nic.cl.TTL values in parent and child (⋆ indicates
an authoritative answer), on 2019-02-12.

child to accommodate this sizable minority. In cases where operator
is without control of the parent zone’s TTL, resolvers will see a mix of
TTLs for that zone.

3.1 Parent and Child TTLs in Chile’s .cl
To explore this question of whether the parent or child’s TTL in
the hierarchy is “believed more frequently”, we first look at Chile’s
country-code TLD, .cl. Resolving this name involves three author-
itative servers as shown in Table 1.

We see three different TTLs: 172800 s (48 hours) for NS and
address records at the root, 3600 and 43200 s (1 and 12 hours) at the
.cl authoritative servers, and 43200 s when we explicitly ask the
name server itself for its own address record. Which TTL is used
depends on the implementation of the recursive resolver; although
RFC2181 [15] specifies the client’s TTL should take priority, but it
does not require recursive resolvers to actively fetch that value.

A second factor is that response components are returned in
different DNS message sections [33], and may be treated differently
by different implementations. Records are marked authoritative
(.cl’s NS record at the root), as answer (.cl’s NS record at .cl), or
additional (A records attached to the NS response at .cl).

Answers from the child have higher priority when the Authori-
tative Answer flag (AA flag) is set, though when a server resolves
the domain example.cl, it may choose to never contact the child
and instead may use the authority and additional records returned
by the parent. (For example, to resolve example.cl, a resolver can
use the A record of a.nic.cl as provided by the Roots in Table 1.)
This question has been previously defined as resolvers’ centric-
ity [13, 17, 18, 42]: resolvers using the TTL provided by the par-
ent authoritative (such as the Roots for .cl) servers are defined
as parent-centric, while child-centric resolvers will use the child
authoritative Original DNS specifications were unclear on which
to prefer, and RFC2181 clarified child records (and their TTLs) as
higher priority, but did not require resolvers to query for them [15].
Only DNSSEC validation requires fetching records from the child
zone, but DNSSEC validating resolver deployment is incomplete
today.

Resolvers employing in-resolver authoritative mirroring tech-
nologies, such as RFC7706 [29] or LocalRoot [20], or serving stale
content [30] (i.e., answering queries past TTL expiration only when
the NS records for the given domain are unresponsive) will exhibit
different perceived TTL caching behaviors. In the former case, re-
solvers implementing RFC7706 or LocalRoot, entire zones will be
transferred into a pseudo-authoritative server that runs in parallel
with a recursive resolver; no queries to these zones will likely be

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 50 120 300 1000

C
D

F
 T

T
L

 A
n

s
w

e
rs

Answers TTL(s)

NS queries
A queries

Figure 1: TTLs from VPs for .uy-NS and a.nic.uy-A queries.

seen exiting the recursive resolver [20], though questions to their
children will still be sent. For the latter case, resolvers serving stale
content, outgoing requests will likely continue to be seen on the
wire, but even when unanswered, resolvers will continue serving
(expired) answers to clients.

This example illustrates the complexity of the TTLs used by
different implementations. We next look at how these rules work
in practice.

3.2 TTLs as Seen in the Wild with Uruguay’s
.uy top-level domain

We next consider Uruguay’s country-code TLD .uy. We select
Uruguay because it’s ccTLD has two very different TTL values
in its NS record: 172800 s at the root, and only 300 s in their own
authoritative server (as of 2019-02-14), and 120 s for that server’s A
record.

These large differences allow us to study their effects on caching
from “the wild”. We use RIPE Atlas [44, 45], measuring each unique
resolver as seen from their ∼10k probes physically distributed
around the world. Atlas Probes are distributed across 3.3k ASes,
with about one third hosting multiple vantage points (VPs). Many
Atlas probes have multiple recursive resolvers, sometimes at differ-
ent locations, so we treat each combination of probe and unique
recursive resolver as a VP, since potentially each represents a differ-
ent perspective.We therefore see about 15k VPs from about 9k Atlas
Probes, with the exact number varying by experiment to do small
changes in probe and resolver availability. This definition of VP pro-
vides a dynamic view of what resolvers Atlas is using; it has some
overlap, due to Atlas probes that share resolvers, and changes over
time, due to complex recursive infrastructure [48]. It is also affected
by non-uniform distribution of RIPE Atlas probes [9]; we report
latency by region in Figure 10b to account for this distribution.

Wemake queries first for the NS record of .uy, then the A records
of its authoritative server a.nic.uy. In each case, we query from
each VP every 10minutes (twice the shortest TTL of the NS records),
for either two or three hours (for the NS or A records). For each
query, we look for the TTL as seen in the answer section of the DNS
response, obtaining about 190k and 280k valid responses from .uy-
NS and a.nic.uy-A experiments, respectively. Table 2 summarizes
the experiments (we disregard responses that did not return the
answers we expected, typically from probes with hijacked DNS
traffic [35]).

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

.uy-NS a.nic.uy-A google.co-NS .uy-NS-new
Frequency 600s 600s 600s 600
Duration 2h 3h 1h 2h
Query NS .uy A a.nic.uy NS google.co NS .uy

TTL Parent 172800 s 172800 s 900 s 172800 s
TTL Child 300 s 120 s 345600 s 86,400
Date 20190214 20190215 20190304 20190304
Probes 8963 8974 9127 8682
valid 8863 8882 9034 8536
disc 100 92 93 96

VPs 15722 15845 16078 15325
Queries 189506 285555 97213 184243
Responses 188307 282001 96602 184243
valid 188225 281931 96589 184209
disc. 82 70 3 34

Table 2: Resolver’s centricity experiments. Datasets avail-
able at [43].

Figure 1 shows the CDF of the valid TTLs from all VPs for .uy.
Even though previous studies have shown that DNS TTLs are some-
times manipulated by resolvers [48], we found that such manipu-
lation is very rare for TTLs shorter than 1h, at least as seen from
RIPE Atlas VPs [36]. (These results are also not affected by recursive
resolvers, shared, split, or existing caches, since our query intervals
are longer than the TTLs: 600 s vs 120 s and 300 s.)

As such, the vast majority of responses in Figure 1 follow the
child’s value, not the parent’s: 90% of .uy-NS are less than 300 s,
and 88% of a.nic.uy-A are less than 120 s. We conclude that most
resolvers are child-centric, preferring the TTL of the authoritative
server (following RFC2181 §5.4.1 [15]).

Roughly 10% of resolvers appear to be parent-centric, following
the 2-day TTL of the root zone (or these resolvers are manipulating
TTLs [19, 36]). In fact, about 2.9% of .uy-NS and 2.2% of a.nic.uy-A
show the full 172800 s TTL. Some of these resolvers include probes
using the OpenDNS public resolvers [39]. Later queries sent to
these resolvers confirm they are parent-centric for domains in the
Root zone (likely implementing RFC7706 [29]), and when the child
delegation’s authoritative name server is unreachable (§4.4).

Besides, we also found only one VP that had TTL values larger
than the parent delegation.

3.3 A Second-level Domain in the Wild
To confirm our observations that client-centric TTL preferences ex-
tend past top-level domains (RFC7706 does not apply to second-level
domains [29]), we repeat the experiment from §3.2 for google.co,
which is a popular second-level domain (SLD). The domain google.co

has two TTL values for its NS records: 900 s from the parent servers
(.co), and 345600 from the actual authoritative servers ns[1-4].

google.com (as of 2019-03-05). We query every 600 s, for one hour
(Table 2).

Figure 2 shows the CDF of observed TTLs for this second-level
domain, for 16k VPs. About 70% of all answers have TTLs longer
than 900 s—results that must come from the child authoritative
server. About 15% of all answers, many using Google public DNS,
have TTLs of 21,599 s, suggesting TTL capping. About 9% of all
answers have a TTL of exactly 900 s, suggesting a fresh value from
the parent authoritative server.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

C
D

F

TTL (s)

T
T

L
 9

0
0

s

T
T

L
 3

4
5

6
0

0
s

Figure 2: TTLs from VPs for .google.co-NS queries.

This experiment shows that resolvers querying second-level
domains, are similar to those querying TLDs, most choosing child-
centric TTLs.

3.4 Confirming Client-Centricity with Passive
Observations of .nl TLD

Prior sections showed that specific domains are mostly client-
centric, observing from the authoritative side, looking at who is
querying and what strategy they use (parent- or child-centric). Here
we study passive data for the the Netherlands zone, .nl, with about
5.8 million domain names in its zone [49].

At the time of this experiment (2019-03-06 to -07), the .nl ccTLD
had four authoritative servers (sns-pb.isc.org and ns[1-3].dns.nl),
each with multiple IP anycast sites [1]. We gather DNS data from
ns[1,3].dns.nl servers using ENTRADA [57], which saw more
than 6.5M queries for the two-day period. The ns[1,3].dns.nl A
records are listed in the parent zone (the root zone) with glue
records containing TTL values of 172800 s (2 days). The children’s
authoritative servers, however, contain only a 3600 s (1 hour) TTL
for the same A records.

We examine query interarrivals for each resolver to classify that
resolver as parent- or child centric. We find about 205k unique
resolver IP addresses, providing 13×more VPs than our experiment
using RIPE Atlas (§3.2 and §3.3).

We see 368k groups of resolver, query-name pairs, in which query-
name is one of the four NS records for .nl pairs, and we compute
the interarrival time between queries for each group. (In §3.2 we
considered client-side VPs; here instead our authority-side consid-
ers resolvers instead of Atlas probes, and pairs them with query
names since different records may have different TTLs in the cache.)

Figure 3 shows the CDF of the number of queries for each group
for the aggregate queries (the solid blue “all” line), and for those
queries where the interarrival time is more than 2 s (the red “filtered”
line). This filtering aims at removing duplicate queries that are
retransmissions, but we see that the curves are essentially identical.

More than half of the groups appear to be child-centric, since
52% send more than one query over the two days, suggesting they
are following the shorter child TTL. Another possible explanation
is that some recursive resolvers cap TTLs to less than 2 days (some
versions of BIND [25], however, use one week as the default maxi-
mum caching time).

Just less than half (about 48%) send only one query during ob-
servation. Since we only observe two of the four authoritative
servers, it is possible these resolvers made queries to non-observed

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 5 10 20 50

C
D

F

Queries per IP-qname

filtered

all

Figure 3: CDF of A queries per resolver/query name.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 5 10 20 50

C
D

F

Interarrival time (h)

T
T

L
 3

6
0

0
s

T
T

L
 1

7
3

8
0

0
s

Figure 4: CDF of minimum interarrival time of A queries
from each resolver/query-name.

authoritative servers. (It is known that resolvers tend to rotate be-
tween authoritative servers [37]). Another possibility is that these
resolvers did not need to handle multiple queries for names under
.nl.

To investigate if these resolvers, which sent only one query
per query-name, are indeed parent-centric, we extract the unique
source IPs from the groups that sent only one query; which gives
us 122562 unique IP addresses. Around 14% of these IPs are also
present in groups that sent more than one query for other names.
For example, an IP that queries once for ns1.dns.nl, but queries 3
times for ns2.dns.nl. This suggests that at least 14% of the resolvers
in this group behave as child centric as well.

We gain greater confidence howmany resolvers are child-centric
by looking at the minimum interarrival time for resolvers that send
multiple queries for the same name in Figure 4. Even observing only
two of the four authoritatives, we can conclude that most resolvers
use the child TTL. We also see “bumps” around multiples of one
hour. We believe that these bumps are resolvers returning to the
same server after the TTL expires.

We conclude that, even when observed from the authoritatives,
at least half recursive resolvers are child-centric.

4 THE MANY TTLS IN RESOLVING A
FULLY-QUALIFIED DOMAIN-NAME

We next turn to the second problem from §2: how do the differ-
ent parts of a FQDN, records (NS and A or AAAA), answer types
(authoritative answer, authority, and additional), and server config-
urations (in and out-of-bailiwick) interact to influence the effective
TTL lifetime of the originating request? Again, our goal is to un-
derstand which TTL or TTLs control caching.

We see which depend on each other through two controlled ex-
periments: one with an in-bailiwick server, ns1cachetest.net, and

.net
NS cachetest.net 172800

A ns[1,2].cachetest.net: 172800

cachetest.net
NS cachetest.net 3600

A ns[1,2].cachetest.net: 3600

NS sub.cachetest.net: 3600
A ns3.sub.cachetest.net: 7200

clients
e.g.: Atlas Probes

sub.cachetest.net

t = 9min: redirect

to new ns3.sub

VP

ns3.sub ns3.sub NS sub.cachetest.net: 3600
A ns3.sub.cachetest.net: 7200

ns1 ns2

A ... M

Figure 5: TTLs and domains for in-bailiwick experi-
ment [43]. Italics indicate glue records.

the other with an out-of-bailiwick server. (We run these experi-
ments on different days to avoid interference.)

The key results of this section are to show that it does matter
where the authoritative server is located in the DNS hierarchy. For
in-bailiwick authoritative servers glue records drive cache
lifetimes, and the TTLs of the IP address and authoritative server
are frequently linked (a still valid A record will still expire when
its covering NS record expires). By contrast, out-of-bailiwick
servers use cached information about authoritative servers
for the full TTL lifetime.

4.1 Experimental Setup
Our experiments use a test domain (cachetest.net, from [36]) over
which we have complete control. This domain has two authoritative
servers: ns[1,2]cachetest.net, as can be seen in Figure 5, both
running Debian and BIND 9.1 on EC2 in Frankfurt, Germany.

We add this domain to the parent .net zone, which requires
adding both NS records in .net for our domain and glue records
for the addresses of our authoritative servers (italic in Figure 5). By
default, records in .net have a TTL of 172800 s, or 2 days.

Our cachetest.net one is run on authoritative servers running
in EC2 VMs. (We run our own DNS servers in our own VMs and
do not use Amazon’s Route53 [5] hosted DNS.) We set the TTLs
for the NS and A records in our zone to 3600 s.

As can be seen in Figure 5, recursive resolvers will find two
different TTLs for the same record (at both parent and child). Even
though most resolvers are expected to be child-centric (§3), for sake
of precision, we decided to rule out this influence by creating the
sub.cachetest.net zone. We configure this subzone in two different
experiments using a third dedicated EC2 VM also in Frankfurt.

4.2 Effective TTLs for Servers Inside the Served
Zone

We first look at how resolvers handle authoritative servers with
names in the served zone—those that are in-bailiwick. We show
that most recursives require both fresh NS and A records, and they
re-fetch even valid A records when the NS record expires.

For this experiment, we configure ns1.subcachetest.net as an
authoritative server for our subzone (sub.cachetest.net). We set
the TTL of its NS record to 3600 s and its A record TTL to 7200 s.
These TTLs are consistent in both the parent and child zones, so

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

in-bailiwick out-of-bailiwick
Frequency 600 s 600 s
Duration 4h 4h
Query AAAA probeid.sub.cachetest.net
Date 20190315 20190314
Probes 9131 9150

Probes (val.) 8864 9053
Probes (disc.) 267 97

VPs 15618 16103
Queries 367060 387037

Queries (timeout) 39471 10436
Responses 341707 368478

Responses (val.) 340522 366853
Responses (disc.) 1185 1625

Resolvers (VPs) 6364 6679
ASes 1629 1696

Resolvers(Auth.) 13187 14884
ASes 2474 2444

Table 3: Bailiwick experiments [43].

recursives will have the same cache duration regardless of which
they prefer.

At t = 9min., we renumber ns3.subcachetest.net, changing
its IP address to a different EC2 VM. This new VM also serves
this zone, but with some changes to the records so that old and
new authoritative servers return different answers. This end-to-end
check allows us to determine how caching works in between.

We test this potential dependency by querying the AAAA record
of PROBEID.sub.cachetest.net from all RIPE Atlas VPs every 600 s,
watching for the returned answer to change. Since the authorita-
tive’s NS and A records have different TTLs, the time at which
the response changes reveals the caching behavior of the recur-
sive resolver. We are looking to see if the NS and A records are
independent, or if they are linked, causing the A record to expire
earlier than it needs to, when the NS record times out. To ensure the
test answer is not cached, Atlas probes make queries that include
PROBEID in the identifier (see Table 3), and replies (AAAA records)
have TTL of 60 s, one tenth our probe interval.

Table 3 shows the results of about 340k valid responses from 15.6k
RIPE Atlas VPs. (We discard responses that included NS records,
SERVFAIL, and others that did not include the answer we expected.)

Figure 6 is a timeseries chart of the AAAA answers received
by our vantage points. We count how many responses were sent
by each authoritative server (original and new), aggregated to 10-
minute bins. In this figure, the first arrow down shows the time
when we renumber the IP address of the authoritative server (after
9 minutes).

This figure shows that before renumbering (at 9 minutes), all
queries are answered by the original server (due to edge effects
around Atlas measurements, the very first round has fewer queries,
but rounds after that include results for all VPs). From 9 to 60
minutes we see that some resolvers (the dark blue bars) continue
to use the original server, showing they have cached and trust its
A and NS records. Other resolvers (light yellow bars) switch to the
new server, suggesting they re-fetched the new A record. We see
that most resolvers trust their cache up to the 1-hour TTL.

After one hour the NS records begin to expire. Over the next
hour we can test if the recursive resolver trusts its already-cached,
yet-still-valid TTL for the A record, or if it drops it and refreshes
it anyway and discovers the new server. We see that with an in-
domain server, very few recursives continue to trust the cached A
record—in-domain servers have tied NS and A record cache times in
practice. Specifically, about 90% of the resolvers that queried on the
first round (blue on t = 0) refresh both the NS and A records at
t = 60min., switching to the new server. We confirm this result
from the authoritative side in §4.6.

After two hours, both the NS and A should expire, so we expect
all recursives to switch to the new server.

We see that 305-390 VPs (about 2.25% of the total) continue with
the old resolver, a phenomena known as “sticky resolvers” [37].

4.3 Effective TTLs for Servers Outside the
Served Zone

We now move to what effective TTLs are seen when the authorita-
tive servers are outside the served zone (out-of-bailiwick servers).
In this case, the server’s IP address is trusted even when the NS
record is expired.

For this experiment, we replace both in-bailiwick authorita-
tive servers with ns1.zurrundeddu.com. Since it is not with the
cachetest.net domain, it is an out-of-bailiwick server. As before,
the NS records in the glue has a TTL of 3600 s, and the A glue
record has a TTL of 7200 s. As before, we renumber the A record
of ns1.zurrundeddu.com after 9 minutes. (The .com zone supports
dynamic updates and we verify this change is visible in seconds.)
Finally, we query the AAAA record from 16k RIPE Atlas VPs, every
600 s and watch for changes (Table 3).

Figure 7 shows howVPs react to the changed records, and Table 3
provides details about the experiment. Comparing the in- and out-
of-bailiwick cases (Figure 6 and Figure 7), we see that VPs trust the
A record for the old authoritative server for nearly its full cache
lifetime, out to 120minutes, not just 60minutes. This result shows
that most recursive resolvers trust cached A records when served from
different zones (out-of-bailiwick), but not in-bailiwick servers.

4.4 Resolver’s Infrastructure
What kind of resolvers exhibit the behaviors shown in this section
so far? There are many kinds of resolvers today. Prior work has
shown that clients often employ multiple levels of resolvers [36, 48],
with local resolvers, forwarders, and sometimes replicated recur-
sive resolvers. For example, in Table 3, Atlas VPs see 6.3k or 6.6k
resolvers directly reachable from clients in 1.6k ASes for in and
out-of-bailiwick measurements, respectively. However, analysis of
traffic at authoritative servers shows 13.1k and 14.8k IP addresses of
resolvers connect from 2.4k ASes (again, in- and out-of-bailiwick).
This complex infrastructure affects what users see from what oper-
ators announce.

Sticky resolvers: We show in Table 4 a classification of the re-
solvers as seen from VPs. First, we address sticky resolvers, which
are the ones that both send queries on the first round of measure-
ments (blue bar at t = 0) and always contact the same authoritative
name server, even when TTLs expire. For the in-bailiwick experi-
ment, we see that only a minority of VPs (207) have this behavior,
while for out-of-bailiwick we see this number reaching 1.6k VPs

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires. Both Original NS and A Original expired.
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Figure 6: Timeseries of answers for in-bailiwick experiment

 0

 5000

 10000

 15000

 20000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

Original NS expires Both Original NS and A expired.
Original A still valid

DNS redirect: new A.
Orig. NS and A valid

a
n
s
w

e
rs

minutes after start

original new

Figure 7: Timeseries of answers for out-of-bailiwick experiment

Sticky Resolvers
in-bailiwick out-of-bailiwick

VPs 196 1642
Resolvers 146 997
ASes 51 378

Table 4: Resolver classifications from bailiwick experi-
ments.

(17.8% of the valid VPs, Table 3). These 1.6k VPs, in turn, query 997
unique resolvers, from 378 ASes.

Of these 997 resolvers, 291 use reserved addresses (private ranges
or local interfaces). The remaining distribution is quite sparse: 16
resolvers are announced from an European NREN, 13 from another
NREN, 10 fromHurricane Electric and 8 from OpenDNS [39], which
provides a public DNS resolver.

To confirm the case of OpenDNS,we repeated the out-of-bailiwick
configuration and send queries from a single VP (a VM located at
EC2 Frankfurt) which sent queries to one of the public resolvers of
OpenDNS (208.67.222.123), every 300s. Even though this experiment
was carried in July 2019 (2.5 months later), we still found evidence
of this behavior: out of 161 DNS responses received by our client,
13 contained answers which were from the original server after the
expired TTLs. By analyzing the pcap files, we found that this is not
due to OpenDNS being sticky resolver, but that OpenDNS servers
seems to be parent centric, trusting the TTL of NS zurrundeddu.com

from the .com zone (2 days), and, as such, it does not update the A

record values after we renumber it. We confirm that because our au-
thoritative servers have received no queries for NS zurrundeddu.com,
therefore they could have only trusted the parent.

In fact, we confirm this hypothesis by running an experiment
with Ripe Atlas VPs to query for NS of zurrundeddu.com, while
keeping the child authoritative servers offline (zurrundeddu-offline
in [43]). We see that VPs that employ OpenDNS receive a valid
answer, while most others either time out or receive SERVFAIL
code [33] (indicating that their local resolver could not reach the
child authoritative servers).

However, we do not mean that all VPs that use OpenDNS behave
this way. In fact, 252 VPs use OpenDNS public DNS directly (listing
an OpenDNS address as a local resolver) in the out-of-bailiwick
experiment, and 225 of these VPs send the expected 24 queries each.
Out of these 225 VPs, 186 have more queries answered by the old
server, but some also answer by the new server, perhaps due to
cache fragmentation and use of different resolver backends [36].

4.5 Same VP, different behavior
In this section we focus on VPs that exhibit distinct behavior for the
in and out-of-bailiwick experiments. To do that, we focus on VPs
that are “sticky” in the in-bailiwick experiment—the 1642 VPs from
Table 4. Our goal is to identify how they behave in the in-bailiwick
experiment.

Out of the 1642 sticky VPs, 1395 were also employed on the
in-bailiwick experiment. Figure 8 shows the distribution of these
1395 VPs and their respective ratio of DNS responses from the new
server, for the in-bailiwick experiment. As can be seen, the same
VPs that were “sticky” for the out-of-bailiwick scenario, mostly
behave as expected, retrieving most responses from the new server.

.com

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

V
P

s

responses from new server (ratio)

Figure 8: Responses from new server for matched VPs.

These results show that same VPs can behave differently depend-
ing on how DNS zones are configured.

4.6 Confirmation from the Authoritative Side
We investigate in this section why results from in-bailiwick and
out-of-bailiwick differ that much. We analyze traffic obtained at
the authoritative servers.

First, we compare the responses for the queries issued by RIPE
Atlas VPs. The responses sent to RIPE Atlas for the in-bailiwick
scenario had, besides the AAAA records in the answers section and
NS record in the authority section, an A record (glue) of the NS
records found in the additional. In comparison, the out-of-bailiwick
scenario had no additional section, as the zone had no glue.

For out-of-bailiwick servers, the resolver must explicitly fetch
the address of the authoritative servers. This difference affects who
provides that information: for in-bailiwick, it comes from the parent
based on the glue records, while for out-of-bailiwick it is from NS’s
authoritative server. Resolvers therefore get different TTLs because
parent and child provide different TTLs.

5 TTLS IN THEWILD
While there is limited guidance for setting TTLs, we can look at
how TTLs are set in the wild to see if there is consensus. We look
both at top-level and popular second-level domains, and report on
our discussion of these results with operators.

5.1 Crawling TLDs and Popular Domains
To evaluate how TTL values are used in the wild, we study five data
sources; the root zone, the country-level domain of the Netherlands,
and “top” lists from Alexa [3], Majestic [32], and Umbrella [52]. We
use root data from 2019-02-13, and all other data from 2019-02-
06. While it is known that top lists show considerable churn [46],
our results provide a snapshot of one instant, and the diversity of
sources allows us to evaluate trends.

Methodology: For each list, we retrieve TTLs of several DNS
records (NS, A, AAAA, MX, and DNSKEY) directly from both the
parent and child authoritative servers, measuring from Amazon
EC2 in Frankfurt, querying the parent or the child authoritative
server directly for the measurement (without using shared recursive
resolvers). Here we report results only for the child zone, since that
reflects the operator’s intent, and most recursives are child-centric
(§3).

These results are necessarily incomplete. A full comparison of
parent and child is future work, but we know that the TTL of .nl

Alexa Majestic Umbre. .nl Root
format 2LD 2LD FQDN 2LD TLD
domains 1000000 1000000 1000000 5582431 1562
responsive 988654 928299 783343 5454833 1535
discarded 11346 71701 216657 345479 27
ratio 0.99 0.93 0.78 0.94 0.97

Date 2019-02-06 2019-02-13
NS 2479257 2430773 855147 14184460 7289
unique 269896 234356 106475 74619 4169
ratio 9.19 10.37 8.03 190.09

A 1247139 1069314 1126842 5389560 4145
unique 572689 539301 451220 274920 3188
ratio 2.18 1.98 2.50 19.60

AAAA 282818 215935 287069 2127664 3740
unique 106235 97545 139456 134751 2951
ratio 2.66 2.21 2.06 15.79

MX 1697001 1532026 522089 7494383 88
unique 480787 435455 130751 2157676 35
ratio 3.53 3.52 3.99 3.47

DNSKEY 42950 38262 11731 3800612 –
unique 26274 25275 6838 3597613 –
ratio 1.63 1.51 1.72 1.06

CNAME 45228 2493 344500 10666 –
unique 3592 1512 166230 3509 –
ratio 12.59 1.65 2.07 3.04

Table 5: Datasets and RR counts (child authoritative)

is 1 hour, so we know that about 40% of .nl children have shorter
TTLs, as can be seen in Figure 9a. In addition, we study only one
third-level zone for each domain, although actual services may
employ many internal names with different TTLs.

Results: Table 5 shows the sizes of each crawl, and how many
replies we see each record and list. Most lists have high response
rates, with Umbrella as an exception with only 78% responding. The
Umbrella list includes many transient names that point to CDNs or
cloud instances (for example, wp-0f21050000000000.id.cdn.upcbroa
dband.com). We report the number of unique records, and higher
ratios of unique records show greater levels of shared hosting. (The
top lists reflect diverse users and diverse hosting, while .nl reflects
a large number of static domains with relatively little use that use
low-cost shared hosting.)

Figure 9 shows the CDFs of TTLs of authoritative answers for
each record type. There are no A or AAAA records for TLDs in
root zone, so there we report the A and AAAA records of their
respective NS servers. For other lists of SLDs or full names, we
do not do this indirection and report only A records for the given
name. Our first observation is that TTLs show a large variation in
values, from 1 minute to 48 hours, for all lists and record types.

Second, we see some trends in different lists. In general, the times
reflect human-chosen values (10 minutes and 1, 24, or 48 hours).
In the root, about 80% of records have TTLs of 1 or 2 days. For
Umbrella, on the other hand, 25% of its domains with NS records
are under 1 minute. This difference reflects the list populations—the
root is slowly changing, and changes are carefully monitored and
managed. Umbrella instead reflects many cloud and CDN names,
that are often transient and changing as load comes and goes and
cloud instances are created and discarded.

We also see variation across record type. NS andDNSKEY records
tend to be the longest-lived (Figure 9a), while IP addresses are the
shortest (Figure 9b and Figure 9c). These reflect service dynamics:
changing authoritative servers is an administrative action with

wp-0f21050000000000.id.cdn.upcbroadband.com
wp-0f21050000000000.id.cdn.upcbroadband.com

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

10
6

10
7

C
D

F

answers TTL (s)

Alexa

Majestic

Umbrella

.nl

root

1
m

in

1
0
m

in 1
h

2
4
h

4
8
h

(a) NS-TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

10
6

10
7

C
D

F

answers TTL (s)

Alexa

Majestic

Umbrella

.nl

root

1
m

in

1
0
m

in

1
h

2
4
h

4
8
h

(b) A-TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

10
6

10
7

1
0
m

in

C
D

F

answers TTL (s)

Alexa

Majestic

Umbrella

.nl

root

1
m

in

1
h

2
4
h

4
8
h

(c) AAAA-TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

10
6

10
7

C
D

F

answers TTL (s)

Alexa

Majestic

Umbrella

.nl

1
m

in

1
0
m

in 1
h

2
4
h

4
8
h

(d) MX-TTL

 0

 0.2

 0.4

 0.6

 0.8

 1

10
2

10
3

10
4

10
5

10
6

10
7

C
D

F

answers TTL (s)

Alexa

Majestic

Umbrella

.nl

1
m

in

1
0
m

in 1
h

2
4
h

4
8
h

(e) DNSKEY-TTL

Figure 9: CDF of TTLs per record type, for each list.

Categories # Meaning Example
Placeholder 1199152 Landing page k-man.nl
E-commerce 148564 Shop cart presence monsfietsen.nl
Parking 127551 coffeebar.nl
Total 1475267

Table 6: .nl classified domains by DMap

Ecommerce Parking Placeholder
NS 4.0 24.0 4.0
A 1.0 1.0 1.0
AAAA 0.1 1.0 4.0
MX 1.0 1.0 1.0
DNSKEY 1.0 24.0 4.0

Table 7: Median TTL values (hours) for .nl domains

Alexa Majestic Umbrella .nl Root
NS 4524 4187 1365 3414 0
A 896 575 529 673 0
AAAA 244 1549 116 45 0
MX 506 374 211 266 0
DNSKEY 0 2 12 15 0
unique 5385 6202 1955 4047 0

Table 8: Domains with TTL=0 s, per Record Type

careful planning, while server addresses are often dynamic with
automated creation in clouds and CDNs.

This diversity in TTL choices of major domains suggests some
combination of differing needs and lack of consensus in TTL choice.

5.1.1 TTLs and content type. Besides using our DNS crawler on
the .nl zone, we use data collected using DMap [56], an open-source
multi-application crawler for domain names (it crawls HTTP, DNS,
SMTP, TLS, among other applications). We focus on (i) domains
that have a web page (that is, when the IP address also responds
on port 80 or 443), and (ii) that can were classified by DMap into
one of its categories. In total, on 2019-01-25, there were 58310209
domain names in .nl zone. Out of these, 4846496 (83.1%) had both
an A record and an web page.

Table 6 shows the results of DMap classifications for the .nl zone.
We only consider domains that do not redirect to other domains,
either using CNAME records or HTTP redirects. The reason for that
is redirection implies the use of other domains – which therefore
have their own DNS records.

We see that about 1.1M pages are placeholders (domains with
their hosting provider default web page), followed by e-commerce
(148k, which are domains that have webpages with shopping carts
in it), next to parked domains (127k) [53].

Table 7 shows the median TTL value (in hours) per each type
of page, and type of DNS records. We see that Parking has the the
longest median TTL for NS records (24 h), while e-commerce and
placeholders share the same median value (4 h). Their median A
record TTL is the same (1 h).

5.1.2 TTL 0 s. TTL values may range from 0 s to years [34], but
in practice most TTLs measured in-the-wild are under two days
(Figure 9).

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

Alexa Majestic Umbre. .nl Root
responsive 988654 928299 783343 5454833 1535
CNAME 50981 7017 452711 9436 0
SOA 12741 8352 59083 12268 0
respond NS 924932 912930 271549 5433129 1535
Out only 878402 873447 244656 5417599 748
percent out 95.0 95.7 90.1 99.7 48.7

In only 37552 28577 20070 12586 654
Mixed 8978 10906 6823 2941 133
Table 9: Bailiwick distribution in the wild.

While not an error per se, a TTL of 0 s effectively undermines
caching at the resolvers. We show in Table 8 the counts of domains
with TTL equal zero. We see that few domains are configured with
0 s TTLs. We recommend against eliminating caching by setting
TTL values to zero, since it increases latency to users and reduces
resilience (such in cases against DDoS attacks [36]).

5.1.3 Bailiwick configuration in the wild. We have seen in §4
how bailiwick affects the choice of TTLs for a given record. We
now investigate how many domains in-the-wild are in-bailiwick.

Table 9 summarizes the results. We start with the responsive
domains (obtained from Table 5), which are domains that responded
to at least one of our queries (in regardless of query type). To
evaluate how domains are configured, we consider only NS queries
that had NS records in the answers (we disregard domains that
either returned a CNAME or SOA records to NS queries). We see
that the majority of domain names remain (the “respond NS” row),
for all datasets except the Umbrella list, which uses long FQDNs,
often from clouds and CDNs.

We next evaluate what baliwick these domains use. For the pop-
ular lists, we see that the nearly all (more than 90%) are configured
with out-of-bailiwick NSes only. The exception to that is the list
of TLDs (Roots), which roughly half are out-of-bailiwick and the
other half are either only in-bailiwick or mixed.

5.2 Discussions with Operators
Our crawl of the root zone (§5.1) showed 34 TLDs (including 8
country-code) with NS TTLs less than 30minutes, and 122 TLDs
with NS TTLs under 120minutes. These short TTLs are only par-
tially effective because of parent-centric resolvers (§3), and they
prevent caching which can help latency (§6.2), and increase DDoS
vulnerability [36].

We reached out to the operators of the eight ccTLDs, asking them
why they chose such short TTLs. Five of them responded, with three
stating that they had not considered the implications of such short
TTLs. After our contact, three operators increased their NS records
TTL to 1 day: Uruguay’s .uy increased it from 300 s, amiddle-eastern
ccTLD increased it from 30 s, and an African ccTLD increased their
TTL from 480 s, both to one day.We report in §5.3 the implications of
this increase in TTL for .uy. Two other operators said the short TTLs
were intentional to account for planned infrastructure changes.
Another reply was from a large operator who stated they kept the
TTL values in place when they took over service (“if it ain’t broke
don’t fix it” approach we discussed in §1).

One should be cautious in drawing conclusions from such a small
sample but while some operators intentionally use small TTLs,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 10 50 500 5000

C
D

F

RTT (ms)

TTL 300s

TTL 86400s

(a) VPs combined

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

AF
(327)

AS
(846)

EU
(9691)

NA
(2307)

OC
(267)

SA
(293)

ALL
(13731)

R
T

T
 (

m
s
)

continent code (# of VPs)

TTL 300s

TTL 86400s

(b) Median and quantiles of RTT as seen by RIPE Atlas VPs per re-
gion (AF:Africa, AS:Asia, EU:Europe, NA:North America, OC:Oceania,
SA:South America); Halo symbols (left) are for TTL 300s and filled for
TTL 86400s

Figure 10: RTT from RIPE Atlas VPs for NS .uy queries be-
fore and after changing TTL NS records.

many appear to have not carefully considered the implications and
are interested in considering longer TTLs.

5.3 Early Feedback from Uruguay’s .uy
Our study of Uruguay’s ccTLD shows that in early 2019 they had
very different TTLs between their parent and child, with authorita-
tive TTLs of only 5 minutes while the root zone defaults to 2 days
(300 s vs. 172800 s!). During the time of our analysis, .uy had 8 NS
records (5 in-bailiwick, 3 out). After sharing our early results with
them, on 2019-03-04 they changed their child NS records TTLs to
one day (86400 s).

Uruguay’s .uy change provides a natural experiment to test the
effects of different TTLs on DNS latency. Our studies had measure-
ments from RIPE Atlas VPs both before and after this change (see
uy-NS and uy-NS-new in Table 2). We measure the response time
for a .uy/NS query from around 15k VPs, querying for two hours
every 600 s. Since .uy is a country-level TLD, it may be cached, so
this study reflects a dynamic snapshot remaining TTL.

Results: Figure 10a shows the CDF of query response times for
.uy before, with a short TTL (the top, red line), and after, with long
TTLs (the bottom, blue line). With short TTLs, .uy often falls out
of the cache, and the median response time is 28.7ms. With long
TTLs .uy remains in the cache and so many queries are handled
directly by the recursive, providing an 8ms response time.

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

Differences in tail latency are even larger: at the 75%ile, longer
TTLs have median of 21ms compared to 183ms with short TTLs;
at the 95%ile, longer TTLs have a median of 200ms compared to
450ms, and, at 99%ile, these values raise to 1375ms and 678ms,
respectively.

To confirm these differences are not biased by geographic distri-
bution of RIPE probes, we evaluate RTT changes by continent based
on each probe’s self-reported geolocation. Figure 10b shows the
distribution of RTT per continent as seen by more than 13.7k VPs
worldwide. We see that all regions observe latency reduction after
changing TTL; higher reductions are seen for those with larger
range of latency.

This natural experiment shows the large benefit to user latency
from increased caching and long TTLs. We do not have access to
authoritative traffic at .uy, so we cannot evaluate traffic reduction,
but it too is likely substantial (we evaluate traffic reduction due to
longer TTLs in §6.2) .

Besides .uy, two other ccTLDs also increased their NS records
TTL to one day after our initial contact, from 30 s and 480 s ,respec-
tively. Their users can also expect similar perform gains as from
.uy users.

6 RECOMMENDATIONS FOR DNS
OPERATORS

We next consider recommendations for DNS operators and domain
owners, about TTL durations and the other operational issues.

6.1 Reasons for Longer or Shorter TTLs
TTLs in use range from as short as 5 minutes, to a few hours, to
one or two days (§5.1). This wide range of time values seen in
TTL configurations is because there are many trade-offs in “short”
vs. “long”, and which factors are most important is specific to each
organization. Here are at least factors operators consider:

Longer caching results in faster responses: The largest ef-
fect of caching is to enable queries to be answered directly from
recursive resolvers. With a cache hit, the resolver can respond di-
rectly to a client, while a cache miss requires an additional query
(or queries, in some cases) to authoritative servers. Although a
query to the authoritative is usually fast (less than 100ms), a direct
reply from the recursive resolver is much faster. While caching
has long been recognized as important, we are the first to show
how important it is, both for Uruguay’s .uy in §5.3, and through
controlled experiments in §6.2.

Longer caching results in lower DNS traffic: caching can sig-
nificantly reduce DNS traffic. However, DNS queries and replies are
quite small, and DNS servers are relatively lightweight. Therefore,
costs of DNS traffic are likely smaller than costs of web hosting or
e-mail. We evaluate this effect in §6.2.

Longer caching results in lower cost if DNS is metered:
Some DNS-As-A-Service providers charges are metered, with a
per query cost (often added to a fixed monthly cost). Even if incre-
mental costs are small relative to fixed charges, caching can reduce
this cost.

Longer caching is more robust to DDoS attacks on DNS:
DDoS attacks on a DNS service provider [21] harmed several promi-
nent websites [41]. Recent work has shown that DNS caching can

greatly reduce the effects of DDoS on DNS, provided caches last
longer than the attack [36].

Shorter caching supports operational changes:An easyway
to transition from an old server to a new one is to change the DNS
records. Since there is no method to remove cached DNS records,
the TTL duration represents a necessary transition delay to fully
shift to a new server, so low TTLs allowmore rapid transition. How-
ever, when deployments are planned in advance (that is, longer
than the TTL), then TTLs can be lowered “just-before” a major
operational change, and raised again once accomplished.

Shorter caching can help with a DNS-based response to
DDoS attacks: Some DDoS-scrubbing services use DNS to redi-
rect traffic during an attack [38]. Since DDoS attacks arrive unan-
nounced, DNS-based traffic redirection requires the TTL be kept
quite low at all times to be ready to respond to a potential attack.

Shorter cachinghelpsDNS-based load balancing:Many large
services use DNS-based load balancing (for example, the Akamai
CDN [12] and Bing search engine [10]). Each arriving DNS request
provides an opportunity to adjust load, so short TTLs may be de-
sired to react more quickly to traffic dynamics. (Although many
recursive resolvers have minimum caching times of tens of seconds,
placing a limit on agility.)

Organizations must weigh these trade-offs to find a good balance,
after considering other factors such as server load and maintenance.

6.2 Caching Reduces Query Volume and
Latency

Latency is not the only factor to consider; one should also consider
query volume. Caching reduces query volume at the authoritative
server, reducing load and indirectly improving latency. Exactly
how much depends on the workload: who queries, when, and from
where. We saw a significant reduction in latency for Uruguay in in
§5.3. We next study those questions with a controlled experiment.

Methodology: We carry out five experiments listed in Table 10.
We use DNS servers at Amazon EC2 in Frankfurt, with short (60 s)
and long (84,400 s) TTLs, and we use anycast (Route53, with 45
global sites at experiment time) with 60 s TTLs.

We place queries to a test domain (unique to this experiment)
from 15k Atlas VPs to different types of DNS configurations. We
use either unique names (the left two columns) or a common name
(the right three).

Longer TTL reduces authoritatives load: We see that the
traffic to authoritative servers is reduced by about 77% with the
long TTL (from 127k to 43k with unique names, and from 92k to
20k with shared names). Similarly, in 2016, when .nl reduced the
TTL of the A records of its NS records from 7200 to 3600 s, it saw a
traffic increase by 22 to 30% in two of its authoritative servers [55].
Our controlled experiment shows the economic savings when DNS
is provided as a metered service [5].

Longer TTL improves response time: Figure 11 shows la-
tency distributions, comparing short TTLs with long TTLs. We can
see that for unique queries (Figure 11a), using a TTL of 60 s leads
to a median RTT of 49.28ms, while a TTL of 84600 s reduces the
median to 9.68ms.

For shared query names (Figure 11b), the median RTT for a
TTL60 s is 35.59ms, and 7.38ms for TTL86400, which can be ex-
plained that some VPs benefit from caches being warmed by others

.nl

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

unique QNAME shared QNAME
TTL60-u TTL86400-u TTL60-s TTL86400-s TTL60-s-anycast

Frequency 600s 600s 600s 600s 600s
Duration 60min 60min 65min 65min 60min
Query PID.mapache-de-madrid.co 1.mapache-de-madrid.co 2.mapache-de-madrid.co 4.mapache-de-madrid.co
Query Type AAAA AAAA AAAA AAAA AAAA
Date 20190227 20190227 20190228 20190228 20190228

Client Side
Probes 9095 9109 9105 9117 8869
Probes (val.) 8991 9009 8950 8981 8572
Probes (disc.) 104 100 155 136 117

VPs 15996 16025 15834 15910 15274
Queries 96438 96585 103666 107912 90553
Responses 96492 96645 103666 107912 90553
Responses (val.) 96469 96603 103640 107861 90553
Responses (disc.) 23 42 26 51 0

Authoritative Server
Querying IPs 12967 10334 11166 7882 13773
Queries 126763 43220 92547 20325 60813(only AAAA)
Responses 126763 43220 92547 20325 60813(only AAAA)

Table 10: TTL experiments: clients and authoritative view [43].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 10 50 500 5000

E
C

D
F

RTT (ms)

TTL 60s

TTL 86400s

(a) RTT CDF for unique QNAMES

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 10 50 500 5000

E
C

D
F

RTT (ms)

TTL 60s

T
T
L

60
s

an
yc

as
t

TTL 86400s

(b) RTT CDF for shared QNAMES

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

AF
(372)

AS
(1386)

EU
(10542)

NA
(2495)

OC
(427)

SA
(306)

ALL
(15528)

R
T

T
 (

m
s
)

continent code (# of VPs)

TTL 60s

TTL 86400s

(c) RTT distribution for unique QNAMES

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

AF
(345)

AS
(882)

EU
(10047)

NA
(2385)

OC
(264)

SA
(293)

ALL
(14216)

R
T

T
 (

m
s
)

continent code (# of VPs)

TTL 60s

TTL 60s, anycast

TTL 86400s

(d) RTT distribution for shared QNAMES

Figure 11: Distribution of client latency from Atlas VPs to controlled DNS with different TTLs.

VPs. This controlled experiment confirms improved latency seen
for Uruguay (Figure 10a), since TTL86400 (the leftmost, green line)
has much lower median latency than TTL60 (the right, daker, blue
line).

Longer TTL reduces latency, even more than anycast: In
addition, this controlled experiment lets us compare to an anycast
service (Figure 11b). We see that caching is far better than anycast
at reducing latency, comparing TTL86400 (the left, ligher red line)
against anycast (the center orange line, median RTT =29.95ms).
While anycast helps a great deal in the tail of the distribution,

caching greatly helps the median. (At 75%ile, 60 s TTLs have 106ms
latency, with anycast that drops to 67ms, but 86,400 s TTLs reduce
it to 24ms.) This result is consistent with prior work that showed
diminishing returns from very large anycast networks [47]. The
cache in a recursive close to the client is often far faster even than
an anycast site 100 km away.

6.3 Recommendations
While our analysis does not suggest one “best” TTL value, we care-
fully describe the trade-offs, resulting in the following recommen-
dations for different situations:

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

TTL Duration: Choice of TTL depends in part on external fac-
tors (§6.1) so no single recommendation is appropriate for all net-
works or network types.

For general zone owners, we recommend longer TTLs: at least one
hour, and ideally 4, 8, or 24 hours. Assuming planned maintenance
can be scheduled in advance, long TTLs have little cost.

For TLD and other registry operators: DNS operators that allow
public registration of domains (such as most ccTLDs, .com, .net,
.org and many SLDs) allow clients to duplicate the TTLs in their
zone files for client NS records (and glues if in-bailiwick). While §3.3
shows that most resolvers use TTL values from the child delegation,
some use the parent’s TTL. We therefore recommend longer TTLs
for NS records of both parent and child records (at least one hour,
preferably more).

Users of DNS-based load balancing or DDoS-prevention may re-
quire short TTLs: TTLs may be as short as 5 minutes, although 15
minutes may provide sufficient agility for many operators. Shorter
TTLs here help agility; they are an exception to our first recom-
mendation for longer TTLs.

UseA/AAAAandNS records:TTLs of A/AAAA records should
be equal (or optionally shorter) to the TTL for NS records for in-
bailiwick DNS servers (§4.2). Our reasoning is they will be treated
that way by many resolvers, so the configuration should reflect
what will happen in practice.

For out-of-bailiwick servers, A and NS records are usually cached
independently, so different TTLs, if desired, will be effective.

In either case, short A and AAAA records may be desired if
DDoS-mitigation services are an option.

Who is in control: Given that most resolvers are child-centric,
one can directly control used TTLs within the zone itself (§3). How-
ever, one should recognize that a fraction of resolvers will use TTLs
from glue records stored served by a zone’s parents, so operators
should either configure both in-zone and glue TTLs identically,
or recognize some users will use one or the other. (Unfortunately
EPP [23, 24], the standard protocol for domain registration, does
not support setting TTLs.)

We recommend that developers of resolver software move to child-
centric resolution, even if it means additional queries. DNSSEC veri-
fication requires evaluation of queries from the child zone, and it
seems preferable to favor the actual domain owner’s choice of TTL
over the parent zone operator. In the meantime, we recommend that
resolver developers document their resolver behavior as parent- or
child-centric, and if they trust or discard the additional section of
DNS responses (§4).

7 RELATEDWORK
DNS performance and caching efficiency: Prior work has studied
client-side caching through recursive resolvers from several per-
spectives. First, Jung et al. [27], in 2002, carried out simulations
based on university traces to estimate the DNS cache hit rate given
TTL. They showed that longer TTLs improves caching, but TTLS
shorter than 1000 s were sufficient to reap most of the benefits. In
their subsequent study [26], they modeled DNS caches as a function
of TTL to explain their earlier results. Ager et al. [2] compare local
DNS resolvers against Google and OpenDNS public ones. While
they cover query response time, they do not cover its relation to
DNS records TTLs as we do.

Second, researchers at CWRU have explored client-side DNS [11,
48], showing how TTLs are used by clients in the wild, and that
short TTLs are generally honored. Other researchers examined
mobile clients, showing most TTLs are short [4]. Our work instead
focuses on provider-side configuration, to make sure providers get
the times they desire, and how those times influence response times
and query volume.

Third, several groups evaluated DNS performance at the root.
Danzig et al. showed that there was a significant number of misbe-
having resolvers [14]. Fomenkov et al. examined Root DNS latency
before anycast was widespread [16], and then Liu et al. reexamined
performance with anycast [31]. Thomas and Wessels showed how
complicated caching is as seen from the Roots DNS servers [51].

Finally, recently Moura et al. [36] evaluated caching hit rates
with datasets from production networks and experiments with
RIPE Atlas, finding cache hit rates of around 70% for TTLs ranging
from 1800–86400 s. While this prior work measured caching and
its effects, our work instead focuses on how TTLs set in different
places interact to create an effective TTL.

Resolver Centricity and Stickiness: Guðmunsson [18] previously
studied router stickiness, and both he and Qiao [42] studied resolver
centricity. We extend their prior studies to examine how centricity
and stickiness affects caching, and how they behave today.

TTL and DNS resilience: Pappas et al. proposed changes two
strategies to improve DNS resilience to DDoS with NS-record
caching [40]. They proposed refreshing TTLs in some circum-
stances, and renewing (pre-fetching before expiration) NS records
for popular domains.

In addition to considering caching efficiency, Moura et al. also
examined the relationship between TTLs in DNS and resilience
to DDoS attacks [36]. They simulated a series of scenarios with
various degrees and packet loss and showed that, together with
retries, caching is a key component of DNS resilience. They showed
that, to be most effective, TTLs must be longer than the DDoS
attack. They recommend long TTLs where possible, but refrain
from suggesting specific values.

Unlike these two papers, we focus on DNS under normal op-
eration. We examine how different records create ambiguity in
the effective TTL, and make recommendations for TTL values and
where they must be set.

Ripe Atlas: It is well known that the global distribution of RIPE
Atlas probes is uneven, skewed towards Europe [8, 9, 47]. Although
quantitative data analysis might be generally affected by this distri-
bution bias, our qualitative analysis, contributions and conclusions
do not depend on the geographical location of probes.

8 CONCLUSION
This paper examined DNS TTLs, showing that the effective DNS
TTL is often different from what is configured because TTLs appear
in multiple locations and resolvers make different choices in which
TTL they prefer. We use controlled experiments to demonstrate
how these factors interact, and that one must control TTL in both
parent and child zones.We showed that longer TTLs have important
performance benefits, since caching greatly reduces latency, even
more than anycast, as well as reducing traffic. Our scans of deployed
DNS show that operators today have little consensus on typical
TTLs. Initial discussions with selected operators suggest interest in

ISI-TR-734b, May 2018, Marina del Rey, California, USA G. C. M. Moura et al.

longer TTLs, and changes at Uruguay’s .uy, after our discussions,
result in much lower median latency to users, as did two other
ccTLDs. We list the issues operators should consider when selecting
TTLs, and suggest while those using DNS-based load-balancing or
DDoS-mitigation may require short TTLs (5 or 15minutes), others
may benefit from longer TTLs (of a few hours).

ACKNOWLEDGMENTS
We thank Paul Ebersman, Warren Kumari, Stefan Ubbink, Marc
Groeneweg, Niek Willems, Jelte Jansen, for their comments on
drafts of this paper. We also thank Sergio Ramirez (.uy) for his
responsiveness and cooperation in this research.

This work uses measurements from RIPE Atlas (https://atlas.ri
pe.net/), an open measurements platform operated by RIPE NCC.

Giovane C. M. Moura’s work on this project is part of the SAND
project (http://www.sand-project.nl), a research project between
SIDN Labs, the University of Twente, and NL Netlabs.

JohnHeidemann’swork is based in part on research sponsored by
the U.S. Department of Homeland Security Science and Technology
Directorate, Cyber Security Division (DHS S&T/CSD) via contract
number HSHQDC-17-R-B0004-TTA.02-0006-I, by the Air Force Re-
search Laboratory under agreement number FA8750-18-2-0280, by
the DHS S&T/CSD via contract number 70RSAT18CB0000014. John
Heidemann andWes Hardaker’s work is partially supported by NSF
OAC-1739034, “CICI: RSARC: DDoS Defense In Depth for DNS”.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

Wes Hardaker’s work in this paper is partially supported by USC
as part of B-Root research activity.

REFERENCES
[1] J. Abley and K. Lindqvist. 2006. Operation of Anycast Services. RFC 4786. IETF.

http://tools.ietf .org/rfc/rfc4786.txt
[2] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig.

2010. Comparing DNS Resolvers in the Wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). ACM, New York, NY,
USA, 15–21.

[3] Alexa. 2019. Alexa: Keyword Research, Competitive Analysis & Website Ranking.
https://www.alexa.com/

[4] Mario Almeida, Alessandro Finamore, Diego Perino, Narseo Vallina-Rodriguez,
and Matteo Varvello. 2017. Dissecting DNS Stakeholders in Mobile Networks.
In Proceedings of the 13th International Conference on Emerging Networking EX-
periments and Technologies (CoNEXT ’17). ACM, New York, NY, USA, 28–34.
https://doi.org/10.1145/3143361.3143375

[5] Amazon AWS. 2019. Route 53 pricing. https://aws.amazon.com/route53/pricing/.
[6] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005. Protocol Modifica-

tions for the DNS Security Extensions. RFC 4035. IETF. http://tools.ietf .org/rfc/rfc
4035.txt

[7] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005. Resource Records for
the DNS Security Extensions. RFC 4034. IETF. http://tools.ietf .org/rfc/rfc4034.txt

[8] Vaibhav Bajpai, Steffie Eravuchira, Jürgen Schönwälder, Robert Kisteleki, and
Emile Aben. 2017. Vantage Point Selection for IPv6 Measurements: Benefits
and Limitations of RIPE Atlas Tags. In IFIP/IEEE International Symposium on
Integrated Network Management (IM 2017). IFIP, Lisbon, Portugal.

[9] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schönwälder. 2015. Lessons
Learned from using the RIPE Atlas Platform for Measurement Research. SIG-
COMM Comput. Commun. Rev. 45, 3 (July 2015), 35–42. http://www.sigcomm.or
g/sites/default/files/ccr/papers/2015/July/0000000-0000005.pdf

[10] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the ACM Internet Measurement Conference. ACM, Tokyo, Japan, 531–537. https:
//doi.org/10.1145/2815675.2815717

[11] Thomas Callahan, Mark Allman, and Michael Rabinovich. 2013. On Modern DNS
Behavior and Properties. SIGCOMM Compututer Communnication Review 43, 3
(July 2013), 7–15. https://doi.org/10.1145/2500098.2500100

[12] Fangfei Chen, Ramesh K. Sitaraman, andMarcelo Torres. 2015. End-UserMapping:
Next Generation Request Routing for Content Delivery. In Proceedings of the
ACM SIGCOMM Conference. ACM, London, UK, 167–181. https://doi.org/10.
1145/2785956.2787500

[13] CZ-NIC. 2016. Cache prefers parent-side TTL to authoritative. https://github.c
om/CZ-NIC/knot-resolver/issues/34

[14] Peter B. Danzig, Katia Obraczka, and Anant Kumar. 1992. An Analysis of Wide-
Area Name Server Traffic: A study of the Domain Name System. In Proceedings
of the ACM SIGCOMM Conference. ACM, Baltimore, Mayrland, USA, 281–292.
https://doi.org/10.1145/144191.144301

[15] R. Elz and R. Bush. 1997. Clarifications to the DNS Specification. RFC 2181. IETF.
http://tools.ietf .org/rfc/rfc2181.txt

[16] Marina Fomenkov, k. c. claffy, Bradley Huffaker, and David Moore. 2001. Macro-
scopic Internet Topology and Performance Measurements From the DNS Root
Name Servers. In Proceedings of the USENIX Large Installation Systems Adminis-
tration Conference. USENIX, San Diego, CA, USA, 221–230. http://www.caida.or
g/publications/papers/2001/Rssac2001a/rssac_lisa.pdf

[17] K. Fujiwara. 2017. Updating Resolver Algorithm. Internet Draft. https://tools.ie
tf .org/html/draft-fujiwara-dnsop-resolver-update-00

[18] Ólafur Guðmundsson. 2011. Looking at DNS traces: What do we know about
resolvers? https://archive.icann.org/en/meetings/siliconvalley2011/node/22001.
html.

[19] Shuai Hao and Haining Wang. 2017. Exploring Domain Name Based Features on
the Effectiveness of DNS Caching. SIGCOMM Comput. Commun. Rev. 47, 1 (Jan.
2017), 36–42. https://doi.org/10.1145/3041027.3041032

[20] Wes Hardaker. 2018. Analyzing and Mitigating Privacy with the DNS Root
Service. In Proceedings of the ISOC NDSS Workshop on DNS Privacy. The Internet
Society, San Diego, California, USA.

[21] Scott Hilton. 2016. Dyn Analysis Summary Of Friday October 21 Attack. Dyn blog
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[22] P. Hoffman, A. Sullivan, and K. Fujiwara. 2018. DNS Terminology. RFC 8499. IETF.
http://tools.ietf .org/rfc/rfc8499.txt

[23] S. Hollenbeck. 2009. Extensible Provisioning Protocol (EPP). RFC 5730. IETF.
http://tools.ietf .org/rfc/rfc5730.txt

[24] S. Hollenbeck. 2009. Extensible Provisioning Protocol (EPP) Domain Name Mapping.
RFC 5731. IETF. http://tools.ietf .org/rfc/rfc5731.txt

[25] ISC BIND. 2018. Chapter 6. BIND 9 Configuration Reference. https://ftp.isc.org/
www/bind/arm95/Bv9ARM.ch06.html.

[26] Jaeyeon Jung, Arthur W. Berger, and Hari Balakrishnan. 2003. Modeling TTL-
based Internet Caches. In Proceedings of the IEEE Infocom. IEEE, San Francisco,
CA, USA, 417–426. http://www.ieee-infocom.org/2003/papers/11_01.PDF

[27] Jaeyeon Jung, E. Sit, H. Balakrishnan, and R. Morris. 2002. DNS performance and
the effectiveness of caching. IEEE/ACM Transactions on Networking 10, 5 (Oct
2002), 589–603. https://doi.org/10.1109/TNET.2002.803905

[28] Brian Krebs. 2019. A Deep Dive on the RecentWidespread DNSHijacking Attacks.
Krebs-on-Security blog at https://krebsonsecurity.com/2019/02/a-deep-dive-o
n-the-recent-widespread-dns-hijacking-attacks/. https://krebsonsecurity.com/
2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/

[29] W. Kumari and P. Hoffman. 2015. Decreasing Access Time to Root Servers by
Running One on Loopback. RFC 7706. IETF. http://tools.ietf .org/rfc/rfc7706.txt

[30] D. Lawrence and W. Kumari. 2018. Serving Stale Data to Improve DNS Resiliency.
Internet Draft. https://tools.ietf .org/html/draft-ietf-dnsop-serve-stale-02

[31] Ziqian Liu, Bradley Huffaker, Marina Fomenkov, Nevil Brownlee, and kc claffy.
2007. Two Days in the Life of the DNS Anycast Root Servers. In Proceedings of the
Passive and Active Measurement Workshop. Springer-Verlag, Louvain-la-neuve,
Belgium, 125–134. https://www.caida.org/publications/papers/2007/dns_anycas
t/dns_anycast.pdf

[32] Majestic. 2019. Majestic Million. https://majestic.com/reports/majestic-million
[33] P.V. Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034. IETF.

http://tools.ietf .org/rfc/rfc1034.txt
[34] P.V. Mockapetris. 1987. Domain names - implementation and specification. RFC

1035. IETF. http://tools.ietf .org/rfc/rfc1035.txt
[35] Giovane C. M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de

Vries, Moritz Müller, Lan Wei, and Christian Hesselman. 2016. Anycast vs. DDoS:
Evaluating the November 2015 Root DNS Event. In Proceedings of the ACM
Internet Measurement Conference. ACM, Santa Monica, California, USA, 255–270.
https://doi.org/10.1145/2987443.2987446

[36] Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt,
andMarco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During
DDoS. In Proceedings of the ACM Internet Measurement Conference. Boston, MA,
USA, 8–21. https://doi.org/10.1145/3278532.3278534

[37] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heide-
mann. 2017. Recursives in the Wild: Engineering Authoritative DNS Servers.
In Proceedings of the ACM Internet Measurement Conference. ACM, London, UK,
489–495. https://doi.org/10.1145/3131365.3131366

[38] Neustar. 2019. DDoS Prevention & Protection FAQs. https://www.home.neustar
/resources/faqs/ddos-faqs.

.uy
https://atlas.ripe.net/
https://atlas.ripe.net/
http://www.sand-project.nl
http://tools.ietf.org/rfc/rfc4786.txt
https://www.alexa.com/
https://doi.org/10.1145/3143361.3143375
https://aws.amazon.com/route53/pricing/
http://tools.ietf.org/rfc/rfc4035.txt
http://tools.ietf.org/rfc/rfc4035.txt
http://tools.ietf.org/rfc/rfc4034.txt
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/July/0000000-0000005 .pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/July/0000000-0000005 .pdf
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/2815675.2815717
https://doi.org/10.1145/2500098.2500100
https://doi.org/10.1145/2785956.2787500
https://doi.org/10.1145/2785956.2787500
https://github.com/CZ-NIC/knot-resolver/issues/34
https://github.com/CZ-NIC/knot-resolver/issues/34
https://doi.org/10.1145/144191.144301
http://tools.ietf.org/rfc/rfc2181.txt
http://www.caida.org/publications/papers/2001/Rssac2001a/rssac_lisa.pdf
http://www.caida.org/publications/papers/2001/Rssac2001a/rssac_lisa.pdf
https://tools.ietf.org/html/draft-fujiwara-dnsop-resolver-update-00
https://tools.ietf.org/html/draft-fujiwara-dnsop-resolver-update-00
https://archive.icann.org/en/meetings/siliconvalley2011/node/22001.html
https://archive.icann.org/en/meetings/siliconvalley2011/node/22001.html
https://doi.org/10.1145/3041027.3041032
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
http://tools.ietf.org/rfc/rfc8499.txt
http://tools.ietf.org/rfc/rfc5730.txt
http://tools.ietf.org/rfc/rfc5731.txt
https://ftp.isc.org/www/bind/arm95/Bv9ARM.ch06.html
https://ftp.isc.org/www/bind/arm95/Bv9ARM.ch06.html
http://www.ieee-infocom.org/2003/papers/11_01.PDF
https://doi.org/10.1109/TNET.2002.803905
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
http://tools.ietf.org/rfc/rfc7706.txt
https://tools.ietf.org/html/draft-ietf-dnsop-serve-stale-02
https://www.caida.org/publications/papers/2007/dns_anycast/dns_anycast.pdf
https://www.caida.org/publications/papers/2007/dns_anycast/dns_anycast.pdf
https://majestic.com/reports/majestic-million
http://tools.ietf.org/rfc/rfc1034.txt
http://tools.ietf.org/rfc/rfc1035.txt
https://doi.org/10.1145/2987443.2987446
https://doi.org/10.1145/3278532.3278534
https://doi.org/10.1145/3131365.3131366
https://www.home.neustar/resources/faqs/ddos-faqs
https://www.home.neustar/resources/faqs/ddos-faqs

Cache Me If You Can (extended) ISI-TR-734b, May 2018, Marina del Rey, California, USA

[39] OpenDNS. 2019. Setup Guide: OpenDNS. https://www.opendns.com/setupguide/.
https://www.opendns.com/setupguide

[40] Vasileios Pappas, Dan Massey, and Lixia Zhang. 2007. Enhancing DNS Resilience
against Denial of Service Attacks. In Proceedings of the 37th International Con-
ference on Dependable Systems and Networks. IEEE, Edinburgh, UK, 450–459.
https://doi.org/10.1109/DSN.2007.42

[41] Nicole Perlroth. 2016. Hackers Used New Weapons to Disrupt Major Websites
Across U.S. New York Times (Oct. 22 2016), A1. http://www.nytimes.com/2016/
10/22/business/internet-problems-attack.html

[42] Jing Qiao. 2017. Resolver centricity experiment. https://blog.nzrs.net.nz/resolve
rs-centricity-detection/.

[43] RIPE NCC. 2019. RIPE Atlas Measurement IDs. https://atlas.ripe.net/measureme
nts/ID. ID is the experiment ID: uy-NS: 19544918, a.nic.uy-A: 19581585, google.co-
NS: 19927577, mapache-de-madrid.co-NS: 19584842, in-bailiwick: 20199814,
out-of-bailiwick: 20181892, TTL60-u:19862830, TTL86400-u:19863763, TTL60-
s:19871393, TTL86400-s:19871498, TTL60-s-anycast:19875360, uy-NS2: 19925152,
zurrundeddu-offline: 22483308.

[44] RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network.
Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2–26.

[45] RIPE Network Coordination Centre. 2015. RIPE Atlas. https://atlas.ripe.net.
[46] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-

mann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way to
the Top: Significance, Structure, and Stability of Internet Top Lists. In Proceedings
of the Internet Measurement Conference 2018 (IMC ’18). ACM, New York, NY, USA,
478–493. https://doi.org/10.1145/3278532.3278574

[47] Ricardo de O. Schmidt, John Heidemann, and Jan Harm Kuipers. 2017. Anycast
Latency: How Many Sites Are Enough?. In Proceedings of the Passive and Active
Measurement Workshop. Springer, Sydney, Australia, 188–200. http://www.isi.ed

u/%7ejohnh/PAPERS/Schmidt17a.html
[48] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On

measuring the client-side DNS infrastructure. In Proceedings of the 2015 ACM
Conference on Internet Measurement Conference. ACM, 77–90.

[49] SIDN Labs. 2019. .nl stats and data. http://stats.sidnlabs.nl.
[50] Steve Souders. 2008. High-Performance Web Sites. Commun. ACM 51, 12 (Dec.

2008), 36–41. https://doi.org/10.1145/1409360.1409374
[51] Matthew Thomas and Duane Wessels. 2015. A study of caching behavior with

respect to root server TTLs. DNS-OARC. https://indico.dns-oarc.net/event/24/
contributions/374/

[52] Umbrella. 2019. Umbrella Popularity List. https://s3-us-west-1.amazonaws.co
m/umbrella-static/index.html

[53] Thomas Vissers, Wouter Joosen, and Nick Nikiforakis. 2015. Parking sensors:
Analyzing and detecting parked domains. In Proceedings of the 22nd Network and
Distributed System Security Symposium (NDSS 2015). Internet Society, 53–53.

[54] Lan Wei and John Heidemann. 2017. Does Anycast Hang Up On You?. In IEEE
Network Traffic Monitoring and Analysis Conference. IEEE, Dublin, Ireland, 9.
https://doi.org/10.23919/TMA.2017.8002905

[55] Maarten Wullink. 2016. ENTRADA: The Impact of a TTL Change at the TLD
Level. DNS-OARC. https://indico.dns-oarc.net/event/22/contributions/314/

[56] Maarten Wullink, Giovane CM Moura, and Cristian Hesselman. 2018. Dmap:
Automating Domain Name Ecosystem Measurements and Applications. In Pro-
ceedings of the IEEE Network Traffic Monitoring and Analysis Conference. IEEE,
Vienna, Austria, 1–8. https://doi.org/10.23919/TMA.2018.8506521

[57] Maarten Wullink, Giovane CM Moura, Moritz Müller, and Cristian Hesselman.
2016. ENTRADA: A high-performance network traffic data streaming warehouse.
In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE,
913–918.

https://www.opendns.com/setupguide/
https://www.opendns.com/setupguide
https://doi.org/10.1109/DSN.2007.42
http://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
http://www.nytimes.com/2016/10/22/business/internet-problems-attack.html
https://blog.nzrs.net.nz/resolvers-centricity-detection/
https://blog.nzrs.net.nz/resolvers-centricity-detection/
https://atlas.ripe.net/measurements/ID
https://atlas.ripe.net/measurements/ID
https://atlas.ripe.net
https://doi.org/10.1145/3278532.3278574
http://www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html
http://www.isi.edu/%7ejohnh/PAPERS/Schmidt17a.html
http://stats.sidnlabs.nl
https://doi.org/10.1145/1409360.1409374
https://indico.dns-oarc.net/event/24/contributions/374/
https://indico.dns-oarc.net/event/24/contributions/374/
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://doi.org/10.23919/TMA.2017.8002905
https://indico.dns-oarc.net/event/22/contributions/314/
https://doi.org/10.23919/TMA.2018.8506521

	Abstract
	1 Introduction
	2 Our Question: Which TTLs Matter?
	3 Are Resolvers Parent- or Child-centric?
	3.1 Parent and Child TTLs in Chile's .cl
	3.2 TTLs as Seen in the Wild with Uruguay's .uy top-level domain
	3.3 A Second-level Domain in the Wild
	3.4 Confirming Client-Centricity with Passive Observations of .nl TLD

	4 The Many TTLs in Resolving A Fully-Qualified Domain-Name
	4.1 Experimental Setup
	4.2 Effective TTLs for Servers Inside the Served Zone
	4.3 Effective TTLs for Servers Outside the Served Zone
	4.4 Resolver's Infrastructure
	4.5 Same VP, different behavior
	4.6 Confirmation from the Authoritative Side

	5 TTLs in the wild
	5.1 Crawling TLDs and Popular Domains
	5.2 Discussions with Operators
	5.3 Early Feedback from Uruguay's .uy

	6 Recommendations for DNS Operators
	6.1 Reasons for Longer or Shorter TTLs
	6.2 Caching Reduces Query Volume and Latency
	6.3 Recommendations

	7 Related work
	8 Conclusion
	References

