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T
he Internet is now an essen-
tial part of many people’s
daily lives, both at home and
at work. Today, it reaches all
countries of the world, nearly

a billion people, and supports trillions of
dollars of transactions and millions of
jobs. With this reach, it is not surprising
that the Internet has been host to both
positive and negative activities. Negative
activities have grown from simple unde-
sired use by unorganized
hackers to extortion by
organized crime [1]. The
term malware has come to
mean a range of harmful soft-
ware that ends up on users’
computers, such as keystroke
loggers, Web monitors, virus-
es, worms, and zombie soft-
ware allowing unauthorized
remote control.

In what follows, we use the term mal-
traffic to include denial-of-service
attacks, spyware reporting home, unau-
thorized applications (applications in vio-
lation of a company or Internet service
provider’s acceptable use policy, like peer-
to-peer sharing, chat, and games), spam
(both arriving and sending), worms, and
similar kinds of network traffic. Some of
these problems arise on compromised or
misused internal computers, while others
appear on zombies or compromised
machines on the Internet to pummel
trusted hosts. All are of growing concern.

While several technologies have been
developed to counter threats and mal-
traffic, recent trends compromise many
of today’s defenses.

■ An increase in encrypted traffic 
renders countermeasures based on
content inspection ineffective.
■ An increase of aggregation at net-
work edges (due to caches, network-

address-translation boxes, and other
proxies) precludes filtering solely on
IP addresses, as that could remove
nonmaltraffic.
■ An increase in traffic volumes
means that maltraffic can easily hide
in background traffic, yet still do
great harm.
■ The appearance of application
cloaking, both intentional (varying
port allocation or actively concealing

application features) and uninten-
tional (when applications are layered
on existing protocols or systems use
dynamic port allocation), means that
simple approaches to identifying and
filtering applications fail.
We suggest that these challenges

present a unique opportunity to signal
processing researchers. The notion of
applying signal processing techniques to
network analysis is not new, with prior
success in the area of network tomogra-
phy. However, we argue that the new
challenges mentioned previously yield
applications of signal processing that dif-
fer from those considered in network
tomography [2]–[4]. Network tomogra-
phy typically uses a limited number of
active or passive measurements (typically
at network edges) to infer network per-
formance parameters and topology. The
input signal typically consists of packet
delays, round-trip times, loss, or similar
features; tomography infers network

characteristics using correlation tech-
niques such as maximum likelihood esti-
mation and Bayesian inference. In
network tomography, multiple observa-
tion points may be required, and flows
need to be separated from the aggregate.
We propose to relax each of these
requirements. Our goal is to collect data
passively without separating traffic into
flows and to design signal representa-
tions unique to the applications. To

achieve this goal, we will use
signal processing methods to
characterize applications, not
just network phenomena.

As in traditional signal
processing problems, we
take observations (in this
case aggregate traffic traces)
and from these extract rele-
vant features and then apply

detection techniques to determine
whether maltraffic is present and, if
possible, to identify those packets gen-
erated by malware. We believe that new
methods in signal representation, clas-
sification and detection, transform
domain techniques, and source separa-
tion are required for these applications,
and these can potentially have a signifi-
cant impact on countering the effects
of malware on the Internet.

An understanding of the underlying
network traffic is needed to determine
which traffic features can be used to
identify and detect maltraffic. Careful
feature selection can minimize the
effects of cloaking and encryption, since
carefully selected features are impossible
to cloak without reducing the maltraffic
effectiveness. As an example, we have
shown that the presence of denial-of-
service attack packets can be detected
using frequency domain features; con-
cealing these features would require
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reducing the attack rate, thus reducing
attack effectiveness [5].

However, feature selection alone is
not sufficient. An understanding of the
measurement system and proper appli-
cation of detection theory is needed to
maximize detection sensitivity. Such
approaches are essential to counter the
challenges of edge aggregation and
high traffic volumes, since potential
maltraffic becomes a needle-in-the-
haystack of large, aggregate, back-
ground traffic. 

FEATURE EXTRACTION FOR
MALTRAFFIC DETECTION
Applying signal processing to maltraffic
detection involves 1) mapping observed
network behavior to a signal representa-
tion and then 2) extracting features from
this signal that can be used to to deter-
mine the presence of maltraffic. While
detection techniques such as these have
been used in the past in a networking
context, we believe new methods have to
be developed to address maltraffic. For
example, our objective is to analyze
aggregate traffic to make inferences
about a particular outlier phenomenon.
This makes it impractical to use tech-
niques based on the analysis of adjacent
packet interarrival times [6]. These
become computationally infeasible for
the networks of interest, as there will be
many thousands of concurrent flows.
Per-flow processing is very expensive,
even on moderately large routers, and
approaches such as statistical sampling
[7] are incompatible with our goals of
detecting small traffic exchanges and
events in low-bandwidth flows.

Transform-domain techniques have
been proposed recently as effective tools
to extract underlying information from
aggregate traffic. These approaches map
relevant network traces into time series
(e.g., number of packet arrivals per inter-
val, packet arrival times) and then apply
a transform to this time series signal.
Intuitively, each transform domain
sample can capture timing information
corresponding to multiple packets. For
example, if there is an underlying low-rate
periodic stream in a trace, this will lead
to energy appearing at the corresponding

frequency in the transform domain.
Examples of successful transform-domain
techniques include use of the power
spectral density [5], wavelets [8], and
Lomb periodograms [9]. In each case, a
standard analysis tool was used, with the
hope that events to be detected would
happen to produce a signature in the
chosen representation domain.

Essentially, these techniques take off-
the-shelf signal representation tools and
combine them with equally well-known
detection/classification tools. We believe
that further improvements in detection
performance can be achieved by taking a
more formal approach to signal represen-
tation, feature selection, and detection.
For example, one need not be bound by
existing representation techniques; our
goal should be to design new analysis and
detection schemes where the transform
domain technique development is per-
formed jointly with the feature identifica-
tion and modeling. This experience is
borne out in other areas like speech
recognition where, while many trans-
forms have been considered [fast Fourier
transform (FFT), cepstrum, and
wavelets], it is the postprocessing coupled
with the particular transform that deter-
mines the efficacy of the approach.

Our preliminary research points to
several areas in which optimizing repre-
sentation, transform, and detection for a
given task have already shown some
promise. As a first example, data
obtained from real network measure-
ments is often taken as if it represented
an ideal measurement of underlying net-
work behavior without considering that
the measurement system itself may be
introducing errors. Negligible or not, the
measurement system must be modeled
and analyzed to ensure reliability of the
analysis. Furthermore, a careful under-
standing of measurement system limits
allows operation near those limits, per-
haps obtaining satisfactory results from
an inexpensive measurement system. In
the next section, we present an example
of this need for a more formal approach
to characterizing network measurement.

Second, applying off-the-shelf analysis
tools (e.g., an FFT or various flavors of
wavelet transform) directly to signals

obtained from traces may be ineffective for
two reasons. Signals derived from network
data can be sparse in time (e.g., we have a
nonzero signal only at times when packets
arrive) and coarse in amplitude (e.g., inte-
ger valued, when a signal represents a
number of packet arrivals). Both of these
may pose problems for traditional
approaches. We often know what type of
signals are created by the phenomena that
we try to detect (e.g., packets clocked at
very regular intervals in the case of a bot-
tleneck link). Thus, application-specific
transforms that take into account the char-
acteristics of signals and phenomena to be
detected should be considered. As an exam-
ple, this would argue for selecting trans-
forms that map integers to integers and
offer better resolution around those fre-
quencies where these phenomena of inter-
est are expected to manifest themselves.

Third, we believe that model-based
detection offers promise. The difficulty of
modeling general Internet traffic is
widely recognized. However, our goal is
fortunately much simpler: we need only
model traffic characteristics that are rel-
evant to the specific detection problem
being considered. This approach is quite
distinct from attempts to model general
network traffic. In fact, the use of so-
called inaccurate models has had a long
and fruitful history in signal processing.
An incomplete model can be effective if
the mismatch is not related to the fea-
ture of interest.

APPROACHES TO APPLY SIGNAL
PROCESSING TO MALTRAFFIC
ANALYSIS AND DETECTION
We next consider two examples that
highlight some of the challenges that
arise when applying signal processing
methods to this new area. We first exam-
ine the interplay between time series
generation and the measurement sys-
tem. We then evaluate how to define, cat-
alog, and detect fingerprints that identify
denial-of-service attacks.

UNDERSTANDING AND MODELING
THE MEASUREMENT SYSTEM
Our early trace measurement system
used a stock PC, network card, and tcp-
dump to record packets. This system was
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connected to the network either passive-
ly with an optical splitter or actively
with port mirroring at a router. Let the
link capacity be R b/s and represent
packet arrivals as an ideal discrete (bina-
ry) signal, with sampling interval 1/R s.
The board captures packets during a
time interval, which we call the coalesc-
ing interval; all packets that arrive dur-
ing one such interval are transferred to
the host computer, which records their
arrival using tcpdump. Thus, the timing
produced by tcpdump is generated after
information is received (in batches) and
is affected in part by the processing
speed of the host computer. The signal
generated by tcpdump can be mislead-
ing; higher frequencies in this signal are
likely to be generated by random varia-

tions in the tcpdump timing rather
than by actual periodicities in packet
arrivals in the network.

A better measurement approach
would be to ignore the arrival times
provided by tcpdump and instead ana-
lyze a signal where each sample corre-
sponds to the total number of arrivals
in each coalescing interval. This can be
easily modeled using standard signal
processing tools; the ideal binary signal
is low-pass filtered and downsampled
(corresponding to obtaining the total
number of arrivals in each coalescing
interval). Letting the discrete time
Fourier transform (DTFT) of the origi-
nal ideal signal be X(e jw) and the coa-
lescing interval be of length M
samples, then the system we described

is equivalent to first applying a filter
H(e jw) = (1 − e− jwM)/(1 − e− jw) to
X(e jw) and then downsampling the
results by a factor of M , so that the 
output of the measurement system 
has a DTFT

Y(e jw) = 1
M

M−1∑

k=0

X
(

e j(w−2πk)/M
)

× H
(

e j(w−2πk)/M
)

.

Note that with this explicit represen-
tation of the measurement system, we
can both determine if the measurement
system prevents us from observing a
phenomenon of interest and predict the
exact, observed, spectral signature,
instead of its ideal signal on-the-wire,
which will help in the detection process.

[FIG1] A low-volume attack of 670 packets per second is detected using change-point detection on the spectral content of the
aggregate network traffic. (a) Aggregate network traffic in packets per second. Attack duration indicated by the line. (b) Attack
traffic in packets per second. (c) Attack is detected using nonparametric detection techniques. Attack duration indicated by the line.
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IDENTIFYING AND DETECTING
ATTACK FINGERPRINTS
For a large class of problems stemming
from malware, some form of detection or
classification is inherent to the desired
solution. Our initial approaches have
focused on Fourier signal representations,

which work well for certain applica-
tions, such as distributed denial-of-serv-
ice (DDoS) attack classification and
bottleneck detection. The fingerprinting
of stationary DDoS attacks is based on
the observation that spectral character-
istics of an attack are hard to forge and
attack scenarios appear to have unique
spectral characteristics [10]. As such,
we have successfully used maximum
likelihood detection with Gaussian vec-
tor models to identify and thus classify
repeated attacks [5], [10].

An important challenge is the pres-
ence of strong transients in the attack
fingerprint, since such features are not
well captured by a Fourier analysis. To
overcome this shortcoming, we applied
an initial transform method, the Mexican
Hat wavelet, to 38 real-world DDoS
attacks. We achieved a 90% attack detec-
tion rate with a negligible false positive
rate. Figure 1(a) shows aggregate traffic
seen in the network, in packets per sec-
ond. Figure 1(b) shows the attack traffic
alone: a TCP flooding attack of 670 pack-

ets/s lasting 175–475 s. With aggregate
traffic, visual inspection of spectral data
does not clearly indicate the presence of
the attack. However, statistical detection
techniques can find low-rate attacks reli-
ably. Figure 1(c) shows that our prelimi-
nary decision statistic, computed based

on a nonparametric change-point detec-
tor, increases rapidly during an attack.

Another application we have
explored is bottleneck traffic detection.
Although not a maltraffic problem, per
se, this study provides a methodology
and intuition for more adversarial traf-
fic. For moderate to low cross traffic, we
have observed that a highly utilized
transit or peering link will yield a
strong frequency component propor-
tional to the link speed and inversely
proportional to the packet size yielding
detection rates of 80% or higher, even
when observed several hops away from
the bottleneck. When mixed with aggre-
gate traffic at higher rates, detection
becomes more challenging. For exam-
ple, there is no visual indication of 10
Mb/s bottleneck traffic in 50 Mb/s back-
ground traffic (on a 100 Mb/s aggregate
link). More sophisticated approaches
(multidimensional tests on the top fre-
quencies) do improve performance at
the expense of complexity as seen in
Figure 2. The results of Figure 2 are

achieved using a training set that is
matched to the evaluation set by using
data from the same time of day. If there
is a mismatch between the training and
the evaluation, we achieve very poor
performance—around 50% detection
rates. Thus for this problem, an impor-
tant goal is to understand when training
data provides a sufficiently good match
to current conditions. While we recog-
nize the difficulty in modeling general
network traffic, the ability to match and
model aspects of traffic specific to mal-
traffic detection can result in much bet-
ter detection probabilities.

CONCLUSIONS
We believe that signal processing meth-
ods are powerful tools for defense against
maltraffic on the Internet. While off-the-
shelf techniques such as FFTs and popu-
lar wavelet families have been employed,
precisely designed analysis and detection
methods offer much more promise. A
key challenge for this area of research is
a lack of well-accepted models and even
ground truth. However, such challenges
exist as well in such arenas as speech and
image processing. We conclude with
three key observations.

■ With signal processing techniques,
we can detect phenomena using only
packet timing information, i.e., with-
out requiring inspection of packet
contents, thus circumventing
encryption.
■ Using carefully designed measure-
ment systems, we can apply detection
theory to uncover the presence of
very small signals of interest in aggre-
gate traffic.
■ By understanding the inherent pat-
terns in traffic (who talks to whom
and when) we can defeat cloaking by
identifying behaviors inherent in the
traffic patterns.
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[FIG2] Probability of detection as a function of the number of frequencies and
harmonics considered. The x-axis shows how many harmonics are considered (1–12),
while the several lines consider how many frequencies are considered in each harmonic
(1, 2, 5, 10, or all). We consider the strongest k frequencies based on their ranked
performance for the training set.
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