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Abstract— A new class of sensor network applications ismostly
off. Exemplified by Intel’s FabApp, in these applications the
network alternates between being off for hours or weeks, then
activating to collect data for a few minutes. While configuration
of traditional sensornet applications is occasional and so need not
be optimized, these applications may spend half their active time
in reconfiguration every time when they wake up. Therefore, new
approaches are required to efficiently “resume” a sensor network
that has been “suspended” for long time. This paper focuses on
the key question of when the network can determine that all nodes
are awake and ready to communicate. Existing approaches assume
worst-case clock drift, and so must conservatively wait for minutes
before starting an application. We propose two reconfiguration
protocols to largely reduce the energy cost during the process.
The first approach is low-power listening with flooding, where
the network restarts quickly by flooding a control message as
soon as the first node determines that the whole network is up.
The second protocol useslocal update with suppression, where
nodes only notify their one-hop neighbors, avoiding the cost of
flooding. Both protocols are fully distributed algorithms. Through
analysis, simulation and testbed experiments, we show that both
protocols are more energy efficient than current approaches.
Flooding works best in sparsenetworks with 6 neighbors or less,
while local update with suppression works best indensenetworks
(more than 6 neighbors).

I. I NTRODUCTION

Sensor networks use small sensor nodes such as Berkeley
Motes [7], [11] to sample the physical environment, process
and transfer data to remote users. These sensors are usually
battery operated, so an important research challenge is efficient
management of energy usage to maximize network lifetime.

Sensor network applications vary from micro-habitat moni-
toring [1], [14], structural monitoring [21] to surveillance for
intrusion detection. Most of these applications today assume an
always-onnetwork. For example, in surveillance applications,
the network need to stay active all the time in order to detect
any event in real time. To reduce energy consumption when
there is no traffic to send, MAC protocols for sensornets (such
as S-MAC [24] and B-MAC [15]) put the radio to sleep, even
though they preserve the abstraction of an always-on network.
To maintain this abstraction, their sleep periods are rather short,
ranging from tens of milliseconds to a small number of seconds
(the default sleep period in B-MAC is 100ms, and in S-MAC
at 10% duty cycle, 1 second).
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Topology control is a second approach to conserving energy,
and is specific todensesensornets [23], [2]. With topology
control, some nodes shut down for extended periods of time,
but the network colludes to ensure that enough nodes remain
active to guarantee coverage and full connectivity. Thus, while
individual nodes may not be available, the overall abstraction
of a connected network is maintained. Topology control can be
even more efficient than MAC approaches since it places nodes
asleep for extended periods, avoiding even minimal MAC-layer
synchronization or polling costs.

Recently a third category of applications has emerged, that
of mostly-off applications. In these applications, nodes are
only active for brief periods to collect data. For the rest of
the time, they are not required for any sensing tasks, and to
conserve energy theyall should turn off. Equipment monitoring
for extended periods was the first example application in this
category, where nodes only need to check equipment status
once a day or a week [17]. A second example is seismic
monitoring of underwater oil fields [6], where we expect the
application to generate and collect data for dozens of minutes,
but perhaps only every 30 days, or even less frequently.
For these applications, network lifetime is maximized if the
network as a whole shuts down completely between active
periods, in effect, “sensor network suspend and resume”. While
between sensing, all components on a node are shut off except
a real-time clock that is able to wake up the node at the next
scheduled task time. We therefore consider thesemostly-off
networks.

The goal of this paper is to develop new protocols for
efficient network reconfiguration after a long sleep. The main
challenges are things that change over time. The most signifi-
cant of these is clock drift—the fact that typical clocks willdrift
from true time and each other. As a result, not only must tightly
synchronized operations (such as scheduled MAC protocols)
recover after sleep, but the network must be careful even to
ensure all nodes are active. The exact set of services that need
to be reconfigured after sleep vary depending on the application
and protocols in use, ranging from determining that all nodes
are up, setting a MAC schedule, finding MAC-level neighbors,
reestablishing forwarding paths, resetting time synchronization.
This paper focuses on the first of these: the need for all nodes
to determine when the entire network is up, since it is common
to all networks before traffic can be sent.

Current CTOS crystal oscillators have a drift rate of 30–50
parts per million (ppm). When clock drift rate is 50ppm, then
clock drift after 30 days could be as long as 130 seconds. In



the above application of seismic monitoring of underwater oil
fields, nodes agree on the same moment to wake up before
they go to sleep for 30 days, and they set up timers to awake
themselves later. But due to clock drift, it is simply not feasible
for them to reboot at the exact same moment during the next
active period. Nodes can wake up any time during the drift
period of 260 seconds (on either two directions for possible
clock drift).

The central problem here is that nodes must coordinate after
waking up. First, senders waking up earlier must wait and delay
data transmission until the whole networkresumesand all other
nodes are active and able to receive packets. This delay,drift
delay, is necessary to guarantee network connectivity before
any data transmission. Our goal is to minimize the energy spent
during this time. Again, for this application, nodes may only
sense and exchange data for 4–10 minutes. In this case, energy
spent in drift delay can be as much as half the total energy
consumed during the networks entire active life.

Second, nodes mustknow that all the network is up. Once a
node is up, it must wait a further time to insure that all other
nodes are up (and therefore able to forward the data) before it
sends a message. We define this time asdata message delay,
and it effectively doubles the delay after wakeup before nodes
can assert all nodes are up (and therefore reconfiguration is
done).

The challenge in mostly-off networks is therefore to mini-
mize the energy wasted during drift delay and data message
delay. As far as we know, currently there are no network
re-configuration protocols specifically designed to reducethis
cost. The problem was identified in Intel’s FabApp [17],
but there nodes simply perform wait, low-power listening
(LPL) [3], [15] until all nodes rejoin the network. We will show
new approaches can consume 50% less energy than average-
case LPL energy, and 66% less than worst case LPL.

We propose two new protocols to efficiently manage energy
usage during the reconfiguration period. Our protocols are
designed for highly resource-constrained sensor nodes, such
as 8-bit motes, and to support small to very large networks
(from tens to hundreds or thousands of nodes). They therefore
emphasize simplicity and fully distributed operation. Ourfirst
protocol is low-power listening with flooding, where the net-
work restarts quickly by flooding a control message as soon as
one node can determine the network is up. The second protocol
useslocal update with suppression, where nodes only notify
their one-hop neighbors about the network state, avoiding the
cost of flooding. Both protocols accomplish the goal of letting
all nodes know that the network is up. In addition, the flooding
approach can also propagate schedule information used by a
scheduled MAC protocol (such as S-MAC [24], T-MAC [20],
or SCP-MAC [25]). We evaluate our reconfiguration protocols
through analysis, simulation and testbed experiments. The
results show that both protocols are more energy efficient than
current approaches. Flooding works best insparsenetworks
with 6 neighbors or less, while local update with suppression
works best indensenetworks (more than 6 neighbors).
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Fig. 1. Worst case 4Td transmission delay in FabApp

As a final contribution, this paper adds testbed experi-
ments to provide real-world analysis of these algorithms. We
previously described our algorithms and their analysis and
simulation [13]. Here we show (in Section VI) that those results
hold in testbed experiments, although channel noise seems to
add a small, fixed overhead.

The key contribution of this paper is the design of the two
new protocols and their evaluation and comparison to prior
work through analysis, simulation and real-world experiments.
Important findings are that relatively simple protocols canim-
prove efficiency and overall energy cost, and an understanding
of how performance changes as a function of network density
in both ideal and realistic environments.

II. RELATED WORK

A. Reconfiguration in FabApp

In mostly-off networks, when nodes come back from sleeps
at the expected wake up time, they wake up asynchronously
due to clock drift. Let’s assume the wakeup time by ideal clock
is T0 and the maximum clock drift during long sleep period
is Td. Since a clock can drift either faster or slower than the
ideal clock, the earliest time that a node wakes up isT0−Td,
and the latest time isT0+Td, as shown in Figure 1. Therefore,
the maximum drift delay is 2Td.

FabApp tolerates clock drift by requiring that all nodes
wait for the maximum drift time before beginning communica-
tion [17]. After a node wakes up, it waits for 2Td to make sure
that all other nodes are up. To minimize energy consumption
during this waiting period, FabApp uses B-MAC, an energy-
conserving MAC protocol that samples the channel activity
periodically rather than continuously listening.

We define the delay until data communication can begin as
the time from when the last node wakes up until the first data
message can be sent. In FabApp, it depends on when the first
data sender wakes up. As an example, Figure 1 shows the worst
case, where the sender wakes up atT0+Td. Since it delays its
transmission for 2Td, nodes who wake up atT0−Td have to
keep waiting for a duration of 4Td.

B. MAC Protocols

Recent contention based sensor network MAC protocols
adopt sleep/wakeup cycles to allow nodes to operate at low
duty cycle mode to save energy. Two primary techniques have
been considered in MAC layer designs. S-MAC, T-MAC and
TRAMA [16] are based onlistening schedules. Nodes wake up
for a brief contention period to coordinate and send data at their
neighbors’ scheduled wakeup time. S-MAC and T-MAC also
attempt to synchronize on same cycles to maximize energy
savings. The other technique islow-power listeningadopted



Reconfiguration service
1 Determine when the entire network is up
2 Set up MAC schedules
3 Discover neighbors
4 Set up data forwarding paths
5 Re-establish time synchronization

TABLE I

TYPICAL RECONFIGURATION SERVICES AFTER A LONG DURATION OF

SLEEP.

by B-MAC and WiseMAC [3], [4]. In this approach, receivers
periodically sample channel activity by taking one or a few
signal strength samples. To wake up receivers, sending nodes
include relatively longer preambles before each packet. SCP-
MAC [25] combines the concepts oflow-power listeningand
synchronized schedulesto reduce the cost of long preambles.

Recently Li et al. showed that multiple schedules are com-
mon in real networks with forscheduleMAC protocols [12].
This work also showed how to migrate all schedules in a
network to a single common schedule, reducing the cost
of multiple schedules.Schedule basedMAC layer protocols
can potentially utilize this protocol,low-power listening with
flooding, to exchange schedule synchronization information
during flooding. There is slight chance that multiple schedules
still happen after flooding. These different schedules can be
further converged withglobal schedule algorithm(GSA) [12]
after reconfiguration.

III. D ESIGN OFALGORITHMS

This section describes the designs of several reconfiguration
algorithms we propose. The central idea behind all of our
approaches is to determine when all of the nodes in the network
know for certain that others are up, so that they can begin
general communication. Our algorithms aim to minimize the
energy consumption during reconfiguration and quickly bring
the network up. We will evaluate the energy performance of
each protocol in next section.

Table I listed typical reconfiguration services after a long
duration of sleep. The major focus of our algorithms is to
quickly finish service 1, so that general communication can
start. However we also evaluate each algorithm, and discuss
whether it can be leveraged for services 2 and 3. We do not
consider services 4 and 5 in this paper.

A. Simple Low Power Listening

The simplest way to ensure that all nodes in the network are
up before communication is to wait longer than the possible
clock drift time. This is the protocol used in the FabApp (II-
A). Our first new protocol is a very simple optimization on that
protocol: we short-circuit this waiting when the sender wakes
up. Recall that without any coordination, each individual node
must wait for 2Td to ensure all other nodes are up.

We define theSimple Low power Listening(SLPL) protocol
as each node waiting and listening for 2Td, and any node
hearing data can short-circuit waiting and immediately consider

the network configured. This optimization is possible because
the 4Td delay occurs due to the worst-case wait time for the
whole network, but 2Td is actually sufficient for worst case
wait time for any single node.

In SLPL, without hearing any messages from others, the first
sender has to wait for 2Td before transmission to ensure that
all nodes are active. SLPL works best when the first sender
becomes active at the earliest time (Td before T0), because
other nodes can stop waiting right after they receive the first
data message. But if the first active node does not send any
message after it waits for 2Td, other nodes have to wait until
their own timers fire. This explains SLPL spends longer time
on reconfiguration than necessary. The worst case of SLPL
requires up to 4Td waiting time.

Although SLPL can ensure that the network is up (Service
level 1 in Table I), it has two limitations. First, it does not
provide enough information to set up MAC schedules if using
a scheduled MAC (reaching service level 2). If running a sched-
uled MAC protocol, additional configuration will thereforebe
necessary. We will show below that our protocol Low Power
Listening with Flooding can also provide schedule information.
Second, the channel polling period during reconfiguration must
be the same as that in normal data communication, so that
nodes can receive possible data messages during reconfigura-
tion. A potential opportunity to save additional energy would
be to run with a different (less frequent) polling interval
during reconfiguration, then switch to more frequent polling
for regular operation.

B. Low Power Listening with Flooding

As illustrated above, we could further cut back on network
reconfiguration time to achieve more energy conservation.
What we propose is to let the earliest active node send out an
explicit control message to inform other nodes that the network
is up and reconfiguration can be terminated immediately. This
approach, can save more energy compared to SLPL because it
can significantly shorten the reconfiguration time.

In LPL with floodingeach node sets up a timer to wait for
2Td after it reboots. Nodes still run low-power listening while
waiting. The first active node sends out a networkup message
immediately when its timer fires. At this moment, all nodes
should have become active, since 2Td is the maximum clock
drift period. The up message is further flooded throughout the
whole network. Nodes can safely stop their timers when receiv-
ing an up message. Compared to SLPL, LPL with flooding can
significantly reduce the reconfiguration time. It takes at most
2Td plus the message flooding delay.

There are several advantages to exchange explicit control
messages during reconfiguration. First, the reconfiguration
phase and the data communication phase are separated. After
reconfiguration, the application can choose to run any typesof
MAC protocols, including those that do not use LPL. Second,
if the application chooses a MAC based on LPL, the channel
polling interval can be independently optimized for both the
reconfiguration phase and the data communication phase. Sec-
tion IV-C describes how optimal parameters can be selected to



minimize the energy consumption during reconfiguration. In
contrast, in SLPL, nodes must operate on the same polling
interval during these two phases, because nodes expect to
receive data messages during the reconfiguration. Finally,lever-
aging the control message exchange, LPL with flooding can
accomplish more reconfiguration services as listed in TableI.
If the application runs ascheduledMAC protocols, such as
S-MAC, T-MAC or SCP-MAC, nodes can exchange schedule
information with flooding of up messages. This effectively
finishes the reconfiguration service 2. Moreover, during the
flooding process, nodes are actually able to discover all their
neighbors, so the reconfiguration service 3 can be accomplished
as well.

The major downside of this algorithm is the cost of flooding.
The cost increases as the node density increases, since there
will be more overhearing of the redundant up messages. To
reduce overhearing, We further propose an optimization during
the flooding. When the first node sends out its up message, it
puts its channel polling time in the packet. When its neighbors
receive the message, they will follow the same polling time
described in the message. Essentially all nodes who have
received an up message will synchronize their polling times.
When they re-broadcast the up message, they intentionally
start the transmission when these synchronized nodes have just
finished polling. Since all up messages uses long preambles,
these nodes will avoid overhearing the long preambles. The
synchronized LPLscheme can significantly reduce the over-
hearing cost during flooding.

In summary, LPL with flooding can quickly complete recon-
figuration after 2Td since the first node reboots. It significantly
reduces the data message delay, since no matter when the first
sender wakes up, it can start data transmissions immediately
after the flooding. Compared to SLPL, it can significantly
reduce energy cost at low to moderate neighborhood sizes.

C. Local Update with Suppression

As stated in the previous section, LPL with flooding can
significantly speed up reconfiguration. However such benefit
comes at the cost of overhearing redundant up messages during
the flooding process. The cost will become significant when
the network density is high. In such networks, it is expensive
to explicitly synchronize the network up time in the whole
networks. To alleviate this problem, we propose thelocal
update with suppressionprotocol, in which we avoid global
synchronization by limiting the coordination to one-hop only.

Similar toLPL with flooding, in this new protocol, each node
sets up a network resume timer of 2Td, and runs LPL after
reboots. When the timer fires, a node broadcasts the network
up message once to its immediate neighbors. As we described
above, after a node waits for 2Td, it knows for sure that the
entire network is up. When the one-hop neighbors receive the
up message, they learn that the network is up, and thus cancel
their own timers. This single up message effectivelysuppresses
all other nodes in the one-hop neighborhood from sending
their own up messages later. As these nodes have finished
reconfiguration, they are ready to start data transmissionsif

any. Nodes who hear the data messages can also immediately
learn that the network is up and terminate their reconfiguration
process.

In a single-hop network, where all nodes can directly hear
each other, local update with suppression has about the same
performance as thebestcase in SLPL. In both protocols, only
the first node waits for 2Td, and then sends a message to finish
the reconfiguration. The only difference is that here we use an
explicit up message instead of a data message. In a multi-hop
network, there will be a node in each neighborhood whose
timer fires first. These nodes will send up messages in their
own neighborhood and suppress all other nodes. The protocol
performance depends on the neighborhood size. In general,
the benefit of suppression increases as the neighborhood size
increases (more nodes). This result is in contrast with the
flooding protocol, where its performance decreases as the
neighborhood size increases.

Similar to SLPL, in local update with suppression, nodes
listen for possible data transmissions during reconfiguration.
The protocol has to choose the same polling period as the
one used in the regular data communication, and hence we
cannot further optimize the parameter for reconfiguration.If the
application chooses a scheduled MAC for data communication,
this protocol is able to establish local common schedules,
which is part of the reconfiguration service 2, as listed in
Table I. Since nodes do not coordinate globally, more work is
needed to discover neighbors on different schedules and switch
them to a single global schedule [12].

The main advantage of local update with suppression is
that it significantly reduces the number of control messages,
and therefore avoids excessive cost on overhearing. Meanwhile
since nodes coordinate among one hop, a late sender can
potentially start as early as any of its one-hop neighbors. Thus
its overall performance improves in dense networks, where the
flooding cost could become prohibitive.

IV. ENERGY ANALYSIS

In this section we develop analytic models of the FabApp
and our protocols. These models help us quickly evaluate
and compare performance across a wide range of parameters
and to develop best-, worst-, and average-case performance.
In Section V we compare our analysis to detailed simulation
results, validating our analysis where possible, and extending
our results to cases that are intractable analytically.

A. Basic Model

Table II shows our radio energy model, derived from the
CC1000 used in Mica2 motes [10]. Energy consumed depends
on what state the node is in. Nodes can be in sending, receiving,
listening, sleeping or sampling state at any time. The energy
in each state includes the cost consumed by both the radio and
CPU.

When nodes are sampling the medium, the power con-
sumption is different than listening. The duration of channel
sampling is very short, and most of the time is waiting for the
radio’s crystal oscillator to stabilize (with receiver otherwise



Symbol Meaning Typical Value
Ps Power consumption in sending 60mW
Pr Power consumption in receiving 45mW
Pl Power consumption in listening 45mW
Pslp Power consumption in sleeping 90µW
Ppoll Average power consumption in polling channel 5.75mW
tp Time needed to poll channel once 3ms
tcs Average carrier sense time for one packet 8ms
tup Time to transmit up packet 5ms
Tlpl Default channel sampling period in TinyOS 100ms
Tp Channel sampling period Varying
Td Clock drift after long sleep Varying
T0 Wake up time by ideal clock Varying

TABLE II

CONSTANTS USED IN ENERGY EVALUATION

turned off). After stabilization, the radio enters receivemode
very briefly to take one or a few samples of signal strength.
Therefore, the average power consumption during channel
sampling is much less than that of fully listening. We assume
the average power consumption during channel sampling is
5.75mW.

Analysis of multi-hop networks quickly becomes intractable.
We therefore explore multi-hop networks in simulation (Sec-
tion V). Here we consider one hop networks withn+1 nodes,
all of whom can hear each other. The mean energy cost on
each node during reconfiguration can be computed as

E = El +Es+Er +Epoll +Eslp
= Pltcs+Psts+Prtr +Ppolltp+Pslptslp (1)

whereEl , Es, Er , Epoll andEslp are the energy consumed in
listening, sending, receiving, channel polling (sampling), and
sleeping states, respectively. The energy in each state is simply
the power consumption of a state multiplied by the time spent
in that state. Typical values of these parameters can be found
in Table II.

Our goal is to minimize this energy consumption. For
simplicity, we assume that the activation moments for these
n+1 nodes are uniformly distributed within[T0−Td,T0+Td].
Thus the first node wakes up atTd beforeT0, and the last node
wakes up atTd afterT0. On average nodes wake up at the ideal
clock timeT0.

B. Energy Analysis on Idle Listening

First we consider the simplest possible protocol where nodes
simply do full-time listening during network reconfiguration.
Since we assume nodes reboot uniformly within[T0−Td,T0+
Td] the drift delay is 2Td. This is the duration absolutely needed
for networks to become stable.

In the worst case, the last node to turn on has data to send,
and there are no other nodes sending before that. After waking
up atT0+Td, it still needs to wait for the extra 2Td to guarantee
all other nodes become active. Data transmission can only
happen atT0+3Td. Thus, in this worst case, the data message
delay is 2Td and the whole configuration duration is 4Td. Since

we assume on average nodes wake up atT0, the mean duration
that each node uses on reconfiguration is 3Td. And the mean
energy cost is

Eidle worst= 3PlTd (2)

In the best case, when the first active node has data to
send, it can start data transmission atT0+Td. Since the data
message delay is measured from the moment when the last
node is up,i.e., T0+Td, the delay becomes zero in this case,
and the network is configured at the same time when the first
data message is sent. Nodes spendTd on reconfiguration and
consume energy

Eidle best= PlTd (3)

Besides the best and worst case, on average, the sender
wakes up at timeT0 and delay data transmission untilT0+2Td.
In this case, nodes consume energy

Eidle ave= 2PlTd (4)

In all cases, idle listening consumes significant amount
of energy due to the fact it needs to keep all nodes idling
listening during the whole reconfiguration process. In addition
to considerable energy consumption, the range of possible
energy cost varies significantly.

C. Energy Analysis on Simple Low Power Listening

When nodes perform low-power listening during reconfigu-
ration, the analysis is similar to the idle-listening casesjust
described, however the cost of listening is greatly reduced
because nodes poll the network for activity rather than blindly
listening. As explained in Section III-B, reconfiguration with
SLPLrequires same polling periods as data transmission. Since
data rate varies with different applications, we use the TinyOS
defaultTlpl of 100ms here.

This analysis corresponds to the FabApp approach [17], with
the addition of our optimization to short-circuit configuration
on transmission of the first message (Section III-A).



In the best case when the sender wakes up atTd beforeT0,
all nodes consume energy

Eslpl best = PpolltpTd/Tlpl
+Pslp(Tlpl − tp)Td/Tlpl (5)

The first part of the equation corresponds to the energy
consumption during periodic channel polling, and the second
part is the sleep cost.

In the worst case when the sender wakes up atTd after T0,
each node consumes energy

Eslpl worst = 3PpolltpTd/Tlpl
+3Pslp(Tlpl − tp)Td/Tlpl (6)

In the average case when the sender wakes up atT0, nodes
consume energy

Eslpl ave = 2PpolltpTd/Tlpl
+2Pslp(Tlpl − tp)Td/Tlpl (7)

In all cases,SLPL requires much less energy than idle
listening because it replaces idle listening with much less
expensive polling. However, the range of possible energy for
LPL-based reconfiguration is quite broad (best-case to worst-
case). The goal of our new protocols is to improve both average
case and worst case performance.

D. Energy Analysis of LPL with Flooding

In this approach, first active node sends out a control
message at the end of its reconfiguration and other nodes flood
exactly once to coordinate with their neighbors. Each node
spends energy on sending one up message, receiving multiple
up messages from other nodes, polling the channel and sleeping
for the remaining time.

We assume polling interval for LPL during reconfiguration
is Tp. Remember thatTp can be different thanTlpl . In order
to wake up neighbors, nodes need to flood up messages with
preambleTp.

During flooding, every node need to forward up message
exactly once. Let’s assume the average carrier sense istcs, and
the transmission time for up packet istup. The energy a node
spends on transmission is

Pltcs+Ps(Tp+ tup) (8)

A node receives exactlyn packets from theirn neighbors.
And on average it overhearsTp/2 preamble for each packet.
The energy it spends in receiving is

nPl(Tp/2+ tup) (9)

Since nodes reboot in an uniform distribution, the average
waiting period before flooding for each node isTd. Thus low-
power listening cost on each node is

PpolltpTd/Tp (10)

 0

 50

 100

 150

 200

 2  4  6  8  10  12  14

O
pt

im
al

 T
p(

m
s)

Average Neighborhood Size n

Fig. 2. T∗
p varies with n in LPL with flooding, (Td = 130sec)

The last part of energy is sleep cost:

Pslp(Tp− tp)Td/Tp (11)

Substituting Equations (8)–(11) into (1) we obtain the mean
energy cost during reconfiguration as

Eflood = Pltcs+Ps(Tp+ tup)

+nPl(Tp/2+ tup)

+PpolltpTd/Tp

+Pslp(Tp− tp)Td/Tp (12)

Equation (12) shows a tradeoff withTp. Increasing Tp
reduces the channel sampling frequency, and saves nodes from
spending energy on polling. But it also increases the preamble
length, therefore increasing transmission and overhearing cost.
To minimize Eflood, we need to obtain the optimalTp from
the following equation

dEflood
dTp

= 0 (13)

B-MAC suggests similar approach to optimize polling period
based on data rate. But the analysis is based on periodic data
traffic and it does not provide a closed form formula. Instead
during LPL with flooding network does not generate periodic
data and the only traffic is the flooding of up messages.

Substituting Equation (12) into (13), the optimalTp for
reconfiguration is

T∗
p =

√

(Ppoll−Pslp)tpTd
Ps+nPl/2

(14)

Figure 2 and Figure 3 show howT∗
p changes with average

neighborhood sizen andTd respectively. We notice that optimal
Tp decreases in networks with higher density in order to offset
the energy overhead incurred by flooding. Figure 3 shows that
when mostly-off networks are suspended for a longer period
of time, the optimalTp increases as well. This is due to the
longer drift periods nodes experience after reboot.
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ReplaceT∗
p in Equation 8, Figure 4 and Figure 5 show that

LPL with flooding works well when network density is low.
Even reconfiguration cost increases with the increase of density,
it still saves more energy thanSLPLworst case in high density
with 12 neighbors. Later on in Section V we use simulation
results to validate these analysis.
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E. Energy Analysis of Local Update with Suppression

In a single-hop network, the performance of local update
with suppression is similar to thebestcase of the simple low-
power listening, as they all finish reconfiguration after thefirst
active node waits for 2Td and sends out a message. The only
difference is that an explicit control message is used here,so
there is an additional cost on transmitting the message from
the first node and receiving it by all other nodes.

In multi-hop networks, the performance of local update with
suppression can largely vary than the single-hop result. Itis
intractable to analyze the algorithm in multi-hop networks,
because local coordination and suppression are closely related
to network topologies and the sequence that nodes turn on.
However we expect the performance of local update with
suppression improves with the increase of neighborhood size
due to local updates (quick notice) and suppression (decreased
number of control messages). Thus, instead of giving detailed
analysis of the energy consumption, we use random topologies
to simulate the actual performance of the protocol in Section V.

V. SIMULATION RESULTS

To evaluate our protocols in more realistic, multi-hop sce-
narios, we next test our algorithms through simulation. Our
results confirm our analysis, and show that both our new
approaches can save networks significant amount of energy
during reconfiguration. In addition, we demonstrate thatLPL
with flooding is good in low density networks, while with the
network density increases, the performance oflocal update with
suppressionimproves.

A. Protocol Implementation and Simulation Setup

We implement both protocols in TinyOS [8] and use Avrora
as our simulation platform [19], [18]. Avrora is an instruction-
level simulator for the Atmel embedded processor developed
at UCLA. As an instruction-level simulator, we are able to test
real protocols suitable for deployment, running the same object
code we would run on Mica2 motes. However, the simulator
gives us the freedom to repeatedly test a large number of
topologies.

The simulator uses a simple free-space model of radio
propagation. It supports both packet collisions and fading
transmission channels. The transmission range of each nodeis
set as 31m in all simulations. We use the radio energy model
demonstrated in sectionIV to measure the energy cost during
simulations. We count the time spent on each radio state to
compute the energy indirectly.

We modify the topology generatortopo gen[9] to generate
random network topologies. (Originally developed for [5],we
extended it to support Mica2 topologies.) The generator places
twenty-four nodes randomly in squares of edge sizes rang-
ing from 60–200m. It discards scenarios that are partitioned
(assuming any nodes within 31m are connected). Changing
area effectively changes thedensityof the topologies. We vary
network density from 2 through 12 neighbors, looking at even
values. We collect ten different network topologies for average
neighborhood size around 4 through 12. We consider only



 0

 20

 40

 60

 80

 100

 120

 140

 0  2  4  6  8  10  12  14

E
ne

rg
y 

N
ee

de
d 

fo
r 

R
ec

on
fig

ur
at

io
n 

(m
ill

ijo
ul

es
)

Neighborhood Size n

SLPL (best case)

SLPL (average case)

SLPL (worst case)

LPL with flooding

Analysis for LPL with flooding
Simulation for LPL with flooding

Fig. 6. Mean energy consumption for LPL with flooding in Avrora, (24-node
multihop network,Tp=128ms)

two cases for neighborhood size of 2 due to the difficulty in
generating connected networks at such low densities.

The purpose of the simulation is to measure the mean energy
consumption during reconfiguration after a long sleep. We
simulate our underwater seismic monitoring application where
nodes sleep for 30 days and then awake. The maximum clock
drift after a month-long sleep isTd of 130s in one direction.
Therefore we turn nodes on with a random, uniform distribution
in the first 260s of the simulation.

B. LPL with Flooding

In this section we evaluate the performance of ourLPL with
flooding algorithm. As shown in Equations (14), optimalTp
varies based on network drift period and average number of
neighbors. When network drift period is 130s, according to
Figure 2, the optimalTp we can choose for LPL with flooding
ranges from 150ms to 80ms with 2 to 12 neighbors. In this
simulation, we chooseTp as 128ms for simplicity. Nodes start
consuming energy when they wake up at a random time. They
stop the measurement as soon as they receive the last up
message from their neighbors.

Figure 6 shows how the mean energy consumption on each
node varies with different neighborhood size forlpl with
flooding. It compares the analysis (the diagonal line) with
simulation (dots show each simulation run, while error bars
show the mean, max and min). For context, the three horizontal
lines show best, average, and worst case analytical values for
SLPL.

The simulations verify our analysis shown Figure 4, match-
ing almost perfectly. It also confirms our expectation, that
flooding works well when network densities are low because
the cost of overhearing is little, but the cost rises as networks
get denser. In all cases, the reconfiguration cost is very pre-
dictable.

It is also helpful to compare flooding to SLPL. For sparse
networks, flooding consumes less energy than average-case
LP, because it allows the network to reconfigure much more
rapidly. On the other hand, above densities of 12, SLPL is
better on the average, since the cost of overhearing overwhelms
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the benefits of earlier reconfiguration. Although even there, the
flooding is saves energy compared to worst-case SLPL.

We next turn to local update with suppression in search of
better performance at higher densities.

C. Local Update with Suppression

We next evaluate howlocal update with suppressionper-
forms under different network densities. In this algorithm,
senders can start data transmission as soon as they realize the
network is stable. They either discover this on their own or
on receipt of data or up messages from other nodes. Therefore
for the same topology, the duration of reconfiguration varies
depending on when the first sender becomes active. Thus in
each test case, we simulate all twenty-four possible situations in
which each node will be the first sender respectively and collect
energy cost for each case. Nodes update their energy usage until
that specific sender in the test finishes reconfiguration and is
able to start data transmission.

In Figure 7, dots show each simulation run inlocal update
with suppression, while error bars show quartiles and medians
are connected with a dashed line. The large variance in energy
cost for different runs of simulation is because it closely
depends on when the first data sender turns on. Local update
works reasonably well (better than average LPL behavior) at
low densities. It converges on the minimum LPL cost at higher
densities by exploiting local information. This improvement is
due to the increased probability for the first sender to overhear
an up message from larger neighborhood size. Moreover, the
number of total control packets drops as well with the increase
of neighborhood size due to suppression. We therefore suggest
that local update with suppression is the best choice for
reconfiguration in networks with moderate to high density.

VI. T ESTBEDEVALUATION

The above simulation results verified the effectiveness of
our algorithms and quantified their performance in relatively
large, multi-hop topologies. However, these simulations use
a somewhat idealized communications model. To relax this
assumption, we further evaluate our algorithms with testbed
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experiments carried out over Mica-2 motes and real radio
communication.

A. LPL with Flooding

We have looked at LPL with flooding performance with
analysis (Section IV-D) and simulation (Section V-B). Our
analytic results focus only on single-hop topologies, and the
simulations validate this analysis and extend it to multi-hop
networks. We next explore testbed results to explore how a real
communication channel affects the algorithm performance.

For these experiments we use a single-hop network topology.
In simulation, it is easy to generate multi-hop topologies and
to control and vary the density of node deployment. However,
this task is very difficult in real-world experiments, primarily
due to the irregular transmission ranges and the large “gray
area” with unreliable transmissions [26], [22]. Therefore, in
evaluating the algorithm of LPL with flooding, we adopt a
single-hop topology, where all nodes can directly hear each
other. To change the node density, we use different numbers of
nodes in the network. Similar to the simulation in Section V-B,
we evaluate neighborhood size from 2 to 12 nodes. A single-
hop topology allows us to compare our experiments to the
analysis in Section IV.

Except the topology, other parameters have the same values
as in the simulation. For each neighborhood size, we run 6
independent tests with different random boot orders of the
nodes. We then calculate the mean and standard deviation of
energy consumption of each nodes in all the tests.

Figure 8 shows the experimental results of LPL with flood-
ing. The dashed lines in the figure show the upper- and
lower-bounds and expected values from analysis of basic LPL,
and the solid line without error bars shows expected energy
consumption from analysis of LPL with flooding. The first
observation is that the experimental results closely trackthe
trend of the analysis, which verifies the effectiveness of the
algorithm in the real world. Compared to the simple LPL
(SLPL), our flooding algorithm consumes less energy when
network density is low (less than 6 neighbors), and consistently
consumes less energy than the worst case of basic LPL.

We do observe that the experimental results seem to use
a small, fixed increment of energy larger than analysis. To
investigate reason, we have looked at the breakdown of the
radio time that each node stays in different states. We notice
that some nodes have spent more radio time in the idle state
than the ideal LPL requires during their waiting period after
they boot. We have not yet determined the exact cause of
this discrepancy, but a plausible explanation is that the real
channel is not as clean as the ideal model used in analysis
and simulation. The relatively high (and varying) noise level
sometimes can wake up a node in the LPL mode, and make it
to listen for potential packets. Such false wakeups will increase
time spent listening to an idle channel, thereby increasing
energy consumption. We are in the process of confirming this
result by comparing time spent listing to packets received.

In addition, the experimental results show larger varianceat
higher node densities. This is primarily due to the increased
collisions in the flooding phase at higher densities. This obser-
vation is the similar to our prior observations in the simulation
(Figure 6).

VII. CONCLUSION

In this paper, we present two original algorithms to reduce
the energy overhead during periodic reconfiguration for mostly-
off applications. Low-power listening with flooding approach
can quickly let the network finish reconfiguration by floodinga
control message as soon as one node discovers the network has
completely resumed. While in local update with suppression,
nodes only notify their direct one hop neighbors about this in-
formation to save overhearing overhead. We have implemented
both protocols in TinyOS and tested their performance in
Avrora. Through analysis, simulation and testbed experiments,
we show that both protocols are more energy efficient than
current approaches. Flooding works best insparsenetworks
with 6 neighbors or less, while local update with suppression
works best indensenetworks (more than 6 neighbors).

In future work, we plan to investigate the robustness of our
algorithms to gain experience with different types of node
failures. We also plan to evaluate the performance of our
algorithms with larger numbers of nodes and more diverse
topologies.
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