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Abstract— The Internet has seen a continuous rise in malicious
traffic including DDoS and worm attacks. In this paper, we
study the effect of malicious traffic on the background traffic
by gathering traces from two different locations. We show that
the malicious traffic causes the increases of DNS latency by 230%
and web latency by 30% even on highly over-provisioned links.
Using a packet-level simulations based on an empirically derived
model of the worm, we demonstrate that the effect of worm-
infected hosts can be disastrous when they trigger a DDoS attack.

I. INTRODUCTION

During the last few years, the Internet has witnessed a surge
in malicious traffic, such as that generated by denial-of-service
(DDoS) attacks and propagation of worm traffic [1]. Most
previous work [1], [2], [3], [4], [5], [6], [7] has focused on
studying the reasons behind the malicious traffic but not their
effects on the normal background traffic. We define normal
traffic as network traffic generated due to well-known services
and applications, for example, web, ftp, nntp, and smtp.

In this paper, we study of the characteristics of network
traffic during phases dominated by malicious behavior of
DDoS attacks and worm propagation, and compare it with
phases when such activity is negligible. We show that DDoS
attacks causes DNS latencies to increase by 230%, and the web
latencies to increase by 30%. We find that the attacks do not
significantly affect the throughputs of bulk TCP transfer. We
also present detailed analysis Linux Slapper Worm and study
the worm activity in the network. We then use an empirical
simulation model to predict the effect of worm traffic when
the worm-infected hosts trigger a DDoS attack.

The main contribution of this paper is to provide a quan-
titative analysis of the background traffic in the presence
of malicious activity. We quantitatively study the effects of
DDoS attack and worm traffic on normal background traffic.
Currently most backbone links are under-utilized [8]. One
would expect that the malicious traffic such as DDoS attacks
and worm traffic will not change the background traffic
patterns significantly if the links are highly over-provisioned.
However, we find that this is not completely true. This work
motivates the need to study more closely the reasons behind
these observations. We believe that there is a need to do
further studies of router mechanisms that can give us better
performance in the presence of malicious traffic.

II. RELATED WORK

Several researchers have previously studied DDoS attack
detection and response, and worm traffic propagation. In this
section we provide a brief overview of DDoS and worm related
research and compare how this paper complements previous
studies.

A. DDoS

DDoS attacks attempt to exhaust the resources of the victim.
The resources may be network bandwidth, computing power or
operating system data structures. Previous research on DDoS
attacks focused on either detecting the attack [9], [2], [3], [4]
or responding to the attack [10], [11], [12], [13], [14], [15],
[16], [17], [18] by blocking attack packets.

Attack detection techniques can be either based on an
anomaly-detection approach or a static signature-scan tech-
nique. A large number of anomaly-detection tools have been
designed and implemented previously, such as NIDES [19],
Emerald [20] and Bro [2]. Anomaly-detection first establishes
a normal behavior pattern for users, programs or resources in
the system, and then looks for deviation from this behavior.
Some anomaly-detection techniques exploit the absence of
correlation between bidirectional traffic to detect an attack
[9], [4], [15]. On the other hand, signature-scan techniques
passively monitor traffic seen on a network and detect an attack
when patterns within the packet match predefined signatures in
a database. Snort [21] is a popular signature-scan based attack
detection tool. In this paper, we use an anomaly-detection
technique that tracks the number of source connecting to a
single destination. Traffic is flagged as an attack if there is an
abnormally high number of source addresses connecting to a
single destination address.

B. Worm Traffic

Moore et. al. [5] present analysis of backscatter data gath-
ered during the CodeRed infection last July-August. The data
indicates 395,000 computers were infected world-wide with
the CodeRed worm and resulted in approximately $2.6 billion
in damage. Wang et. al. [6] presents a simulation based study
to identify characteristics of worm infection. They study the
effect of different factors that can be used to detect and
treat infections while they are underway, using hierarchical
and clustered network topologies. Zou [7] provides a two-
factor worm propagation model that matches well with the
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Fig. 1. The trace machine monitors two of the four peering links.

observed CodeRed data. It models human countermeasures
like patching, filtering and decrease in infection rate as a
function of time to explain the decrease in CodeRed scan
attempts observed during the last several hours of July 19th.
In this paper we attempt to analyze the Apache/mod ssl worm
and use an empirical simulation model to study the effect of
a DDoS attack launched from worm-infected hosts.

C. Web traffic latency analysis

Barford et. al. [22] study various factors affecting the
performance of HTTP transactions. They show that the server
load affects the transfer time for small files, while network
load affects the performance of large files. They also show that
propagation delay plays a more important role than network
variability, such as queuing, in affecting the performance
of Web traffic. Our study complements previous work by
demonstrating malicious traffic, such as DDoS attack and
worm infections, can also significantly increase latency for
small and medium web transactions.

III. METHODOLOGY

A. Trace collection

We collect traces from two different locations: one at Los
Nettos [23], a regional area network in Los Angeles, and the
other at the Internet2 [24] peering link at USC. We continously
capture detailed packet level traces using tcpdump at both
locations and test the presence of attacks or worm infections.
The trace machines are Intel P4 1.8Ghz, 1GB of RAM running
FreeBSD 4.5. We use a Netgear GA620 1000BT-SX NIC
(Tigon II chipset) with a modified driver to supports partial
packets transfer from the NIC card to the kernel.

Los Nettos has peering relationships with Verio, Cogent,
Genuity, and the LA-Metropolitan Area Exchange as shown in
the Figure 1 and serves a diverse clientele including academic
institutes and corporations around the Los Angeles area. We
monitor the Verio and Cogent peering links that experience an
average utilization of 11% at 110Mbps and 38Kpps (packets-
per-second). The kernel packet drops are below 0.04% during
normal operation. During an attack, if packet rates exceed
100Kpps the drop rate increases to 0.6%. The USC trace
machine monitors the Internet2 traffic to and from USC. The
average utilization of link monitored by the trace machine is
6% at 60Mbps and 25Kpps.

Procotols Los Nettos USC
TCP 84.24% 95.61%
UDP 13.65% 4.102%
ICMP 1.216% 0.1182%
Other 0.8945% 0.1754%

TABLE I

PERCENTAGE OF PACKETS OBSERVED FOR EACH PROTOCOL AT LOS

NETTOS AND USC

Service Protocols Los Nettos USC
http 39.445% 20.21%
ftp 0.5771% 0.1163%
dns 11.19% 0.2191%
smtp 2.190% 1.075%
nntp 1.584% 10.20%
ssh 0.2108% 1.102%
pop3 0.7342% 0.1186%
P2P 8.220% 15.22%
Games 0.4181% 1.637%
Other 35.43% 50.08%

TABLE II

PERCENTAGE OF PACKETS OBSERVED FOR EACH APPLICATION AT LOS

NETTOS AND USC

The captured packet headers are analyzed offline to deter-
mine if there was an attack in progress. The detection script
flags packets as attack packets if a large number of source IPs
connect to the same destination IP within one second. Manual
verification is then performed to confirm the presence of an
attack. We experience a false positive rate of 25–35%; in other
words, those packets have been flagged by the detection script
but do not contain an attack after manual examination. A large
number of false positives are generated due to network/port
scaning and database updates between servers.

B. Metrics

We looked at several metrics to understand the impact of
malicious traffic such as DDoS and worm on the network.

For web flows, we focus on flows with medium/small size
(less than 100KB) to understand the impact of malicious traffic
on the short-lived transactions. We analyze TCP flows larger
than 100KB to understand the impact on bulk transfer. We also
investigate the impact on the DNS lookup latency. DNS lookup
latency is defined as the time lapse between the client sending
out a request to the DNS sever and the client finally receiving
an answer from a DNS server that terminates the lookup, by
returning either the requested name-to-IP mapping or an error
indication. To extract the statistics about lookup latency, we
adopt similar approach as used in previous study [25].

IV. TRAFFIC CHARACTERIZATION

In this section we characterize the observed background
traffic from traces at the two observation points and provide
information regarding the captured DoS and worm traffic.



A. Background Traffic

Table I and Table II describe the composition of traffic seen
at 2pm at both the trace locations The two locations have very
different content at both, the protocol and the application level,
permitting the study of malicious traffic on different traffic
mixes.

We observe 13% UDP traffic at Los Nettos since it hosts
a DNS root server. Further web traffic constitutes 40% of
the observed traffic followed by 11% DNS traffic. At USC’s
Internet2 link, 95% of the network traffic is TCP. We could
not classify a large percentage of the traffic since the Internet2
is extensively used for research and most of the packets uses
ephemeral ports.

B. DDoS traffic

We have captured 90 DDoS attacks from 15 July to 15 Nov
2002. In this study we analyze change in latencies during an
attack and hence require aggregate traffic traces from before
and after the attack. Therefore this paper analyzes eighteen
such attacks. Most of these attacks have significant impact
on the background network traffic. In this section, we show
the detailed packet and byte rates for one DoS attack and
summarize characteristics of the remaining eighteen attacks.
Section V discusses the effect of DoS attacks on the aggregate
background traffic.

Figure 2 illustrates the change in aggreate traffic per second
as the attack progresses. This attack was detected at USC,
and consists of twenty eight attackers generating 70Mbps and
90Kpps of attack traffic (a total 11M packets and 8.6Gb of
traffic in 192 seconds) directed at a victim within USC. The
attack packets are 60 bytes and have the protocol field in the
IP header set to 255. As shown in Figure 2(b), the magnitude
of attack traffic is about three times the normal background
traffic in terms of packets. Figure 3 shows the distribution of
RTT of the attackers. The attackers have relatively small RTT
distribution (less than 120ms) from USC because all attackers
are located at different universities in the US and are connected
to USC with relatively high bandwidth and low delay links.
The small RTT enables the attack traffic to reach its peak rate
rapidly.

C. Worm traffic

Worm infection is on the rise. Worms like Code Red and
Nimda can infect thousands of hosts within short periods of
time and generate significant network traffic [26]. In this paper
we study the effect of the Apache mod ssl worm (aka the
Slapper worm) on the network. Our findings suggest that
although the Slapper worm did not increase the network
traffic at USC or Los Nettos significantly, but when the
worm-infected hosts trigger a DDoS attack, the effect can be
disastrous.

The Slapper worm exploits a bug in Linux-based hosts
running Apache web servers with mod ssl module. During
the infection process the worm places source code in the /tmp
directory of the target host. The worm then scans for poten-
tially vulnerable systems on port 80 using an invalid HTTP
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Fig. 3. RTT distribution of attackers

Top 10 Top-level Domains
TLD hosts hosts(%)
unknown 858 31
net 447 16
com 330 12
us 173 6
ca 126 5
it 106 4
pl 104 4
edu 77 3
tw 70 3
mx 70 3

TABLE III

TOP TEN TOP-LEVEL DOMAINS WITH LINUX SLAPPER WORM INFECTED

HOSTS ON OCT

GET request. When a vulnerable Apache host is detected, the
worm attempts to connect to the SSL service via port 443 in
order to deliver the exploit code. If successful, a copy of the
malicious source code is then placed on the victim, where the
attacking system tries to compile and run it. Once infected,
the victim begins scanning for the other hosts to continue the
worm’s propagation.

We observed a total 2727 infected hosts spanning over 39
AS domains distributed all over the world. Table III shows
the distribution of the number of infected hosts from different
domains. We see a large percentages of infected hosts are lo-
cated in .net and .com domain. Note that we cannot determine
about 30% hosts due to DNS name resolution failure. Figure 4
shows the distribution of the RTTs of the worm infected
hosts. Unlike the RTT distribution of DDoS attack hosts, the
RTT distribution of worm-infected hosts shows RTTs of over
1500ms. The huge diversity of RTT distribution suggests that if
these worm-infected hosts generate DDoS attacks, they could
potentially come from all over the world, making them harder
to isolate.

V. EFFECT OF MALICIOUS TRAFFIC

In this section, we evaluate how malicious traffic changes
observed traffic characteristics. Although it is intuitive that
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(b) DDoS Traffic volume in packets

Fig. 2. The traffic volume generated by DDoS attack in bytes and packets
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Fig. 4. RTT distribution of worm-infected hosts

traffic characteristics might change on a DDoS attack or a
worm infection, we are not aware of any previous work that
has quantitatively characterized the effect of such traffic. We
observe an increases of 230% in DNS latency and 30% in web-
latency during a DDoS attack. Further, based on an empirical
simulation model of worm, we predict the effect of a DoS
attack triggered by the worm-infected hosts.

A. DDoS traffic

DNS latency is defined as the time elapse between the issue
of a query to when the server returns an answer or a failure.
The effectiveness of DNS strongly affects the performance
of many popular network services such as Web traffic and
Contents Distributed Networks (CDNs). In this section we first
analyze the effect of an attack at Los Nettos and USC and then
summarize the effect of all eigthteen attaks.

Figure 5 shows the change in latency at Los Nettos during
a ping reflection attack [?]. This attack employes 145 distinct

reflectors located in different countries like Brazil, Japan,
Korea, Singapore, and United States generating attack rates
of 4300pps. During the attack, we observe a 230% increase
in the mean latency for DNS lookup, from 0.13s to 0.44s. We
believe the sudden increase of traffic during an attack leads to
higher average buffer occupancies at the routers, resulting in
increased queuing delays. We also look at the effect of DDoS
attack on web traffic, since such flows are more sensitive to
the delay. We define web latency as the time lapse between
the issue of HTTP request to the receiving of response data.
As shown in Figure 5(b), the mean latency of web flows has
increased from 9s to 11.9s, resulting in a 30% increase during
the attack. Note that the DNS and web latencies increase even
when the link is still under-utilized as shown in Section III-A.

Next we observe the change in latencies during the attack
captured at USC (discussed in Section IV-B). As shown in
Figure 6(a), the mean latency of DNS lookup increases from
0.35s to 0.65s during the attack, resulting in a 85% increase
in latency. Further, the mean latency for web flows increases
from 7.2s to 8.8s, as shown in Figure 6(b), a 22% increase
during the attack.

Even though the DNS and web latencies increases, we
noticed that the mean throughput of bulk TCP transfers (which
we define as flow size larger than 100KB), remains unchanged
during the attack as indicated by Figure 7. We believe it is
because the attack only last for only 192 seconds and has
little effect on the long-lived TCP flows. As the attack duration
increases, we expect to observe a change in latencies even in
bulk TCP flows.

The change in latency during an attack is dependent on the
intensity of the attack. To summarize the effect of different
attack rates on the lantecy, we plot DNS and web latencies
for all tweleve set of traces in Figure 8 and Figure 9. Figure 8
illustrates the DNS latency can increase as much as 250%
during an attack, while while web latencies shown in Figure 9
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(a) DNS lookup latency increases by 230% during attack
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Fig. 5. Increase in DNS and web latency during DDoS attack at Los Nettos
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(a) DNS lookup latency increases by 85% during attack
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(b) Latency experienced by web flows increases by 22% during attack

Fig. 6. Increase in DNS and web latency during DDoS attack at USC

can increase as much as 40% as the attack rate increases. The
traffic rate generated by most of the DDoS attack are less than
1MB/s. Note that the increase of DNS latency is more sensitive
to the increase of attack rates (indicated by the steeper slope)
since DNS requests are comparatively smaller than web flows.

The above results show that although short duration DDoS
attacks might not be disruptive in terms of causing network
failures and reducing aggregate throughput, the delay-sensitive
traffic such as DNS and small/medium web transaction will
still be affected by these attacks. Over-provisioning the links
on the network does not provide the complete solution, since
the short burst of DDos traffic can result in the increases
in latency without affecting the throughput. We feel that the
above observations can be used as hints to design better AQM
mechanisms to provide differential services in order to protect

short-lived traffic.

B. Worm traffic

The Slapper worm propagation did not generate disruptive
amounts of traffic at our data collection point. However, if all
the infected machines launched a coordinated DDoS attack, it
would have a disastrous effect. In this section, we use hints
from the collected Slapper worm data to determine the size of
the compromised network. We study its effect on the network
when all worm-infected hosts launch a coordinated DDoS
attack using a ns-2 simulation.

We derive the topology information of the worm-infected
network based on the traces. We simulate its effect on the
network when all worm-infected hosts launch a DDoS attack
to a victim in the USC campus. We use a simple dumbbell
topology with empirical distributions of RTT, flow rates and
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Fig. 8. Increased DNS lookup latency at different DDoS attack rates
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Fig. 9. Increased web latency at different DDoS attack rates
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Fig. 7. Effect of DDoS attack on throughput of bulk TCP flows

packet size derived from the traces. The DDoS traffic is mod-
eled as constant bit rate source and currently no background
traffic is simulated.

Figure 10 shows the attack intensity when generated by
worm-infected hosts. We observed that the different RTT
distributions of the attackers cause distinctively different tran-
sient ramp-up behavior before the steady state attack rate is
achieved. Also when all the worm-infected hosts launch a
DDoS attack, the average traffic generated due to the attack is
fifty times larger than that generated by the DDoS attack that
we traced.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a detailed study of how the
background traffic changes in the presence of malicious traffic.
In particular, we show that the DNS latency increased by 230%
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and the web latency increased by 30% upon interaction with
DDoS traffic. We also analyze the recent Linux Slapper Worm
activity. Based on an empirical simulation model of worm, we
predict its effect on the network when the worm-infected hosts
trigger DDoS attacks.

This paper analyzes 12 attacks and presents analysis of
change in latencies observed in the collected traces. We are
currently working on a more detailed study of the effect of
malicious traffic on background traffic by analyzing more
DDoS and worm attacks. In particular, we are studying how
different intensities and types of DDoS attacks will change the
characteristics of the background traffic. Another aspect of our
ongoing effort is to study various worm propagation models
in order to predict the overall effect of worm traffic on the
network.
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