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The utility of simulations and analysis heavily relies on good models of network traffic. While
network traffic constantly is changing over time, existing approaches typically take years from
collecting trace, analyzing the data to finally generating and implementing models. In this paper,
we describe approaches and tools that support rapid parameterization of traffic models from live
network measurements. Rather than treating measured traffic as a time-series of statistics, we uti-
lize the traces to estimate end-user behavior and network conditions to generate application-level
simulation models. We also show multi-scaling analytic techniques are helpful for debugging and
validating the model. To demonstrate our approaches, we develop structural source-level models
for web and FTP traffic and evaluate their accuracy by comparing the outputs of simulation against
the original trace. We also compare our work with existing traffic generation tools and show our
approach is more flexible in capturing the heterogeneity of traffic. Finally, we automate and in-
tegrate the process from trace analysis to model validation for easy model parameterization from
new data.

Categories and Subject Descriptors: H.4.0 [Information Systems Applications]: General; I.6.0
[Simulation and Modeling]: General

General Terms: Measurement
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1. INTRODUCTION

Simulations are important for exploring and understanding the complexity of
networks. However, it is difficult to simulate and model the Internet due to its
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scale, heterogeneity and dynamics [Floyd and Paxson 2001]. Internet traffic is
constantly changing over time both in volume and statistical properties, even
observed at the same location. It is well-known that network traffic follows
daily patterns while traffic changes during the day. There are also larger-scale
trends in traffic growth. Kim Claffy et al. [McCreary and Claffy 2000] showed
the volume of online game traffic is increasing over the years in the backbone
traffic. Recently Zhang et al. [2001] showed that, depending on the particular
aspect of constancy (the degree to which the relevant Internet properties hold
steady) and the dataset under consideration, the constancy of Internet path
properties will start to break at the time scale of hours.

If we fix our interest to a single point of time, the traffic still varies at dif-
ferent places due to the immense heterogeneity of the Internet: the diversity
of topology and link properties, different protocol usage and user populations
in different networks. For example, the traffic at different websites might be
different due to their content differences. The distribution of file size in a trace
distribution site like Internet Traffic Archive [Paxson 2000] is not heavy-tailed
but instead is bimodal, where small files account for web pages that describe
traces and large files for traces themselves. Recently Cao et al. [2001] showed
that, due to the lower link utilization and higher degree of multiplexing, the
traffic in backbone-style links tends to have higher non-stationarity than traffic
in the access links.

Even when we only look at one particular part of the network at a single
point of time, network traffic can still show great variations just in terms of
direction of flows. For example, inbound traffic and outbound traffic seen at
the ingress or egress points of the network typically differs for the same rea-
sons as traffic differs by places; bandwidth asymmetries of up to 10:1 are not
uncommon [Asaba et al. 1992].

Rapid and unpredictable change of traffic will threaten to make some re-
search obsolete before it is finished. Some assumptions about traffic mix, topol-
ogy or protocols might only be valid for less than a few years. However, take
today’s most widely-used web models as an example, it still takes years from col-
lecting traces and analyzing the data to finally generating and implementing
models [Barford and Crovella 1998]. Three stages are involved in this time-
consuming process: trace collection, design of traffic model, and model param-
eterization from measurement. In prior work, these stages have typically been
combined, with each new experiment requiring development and parameter-
ization of new models. We instead suggest that a sufficiently powerful model
can accurately simulate a wide range of web traffic, and then show how that
model can be automatically parameterized.

Furthermore, the existing models are all based on a small set of traces col-
lected from one particular part of the network within some particular time
period. Considering the Internet’s great technical and administrative diversity
and immense variations over time regarding how applications are used, it is not
obvious that one can model his traffic accurately based on the models derived
from measurements taken previously from other parts of the network.

Motivated by the challenge and difficulty of modeling constantly-changing
Internet traffic, we have developed methodologies and tools that allow users to
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quickly parameterize traffic models based on the measurements and generate
realistic contemporary traffic in their simulations. Our approach does not make
any underlying assumption of traffic properties (for example, heavy-tailed dis-
tribution for file size/transmission time) and hence is more applicable than
existing approaches in coping with the heterogeneous nature of the Internet
traffic.

Opposed to traditional trace-replay techniques which typically ignore the
fact that traffic frequently reacts to the network’s current properties, our ap-
proaches focus on characterizing source-level patterns in which the data is
sent. We have developed tools and methodologies to support this trace-driven
application-level modeling approach for generating synthetic traffic. Our ini-
tial studies emphasize two types of traffic, web and FTP traffic, and show that
we can accurately generate the simulation model from live data in a timely
fashion, that allows users to simulate their current traffic several times per
day. Potential applications of a rapid model parameterization tool will include
traffic planning and provisioning, on-line simulation for network control, in-
put to network prediction algorithm and generation of high-speed synthetic
traffic [Kamath et al. 2002].

Our work has three primary results. First, we strengthen Floyd and Paxson’s
arguments by showing that network characteristics not only change over time
but also show great variations in other dimensions such as locations and flow
directions (Section 4). Second, we propose a methodology for rapidly parame-
terizing traffic models. This approach employs a trace-analysis tool that infers
traffic and topology characteristics, and a CDF-based traffic model that can cap-
ture widely varying web traffic (Section 6). Finally, we show how our models
can be automatically and rapidly parameterized from traces, allowing a user to
quickly instantiate models that represent current, local traffic (Section 5).

2. RELATED WORK

Our work builds on prior work in traffic modeling, trace compaction, workload
generation and bandwidth estimation.

2.1 Traffic Modeling

Floyd and Paxson [2001] pointed out, to cope with the constantly changing na-
ture of Internet traffic, it is important to capture the invariants of the traffic
in modeling the Internet. Our methodology is based on a structural modeling
approach which emphasize characterizing the source-level pattern in which
data is sent. For most applications, the application-level pattern (such as re-
quest/reply patterns in web traffic) in which data is sent, does not react to the
network dynamics. In this aspect, we consider our models have captured the
application structure invariant in the traffic.

The structure we choose to model user behaviors of web traffic is similar to
previous work of Mah [1997] and Crovella et al. [Barford and Crovella 1998;
Crovella and Bestavros 1996]. We also adopt Mah’s approach in terms of de-
scribing traffic based on CDF of real data, which has the advantage of being
able to represent arbitrary distribution.
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2.2 Trace Compaction

Trace compaction generally refers to the techniques used to retrieve “rele-
vant characteristics” from the trace. In this aspect, we have taken similar
approaches as the previous studies of Feldmann et al. [Feldmann 2000] and
Smith et al. [2001] in the sense that we also manage to reconstruct application-
level statistics (eg. request/response) of web traffic on-the-fly from individual
packets captured by the sniffer. However, in Feldmann’s work, it requires spe-
cial hardware and software to be able to extract full HTTP level information.
The methodology we adopt to construct a web model is closer to Smith’s work
where they reconstruct the data exchanges in the HTTP connections based
on only the TCP/IP header information. (In fact, we have incorporated part of
their codes into our tool for parsing TCP/IP header information.) Additionally,
we model path characteristics (hence the resulting models can be directly built
into the widely used NS network simulator [Breslau et al. 2000]) and provide
more comprehensive validation mechanisms including a wavelet-based analy-
sis. Furthermore, in addition to web traffic that previous work has focused on,
we include another dominant traffic in our study namely FTP traffic, and auto-
mate the whole process from trace analysis to finally implement and validate
the models.

2.3 Workload Generation

Research on Internet workload generation has typically focused on creating
generative models based on packet traces of various applications. Several stud-
ies has adopted this approach to develop workload generators for web traffic
including SURGE [Barford and Crovella 1998], IPB [Mah et al. 1998] and work
at RPI [Yuksel et al. 2000]. Their work focused on fitting statistics derived
from a set of traces to some widely-used distributions which are then used to
generate synthetic traffic workload.

However, first, their approaches from collecting traces, analyzing the data,
to finally generating and implementing models take too long, (eg. in Crovella’s
study [Barford and Crovella 1998], it requires modification of browser codes
in order to capture the web-user’s browsing behavior) considering the net-
work conditions are constantly changing. Given that Internet traffic is chang-
ing constantly, it is generally not applicable to characterize the current
traffic simply based on statistics collected years ago from different parts
of the network. Second, even if we assume the existence of some univer-
sal statistical property (eg. heavy-tail distribution of file size), parameter-
ization is still a non-trivial job for the previous models, which are fairly
static.

On the contrary, our approach is capable of parameterizing the traces
and generating simulation models in a timely fashion that allows the users
to study their current traffic. In addition to modeling user/application be-
havior, our work also manages to estimate path characteristics (namely, de-
lay and bottleneck bandwidth) which are important parameters to drive
simulation.
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2.4 Bandwidth Estimation

There have been a number of techniques proposed in the area of bandwidth
estimation. In general, these techniques can be classified into two groups: single
packet and packet-pair techniques. The name refers to the number of packets
that are used in a single probe.

Single packet techniques are based on the observation that slower links will
take longer to transmit a packet than faster links. If we know how long a packet
takes to cross each link, the bandwidth of that link can be calculated. There
have been a number of implementations of single packet techniques including
Jacobson’s [1997] pathchar, clink [Downey 1999], utimer [Cheshire and Baker
1995] and pchar [Mah 1999]. Packet pair techniques are often referred to as
packet dispersion techniques. A packet experiences a serialization delay across
each link due to the bandwidth of the link. Packet pair techniques send two
identically sized packets back-to-back, and measure the difference in time be-
tween the packets when they arrive at the destination. All recent research into
packet pair techniques include bprobe, cprobe [Carter and Crovella 1996], tcp-
nanly [Paxson 1999] and the work of Lai et al. [Lai and Baker 1999, 2000, 2001].
The recent packet tailgating technique proposed by Lai and Baker [2000] can
be considered a hybrid of both single and packet pair techniques.

The approach we adopt to estimate bottleneck bandwidth is in spirit a com-
bination of Sender Based Packet Pair (SBPP) and Receiver Only Packet Pair
(ROPP), as described in Lai and Baker [2001], due to the fact we only take
passive measurements at one single point of the network.

3. BACKGROUND

In this section we will describe the dataset we use in this study and two sta-
tistical techniques, including wavelet scaling plot and Kolmogorov-Smirnov
goodness-of-fit test, that help us validate the models.

3.1 Traces

The data used in our study are from two sources. One was collected on the web
server of Internet Traffic Archive (this set of traces will be referred to as “ITA”
in this paper). The other was recorded at a 100Mbps Ethernet link connecting
the Information Science Institute to the rest of the Internet (referred to as
“ISI”).

ITA trace was collected using publicly available software tcpdump. ISI trace
was captured via tcpdpriv [Minshall 1997] utility which anonymizes libpcap-
format (same format used in tcpdump) traces. tcpdpriv can collect traces directly
or post-process them after collection using a tool like tcpdump. Both traces
captured all inbound and outbound traffic but only TCP/IP header information
was recorded for reasons like privacy and storage overhead. Note that the traffic
volume of ITA trace is significantly lower than that of ISI trace and mainly
consists of outbound traffic.

The ITA trace was collected during a 24-hour period starting from 15:20
Nov 6, 2001, and shows obviously bimodal distribution of traffic mix consisting
primarily of HTTP and FTP traffic. The ISI traces were collected during six
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Table I. Summary of ITA and ISI Traces

Trace ITA ISI
Date Nov 2001 Nov 2001
Duration (hr) 24 42
Total Packets 2.5M 218M
Bytes 2.4G 187G
TCP Packets 2.5M (100%) 143.9M (66%)
Bytes 2.4G (100%) 122G (65%)
UDP Packets 3 (0%) 69.8M (32%)
Bytes 150 (0%) 65G (35%)
HTTP Packets 0.1M (4%) 50M (23%)
Bytes 50M (2%) 71G (38%)
FTP Packets 2.4M (96%) 39M (18%)
Bytes 2.35G (98%) 64G (34%)

one-hour sampling periods each day over a seven-day period starting from Nov
9, 2001. The one-hour sampling periods were chosen somewhat arbitrarily with
the intention to capture the variation of traffic between different times of the
day.

The typical link utilization during collection period is around 16% to 23%
and there is no packet drop in our measurement. For simplicity, in this paper
we only show the analysis of two sets of one-hour long ISI data which were
collected at different times of the same day. One was recorded starting at 2:00
pm Nov 13 2001 (referred to as ISI-1) and the other was recorded starting at
7:00 pm Nov 13 2001 (referred to as ISI-2). Intuitively, one captures the traffic
in a normal business hour and the other shows traffic in after-hours. The details
of traces are given in Table I.

3.2 Wavelet Scaling Plot

One of the tools we use for validation, the scaling plot, is a wavelet-based anal-
ysis [Abry and Veitch 1998] that utilizes wavelet transform of a time series to
study its global scaling property, by which we mean the statistics of the time
series viewed at each resolution level or scale, taken as a function of scale. More
details of this technique were described in Feldmann et al. [1999] and Huang
et al. [2001].

To determine the global scaling property of data, we plot log(E j ), where E j is
the average energy at scale j , as a function of scale j . The energy level E j is
corresponding to the level of irregularity or burstiness of sampled data. The
higher E j is, the more bursty the traffic is at time scale j. The resulting scaling
plot can be used to determine qualitative aspects of the scaling behavior of
the underlying time series, and identify highly regular traffic patterns that are
well-localized in scale. For example, this wavelet-based analysis can uncover the
dominant RTT behavior associated with the packets that make up the measured
traffic. For our purpose in this study, we validate our model by comparing its
scaling plot against the trace’s and see if they qualitatively match closely.
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3.3 Kolmogorov-Smirnov Goodness of Fit Test

We use the Kolmogorov-Smirnov goodness of fit test [Massey 1951] to formally
determine if two sets of traffic data are significantly different from each other,
in addition to visually examining their CDF plots. The Kolmogorov-Smirnov D
value is the largest absolute difference between the cumulative distributions of
two sets of data. We first compute D value of two data sets and then compare
the result to the critical value of D. For large number of samples, the critical
value at the .05 level significance is approximately c√

n , where n is the sample
size and c is a constant that is distribution-dependent. For example, if the
tested data comes from a normal distribution then c = 1.36 [Smirnov 1948]
(c = 1.08 for exponential distribution [Lilliefors 1969] and c = 0.874 for Weibull
distribution [Chandra et al. 1981]) If the computed D is less than the critical
value then we accept the null hypothesis that the distributions of two data
sets are not statistically different from each other. There are two limitations
to applying the K-S test to our data. First, we do not make assumptions about
the data’s distribution, and so we can not directly apply the K-S test since
we can not determine c. However, comparison of the absolute value of D is
appropriate, and we quantitatively use the most restrictive c (= 0.874) as an
approximation to perform the test. In other words, at a 0.05 level significance
and for 10000 samples, we will claim two data sets are statistically different
if the maximum absolute deviation between their cumulative distributions is
greater than 0.00874. Second, as reported by previous studies [Paxson 1994;
Barford and Crovella 1998], it is difficult to apply a goodness-of-fit test for a
large empirical data set (it is well known in the statistics community that large
datasets almost never have statistically exact descriptions). Therefore we also
adopt a similar approach as described in previous work by using random sub-
samples in our test [Braun 1980; Paxson 1994; Barford and Crovella 1998].
The number of samples (which are randomly picked) we use for the K-S test
are 10000 throughout the paper. (In other words, we compare the computed D
value with a critical value of 0.00874 in each test.)

4. TRAFFIC IS DIFFERENT ANY WHICH WAY YOU LOOK

In this section, we show that Internet traffic looks different both in time and
space domain after examining the traces we obtained from different locations
and at different times. These observations stress the importance of being able
to parameterize models from new data to account for changes of the traffic.

4.1 Metrics Used for Comparison

We determine if two sets of data are different by comparing them qualitatively
and quantitatively.

By qualitatively, we visually inspect the CDF plots of first-order statistics
at three different levels (i.e. packet-, flow- and user-level statistics) and the
wavelet scaling plots between the trace and model to see if they match closely.
Here we define a flow as a unidirectional series of IP packets traveling between
a source and a destination IP/port pair within a certain period of time, and
a unique IP address as a user. Specifically, the metrics we use for comparison
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Table II. Summary of Protocol Mix of ISI-1 Traffic

Protocol Inbound Outbound
NNTP (% packets) 39.4% 8%
(% bytes) 64.4% 0.02%
(% no. of flows) 0.06% 0.08%
HTTP (% packets) 15.8% 27.6%
(% bytes) 20.0% 50%
(% no. of flows) 38.5% 35.8%
DNS (% packets) 29.9% 31.6%
(% bytes) 4.8% 4.8%
(% no. of flows) 51.4% 30.1%
FTP (% packets) 5.5% 20.4%
(% bytes) 4.1% 33.7%
(% no. of flows) 8.7% 26.2%
OTHERS (% packets) 9.4% 20.4%
(% bytes) 6.7% 13.3%
(% no. of flows) 1.5% 7.8%

include packet inter-arrival time, packet size, flow duration, flow size, flow inter-
arrival, user inter-arrival, user duration, protocol mix and traffic volume. We
only show the CDFs of flow statistics and wavelet scaling plots in this paper for
brevity since they are less dependent on the density of traffic.

By quantitatively, we perform the Kolmogorov-Smirnov Test, as described
in Section 3.3, to see if the distributions of trace and model are statistically
different from each other.

4.2 Traffic Seen in Different Directions

First we look at traffic flows in different directions (i.e. inbound traffic versus
outbound traffic) during the same period of time. We found inbound traffic and
outbound traffic are significantly different in terms of protocol mix and via
comparison of first-order statistics and wavelet analysis.

The protocol mixes for inbound and outbound traffic of ISI-1 data are shown
in Table II. The traffic mix is noticeably different in different directions, where
the inbound traffic is dominated by News traffic while the outbound traffic
mainly consists of web and FTP traffic. Note that NNTP traffic in outbound
data mainly consists of ACKs, which is the reason it contributes very little in
terms of bytes to the total traffic volume. In terms of the number of flows, the
majority of the flows are contributed by DNS traffic in inbound traffic while by
web traffic in outbound data.

We next look at the first-order statistics. The comparison of flow statistics,
including flow duration, flow size and inter-arrival time of inbound and out-
bound data are shown in Figure 1. Outbound traffic has comparatively longer
flow duration and size than inbound traffic, which is possibly due to the fact
that the majority of the flows are contributed by DNS traffic in inbound traf-
fic while by web and FTP in outbound traffic, as shown in Table II. Although
in Figure 1(b) and Figure 1(c) the CDF plots for outbound and inbound traffic
look similar in the tail of the distributions (lower tail in flow size and upper
tail in flow inter-arrival), none of them passes the Kolmogorov-Smirnov test.
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Fig. 1. Comparison of flow statistics in ISI-1 data.

Fig. 2. Comparison of wavelet scaling plots of inbound and outbound traffic in ISI-1 data.

The D values for Figure 1(b) and Figure 1(c) are 0.121 and 0.097 respectively,
which are larger than the critical value and hence fail the test. (The number of
samples we use are 10000 which corresponds to a critical value of 0.00874.)

The corresponding wavelet scaling plot is shown in Figure 2. We observe there
is a pronounced dip on the order of about 128ms, which reflects the underlying
periodic component (i.e. RTT) for outbound traffic, while the dominant RTT for
inbound traffic is on a relatively smaller time scales (about 40ms).

All the statistics conclude that ISI-1 inbound and outbound traffic are no-
ticeably different from each other.

4.3 Traffic Seen at Different Times

We next look at two sets of ISI traffic captured at different times (i.e. ISI-1
and ISI-2). Here we concentrate on the comparison of outbound traffic. Since
ISI-2 data was recorded during the time when most people have left the office,
intuitively the inbound traffic in ISI-2 will be different from ISI-1 because of its
smaller user population. (For inbound traffic, ISI-1 has 517 users while ISI-2
has only 128 users. For outbound traffic, ISI-1 has 16447 users and ISI-2 has
14259 users.) The following statistical comparisons show that ISI-1 and ISI-2
outbound traffic are different from each other.
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Table III. Summary of Protocol Mix of ISI
Outbound Traffic at Different Times

Protocol ISI-1 ISI-2
NNTP (% packets) 8% 10%
(% bytes) 0.02% 0.02%
(% no. of flows) 0.08% 0.09%
HTTP (% packets) 27.6% 17.5%
(% bytes) 50% 24.0%
(% no. of flows) 35.8% 32.6%
DNS (% packets) 31.6% 41.0%
(% bytes) 4.8% 11.4%
(% no. of flows) 30.1% 34.5%
FTP (% packets) 20.4% 22.1%
(% bytes) 33.7% 45.7%
(% no. of flows) 26.2% 31.3%
OTHERS (% packets) 20.4% 9.4%
(% bytes) 13.3% 18.9%
(% no. of flows) 7.8% 7.0%

Fig. 3. Comparison of flow statistics for ISI outbound traffic at different times.

First we look at the traffic mix, as shown in Table III. Although large per-
centages of traffic in both data sets are made up by both web and FTP traffic,
one is dominated by FTP while the other by web traffic.

The distributions of flow statistics including flow duration, flow size and
inter-arrival time for ISI-1 and ISI-2 data are shown in Figure 3. The flow
duration in ISI-2 data is significantly longer than that in ISI-1, as shown in
Figure 3(a), which is probably due to the fact that ISI-1 data is dominated by
web traffic while ISI-2 is dominated by FTP flows. In terms of flow size, there
are more short flows in ISI-2, which is probably because there is more DNS
traffic and short HTTP connections in ISI-2 data, as shown in Table III.

Again, although the CDF plots between ISI-1 and ISI-2 in Figure 3(b) and
Figure 3(c) have similar shapes, they all fail the Kolmogorov-Smirnov test (the
D values are 0.09 and 0.14 respectively, for 10000 samples).

The wavelet scaling plot, as depicted in Figure 4, indicates ISI-2 traffic has
smaller and more heterogeneous RTT behavior shown as a dip that stretches
from 8ms to 128ms while ISI-1 data has a main dip at 128ms.
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Fig. 4. Wavelet scaling plot for ISI-1 and ISI-2 outbound traffic.

Fig. 5. Comparison of flow statistics for ISI and ITA outbound traffic.

All the statistical comparisons indicate that ISI-1 outbound traffic is different
from ISI-2 outbound traffic.

4.4 Traffic Seen at Different Locations

Finally we look at the comparison between ISI-1 and ITA data and show traffic
is different at different locations. Again, we only focus on outbound traffic.

In terms of protocol mix, ITA data only consists of HTTP and FTP traffic,
which is obviously different from the protocol mix in ISI-1 traffic.

The distributions of flow statistics, including flow duration, flow size and
inter-arrival time for ISI-1 and ITA data are shown in Figure 5. We see ISI-1 has
longer flow duration but smaller flow size. A close look shows that the long flows
in ISI-1 are mainly contributed by DNS, NTP (periodic time synchronization
between servers) and NNTP traffic (periodic news exchanges between servers).
ITA data has larger flow size because it mainly consists of bulk FTP transfer. It
is not surprising that ITA has much larger flow inter-arrival time since its traffic
is much more sparse than ISI-1. We did not apply the Kolmogorov-Smirnov Test
to ITA and ISI-1 data since their CDF plots are obviously different.

In the wavelet scaling plot, as shown in Figure 6, we observe there is a main
dip at a time scale of around 500ms for ITA data, which is about 4 times larger
than the 128ms in ISI-1 data. A closer look shows ITA traffic is dominated by
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Fig. 6. Comparison of wavelet scaling plots between ISI-1 and ITA outbound traffic.

a few FTP transfers between the ITA site and some hosts in the US west coast
and Europe.

All the statistical comparisons here show that traffic can be different at
different sites because of the different nature of their contents.

The above discussion concludes that network traffic not only changes over
time but also shows great variations in different directions and different loca-
tions. We demonstrate that the differences can be due to a variety of reasons
such as user behavior, path characteristics and application usage and so on,
hence it is difficult to obtain a “general” traffic model.

5. RAMP: RAPID MODEL PARAMETERIZATION

Motivated by the previous observation that it is important to quickly parame-
terize models from new data to account for the diversity of the traffic, we design
a tool called RAMP. RAMP can convert live measurements into simulation mod-
els that can then be used to generate realistic synthetic traffic. In this section
we describe our approaches from analyzing the trace to finally generating the
simulation model.

Our approach is to automatically generate statistics that model user be-
haviors and network path characteristics by analyzing TCP/IP header infor-
mation captured in the measurements. The resulting model will then be built
into the widely-used NS network simulator [Breslau et al. 2000] and validated
against the original trace via wavelet-based analysis and first order statistical
comparison.

The input of RAMP is a tcpdump-format file, recorded at a single tap point
of the network, that contains only TCP/IP header information. The output of
RAMP is a set of CDF (Cumulative Distribution Function) files that model the
corresponding traffic, as shown in Figure 7. Specifically, the CDF files consist of
two types of data. One set of CDF files model user/application level statistics of
the traffic, such as user session arrival, page/file size and so on. Currently RAMP
only supports web and FTP traffic, which are among the most dominant types of
traffic [McCreary and Claffy 2000] of the present Internet. The other one models
path characteristics of the network. In particular, we focus on characterizing
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Fig. 7. Data flow of RAMP.

RTT and bottleneck bandwidth of the measured traffic since they are important
parameters for driving network simulation. Typically it takes tens of minutes
for RAMP to process a trace file with the size of several hundred megabytes.

5.1 User and Application Behavior Characterization

In this section we describe the techniques we employ to characterize the source-
level behaviors based on the TCP/IP header information captured in the trace.
We focus on the analysis of web and FTP traffic, which are among the most
dominant types of traffic of the present Internet.

5.1.1 Web Traffic. Here we present the methodology used to characterize
the important components of web traffic based on only the information in the
TCP/IP headers and knowledge of the TCP and HTTP protocol.

To reconstruct the data exchanges in the HTTP connections based on only
the information in the TCP/IP header, we adopt an approach and heuristics
similar to previous work [Smith et al. 2001]. One observation in their study is
that when the server receives a HTTP request it will send TCP acknowledg-
ments (ACKs) indicating the in-order byte sequence it has received, and all of
the request messages will be ACKed before the corresponding HTTP response
data is sent (note that here we assume there is no pipelining in use). Hence
we can infer the size of request by the amount of ACK value advances and
the size of response by the amount of data sequence number advances. As the
example shown in Figure 8, the ACK-only segment from the server following
the SYN+ACK segment indicates the first request was 325 bytes in size. In
the following segments, the data sequence numbers advance to 2458 (the size
of first response) with no further changes in the ACK values. In the next seg-
ment, the advance of ACK number indicates the size of the second request was
349 bytes (675−326). In the following segments, the data sequence numbers ad-
vance with no further changes in the ACK values. The size of second response
is 11756 bytes (14124−2458).
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Fig. 8. tcpdump trace that shows two request/response exchanges in a persistent HTTP
connection.

Fig. 9. Comparison of the usage of TCP window size in inbound and outbound traffic of ISI-1 data.

Adopting similar heuristics as those developed originally by Mah [1997] and
Barford and Crovella [1998], we assume a new page is requested after some
period of idle time (or “think” time) at the client. We identify idle periods in
which either the client has no established TCP connection or no established
connection has an active request/response exchange in progress.

Our web traffic model is similar to those developed originally by Mah and
Barford and Crovella. However, we found it is important, but not captured by
the previous studies, to model the TCP window size and the usage of persistent
connection.

It is important to model TCP window size in order to accurately character-
ize the sending rate of the servers. For example, as shown in Figure 9, more
than 80% of clients in the ISI1 inbound traffic use window size less than 16K.
Using small window size will limit the servers from fully utilizing increasingly-
popular broadband networks such as DSL and cable modem. Note that we did
not observe any connection that uses TCP window scale option in our traces.

Motivated by the increasingly important role of persistent connection in web
traffic, as reported by a previous study [Smith et al. 2001], we also model the
persistent connection used in HTTP/1.1, As shown in Table IV, although only
less than 20% of connections are persistent, they account for about 50% of all
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Table IV. Summary for the Usage of HTTP Persistent
Connections in ISI-1 Traffic

Protocol Inbound Outbound
Number of connections 26426 4425
objects 44399 7187
bytes 318.7 MB 424 MB
Persistent connections 4756 (18%) 708 (16%)
Objects on Persistent 22841 (51%) 3506 (49%)
Bytes on Persistent 121.5 MB (38%) 85.4 MB (20%)

objects transferred and more than 20% of all bytes transferred. This clearly
shows persistent connection plays an important role in the dynamics of TCP
connections for the Web. In our datasets, over 50% of persistent connections are
used for three or more request/response exchanges and 10% of them carry more
than nine (the graphs are not shown here). Our result for the usage of persistent
connections shows strong agreement with recent studies [Smith et al. 2001].
Note that although we have observed in our datasets that some browsers still
use multiple concurrent connections to transmit one single page as reported
in Balakrishnan’s study [Balakrishnan et al. 1998], we did not model that
since it accounts for less than two percent of the total number of pages in our
traces.

5.1.2 FTP Traffic. In this section we show that it is non-trivial to extract
FTP flows in the traces. (In particular, it is not sufficient that one only looks at
the flows that origin from or destine to port 20 or 21.)

For FTP traffic, we assume that a unique IP address represents a single
human user and a new TCP connection is used for each file transmission. This
heuristic allows us to identify the points when the client starts a new file. The
FTP protocol [Postel and Reynolds 1985] specifies that the client first connects
from a random unprivileged port (N > 1024) to the FTP server’s command
port, port 21. The client then starts listening to port N+1 and sends the FTP
command “PORT N+1” to the FTP server. The server will then connect back to
the client’s specified data port from its local data port which is port 20. This is
also known as Active-mode FTP.

However, from our datasets we observed that there are a significant number
of clients using Passive-mode FTP, in which the client initiates both control
and data connections to the server. When opening an FTP connection, the client
opens two random unprivileged ports locally (N > 1024 and N+1). The first port
contacts the server on port 21, but instead of then issuing a PORT command and
allowing the server to connect back to its data port, the client will issue the PASV
command. The result of this is that the server then opens a random unprivileged
port (P > 1024) and sends the PORT P command back to the client. The client
then initiates the connection from port N+1 to port P on the server to transfer
data. To identify FTP traffic, we first locate FTP clients by looking at those
connected to server port 20 and find out what are the control ports (N) they use.
We then look for the connections originating from the neighboring ports (N+1)
of client’s control port and classify them as FTP data connections.
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5.2 Characterization of Network Path Properties

In this section we describe how we estimate the topology information from
the measurement. Particularly we focus on characterizing the round trip delay
and bottleneck bandwidth since both of them are important for driving the
simulation.

5.2.1 Round-trip Delay. We determine the RTT of each TCP connection
in our traces by computing the difference of timestamp between data packet
and the first ACK packet which has the same sequence number. However, this
approach is not applicable for packets captured at the data receivers end, where
the timestamp difference between data and ACK doesn’t reflect the path delay.
For situations where the clients are near the measurement point while servers
are at the remote end (eg. the inbound traffic), we rely on the three-way hand-
shake at the start of each TCP connection to calculate the delay of the path. In
other words, we compute the RTT by taking the timestamp difference between
the SYN packet and its corresponding ACK. For each connection we take the
minimum of RTT samples as an approximation of propagation delay of the path
(after dividing the RTT by 2) and consider the deviations from the minimum
RTT as variances caused by queuing delay and transmission delay. We use this
approximation to drive our simulation.

5.2.2 Bottleneck Bandwidth. Our traces contain both outbound and in-
bound traffic. For outbound traffic, we use Sender Based Packet Pair
(SBPP) [Paxson 1997] to compute the bottleneck bandwidth between the lo-
cal servers and the remote clients. That is, we estimate the spacing between a
pair of back-to-back TCP packets after passing the bottleneck link by examin-
ing the arrival times of their corresponding ACKs (for delayed-ACK packets, we
estimate the spacing between the second and the forth packets of a group of 4
back-to-back packets). For inbound traffic, we rely on Receiver Only Packet Pair
(ROPP) [Lai and Baker 1999], which uses the arrival times of two consecutive
full-size packets at the receiver to estimate the bottleneck bandwidth between
remote servers and the local clients. We also apply similar techniques to filter
noise such as density estimation as described in Lai and Baker [2001].

5.3 Structural Simulation Model

Traditional black box approaches typically treat the measurement as a time
series. They focus on capturing the statistical characteristics (particularly
autocorrelation and marginal distribution) of empirical data to model net-
work traffic, based on various approaches such as Markov process, ARIMA,
TES etc. [Heffes and Lucantoni 1986; Maglaris et al. 1988; Sen et al. 1989;
Nikolaidis and Akyildiz 1992; Lucantoni et al. 1994; Heyman et al. 1994;
Gurenefelder et al. 1991; Melamed and Sengupta 1992]. Although they are able
to reproduce the measured traffic correctly, these approaches generally ignore
the underlying network structure and hence provide little or no insight about
the observed characteristics of measured traffic and its underlying causes.
On the other hand, structural modeling, first discussed by Willinger [Willinger
et al. 1998], proposes that we should implicitly take into account the complex

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 3, July 2002.



Rapid Model Parameterization from Traffic Measurements • 217

Fig. 10. Multiple levels of feedback in web traffic.

hierarchical structure of application and intertwined networking mechanisms
in order to accurately reproduce the traffic while still providing a physical
explanation for observed phenomena.

As opposed to trace-replay, there are several advantages to this approach:

—Some protocols must be modeled as end-to-end entities in order to capture the
feedback effect such as TCP congestion control, while trace-replay techniques
typically ignore the fact that traffic is frequently shaped by the network’s
current properties,

—Internet protocols present very rich, multi-fractal behavior across a range of
time scales. Simple trace-replay approach will fail to capture this richness.

—By capturing the details of data transfer in an algorithm we can reproduce
that traffic with much less storage requirements than trace-replay.

As shown in Figure 10, we can see that there are multiple levels of feed-
back effect within the hierarchical structure of web traffic, and each level oper-
ates at different time scales. For example, TCP has its own congestion control
mechanism, which operates at the time scale of seconds, while HTTP has the
request-response loop functioning at the time scale of tens of seconds. Hence,
it is important to reproduce the structure of application in the model in order
to accurately reproduce the traffic.

Based on the structural modeling approach, we design a three-level simula-
tion model to characterize web traffic and two-level model to characterize FTP
traffic as shown in Figures 11 and 12. Note that we only model the data connec-
tions of FTP traffic for simplicity since the bandwidth usage of the control chan-
nel is negligible (typically less than one percent of total traffic in our datasets).
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Fig. 11. Structural model of web traffic.

Fig. 12. Structural model of FTP traffic.

Our web traffic model is similar to those developed originally by Barford
and Crovella [1998]. Additionally, we model TCP window size and the usage of
persistent connection. We also model HTTP request size motivated by the trend
in using large requests due to the increasing popularity of “web email” [Smith
et al. 2001].

6. EVALUATION OF RAMP

To validate if RAMP accurately reproduces the traffic under study, we incor-
porate its output into an ns-2 simulator and compare the result of simulation
against the original traces. To understand if RAMP can perform as well as
existing work in terms of generating realistic synthetic workload, we also com-
pare RAMP with SURGE [Barford and Crovella 1998], a popular web traffic
workload generator. Another important aspect is to understand if RAMP is
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Fig. 13. Comparison of flow statistics for model and ISI-1 outbound traffic.

parsimonious. A strength of mathematical models is their parsimony — with
only a few parameters they are able to describe same class of traffic. To evaluate
RAMP’s complexity, we look at it in two different aspects: first, the effectiveness
of using an analytical model versus an empirical model; second, the importance
of details in its structural model.

6.1 Comparison with Original Traces

In this section we use ISI-1 data to evaluate the accuracy of RAMP. The result
shows that the output of the simulation matches the original traces closely.
Note that because currently our tool only supports web and FTP traffic, we
first filter the traces so that they only contain web and FTP data before being
compared against the simulation result (together web and FTP traffic account
for 83.7% of the total traffic in terms of the number of bytes, and 48% in terms
of the number of packets in ISI-1 trace).

The statistics we use here for validation including the distributions of flow
arrival, flow size, flow duration, packet inter-arrival time, wavelet scaling plot
and the application-specific parameters, such as page size, page arrival, object
size (for web traffic), file size, file arrival (for FTP traffic), user arrival and user
duration. Again, here we only show outbound traffic and only CDF plots of flow
statistics for simplicity (although the graphs of inbound traffic are not shown
here, they are consistent with the results of outbound traffic).

The CDF plots of flow statistics for ISI-1 model are depicted in Figure 13,
which shows that the model matches the trace closely. The Kolmogorov-Smirnov
test D values for Figure 13(a), Figure 13(b) and Figure 13(c) are 0.0019, 0.0013,
0.0018 respectively. They all pass the K-S test given a critical value of 0.00874.

The corresponding wavelet scaling plot for the ISI-1 model, as depicted in
Figure 14, also shows a large degree of resemblance between trace and model,
such as similar energy value (the model has slightly lower energy though) and
a dip around 128ms (which reflects the RTT of the underlying traffic).

The CDF plots of model parameters such as page/file size, user arrival etc.
also match closely (not shown here), which is not surprising since the model is
directly driven by those parameters.

All the statistical comparisons show RAMP is able to accurately reproduce
the original traffic.
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Fig. 14. Comparison of wavelet scaling plots between model and trace for ISI-1 outbound traffic.

Fig. 15. Comparison of wavelet scaling plots between SURGE-like analytic model and a trace for
ITA web traffic.

6.2 Comparison with Existing Tools

In order to understand if RAMP can generate representative workload, we
compare RAMP against an existing traffic generator, namely SURGE [Barford
and Crovella 1998]. We demonstrate that our model parameterization tool is
capable of achieving the same functionality of SURGE (i.e. generating similar
traffic workload like SURGE ) without suffering its limitation due to some of
its implicit assumptions.

SURGE contains a set of programs that pre-compute several datasets and a
multi-threaded program that makes web requests using those datasets. Both
are written in C. The datasets consist of the distribution models of a number of
requests, file sizes, popularity of files, embedded objects, file temporal locality
and OFF time.

To validate RAMP against SURGE, we performed a lab experiment by run-
ning SURGE for 30 minutes and recording the traffic via tcpdump. We then fed
the SURGE trace into RAMP and inspected whether the output of ns-2 simula-
tion model from RAMP agreed with the SURGE trace. The environment of the
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Fig. 16. Comparison of packet inter-arrival time between SURGE and RAMP.

Fig. 17. Comparison of wavelet scaling plots between SURGE and RAMP.

experiment consists of five PCs connected by an 10MBps Ethernet switch. Four
of these boxes are used as SURGE clients that are Pentium II/III class (266MHz
and above) Linux boxes. We used a Pentium IV Linux box (1.7GHz with 750M
memory) as the SURGE server, which ran Apache v.1.3.22. The number of UE
(user entity, SURGE’s representation of a web user) and CP (client process,
which decides how the threads are spawned) are 5 and 50 respectively. We ran
SURGE v.1.00a with HTTP 1.0.

We look at the packet inter-arrival time and wavelet scaling plot of the out-
puts of SURGE and our model respectively. All the statistics match closely, as
shown in Figures 16 and 17.

One limitation of SURGE is that it attempts to fit the models into some
widely-used analytic functions (such as using Pareto to describe the distribu-
tions of file sizes and off time). However, it is not universally true that all of the
web traffic follows these assumptions. For example, these assumptions might
break for a trace distribution site like ITA. We have observed that the distri-
bution of page size in ITA traffic (which are mainly made up by plain HTML
files that describe traces and collection/analysis software) is not heavy-tailed,
and hence can not be modeled by SURGE. The presence of heavy tails typi-
cally is indicated by an approximately straight line in the tail in the LLCD plot
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Fig. 18. Log-Log Complementary Distribution plot of Page Size in ITA traffic.

Fig. 19. Comparison of wavelet scaling plots between model and trace for ITA outbound traffic.

[Crovella and Bestavros 1996], which we do not observe in ITA data, as shown
in Figure 18.

6.3 Analytical Model vs. Empirical Model

Due to the diversity of the Internet traffic, for some websites an analytic model is
not sufficient to capture the traffic characteristics, To demonstrate this aspect,
we simulate the web traffic in ITA data with a SURGE-like analytic model in
ns-2, similar to models used in previous work [Feldmann et al. 1999; Huang
et al. 2001]. We show that this SURGE-like workload model does not accurately
reproduce the ITA web traffic. As the wavelet plots shown in Figure 15, the
traffic generated by the analytic model does not capture the scaling features of
ITA traffic at both small and large time scales.

On the other hand, our tool is based on empirical distributions of traffic and
does not have any implicit assumptions about the distribution of the traffic,
hence it is more flexible to cope with the diversity of the traffic. According to
the wavelet plot shown in Figure 19, the ITA model generated by RAMP does
capture the important features of ITA traffic (such as a dip at 500ms and similar
energy levels).
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Fig. 20. Two level flow-based model of web traffic.

Fig. 21. Comparison of wavelet scaling plots between 2-level and 3-level web models.

6.4 Effect of Detail in a Structured Model

In our study we develop a three-level model, as shown in Figure 11, to capture
the characteristics of web traffic. To understand the importance of capturing
the details of application-level structure in order to correctly model the traffic,
we compare the results of using a simplified flow-based model (where the hi-
erarchical relationship between page and object has been omitted, as shown in
Figure 20) against our original web model. As shown in Figure 21, although the
plots look similar at smaller time scales, the traffic generated by the simplified
two-level web traffic model becomes less bursty at larger time scales (larger
than 16 seconds). Hence, we conclude that it is important to capture the de-
tails of application-level structure (a three-level model rather than a two-level
model in this case) in order to accurately reproduce the traffic. This exam-
ple also shows that use of empirical distributions from real traces provides no
guarantee of model accuracy; differences in application structure also have an
important affect on simulation accuracy.

7. PERFORMANCE OF RAMP

The time required for RAMP from analyzing the traces to finally generating
the simulation models typically takes tens of minutes for a trace with size of
several hundred megabytes, although the process speed also depends on the
nature of the traffic (currently RAMP only supports web and FTP traffic) and
its actual volume. In this section, we show the speed of RAMP is a function of
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Table V. Process Time of RAMP for Different Traces

Trace ISI-1 ISI-2 ITA
file size (MB) 614 561 203
no. of bytes (GB) 1.0 7.3 2.4
no. of packets (M) 9.2 8.4 2.5
no. of flows (K) 506 398 1.3
process time (min) 25 21 8
speed (thousand packets/sec) 6.1 6.3 5.7

the number of packets in the trace file. Currently we support traces captured
in tcpdump format.

To understand what are the factors that will affect the performance of RAMP,
we ran RAMP on a 1.7G Hz Pentium IV Linux box with 1GB memory for dif-
ferent trace files obtained at different times and different places. As shown
in Table V, we can see the process time of RAMP is approximately propor-
tional to the number of packets in the trace (and hence also proportional to
the file size). In general, it takes tens of minutes for RAMP to process an
hour-long trace, allowing users to simulate current traffic several times per
day.

8. LIMITATION

In this section, we describe some inherent limitations that will affect our re-
sults. These limitations include the uncertainties when reconstructing HTTP
level information from TCP/IP header, incomplete flows in the traces and the
limitation of estimating bandwidth based on passive measurement.

Our methodology to infer the source behavior of web traffic is based on the
limited information available in TCP/IP header for one direction of a TCP
connection. There are a number of uncertainties arising from issues such as
pipelining, user/browser behavior, caches and TCP segment re-ordering that
will affect our inference, as described by Smith et al. [2001]. However, we ex-
pect these cases will typically only appear as a very small percentage of total
traffic and will not noticeably affect the normal operating condition of our model
parameterization tool.

We find incomplete TCP connections at the beginnings and ends in the data
since our traces only cover specific intervals of time (i.e. one hour). We ex-
cluded these incomplete connections from our analysis. However, we expect
this might have some effect on the results since it will affect some of the model
parameters (eg. page size and number of objects per page). In our study the
incomplete connections account for 2-4% of the total connections. Since we ig-
nore these connections, we expect that our model will underestimate traffic
volume. To quantify this error we analyzed the distribution of long flows in
two 24-hour long traces from NLANR [2001]. Although there are a small num-
ber of flows longer than an hour (0.02% by flow count, about 5% by packet
count) if we examine all flows of the NLANR traces, the majority of these
flows are NNTP traffic. Examining merely web and FTP traffic we see only
0.006% of flows or 0.01% of packets are in flows longer than an hour. Therefore
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we believe that our model will not significantly underestimate web and FTP
traffic.

There are some known issues with using SBPP and ROPP to measure the
bottleneck bandwidth. For example, cross traffic and post-bottleneck queuing
tend to distort the estimation. Previous study by Lai et al. showed that the
inaccuracy of bandwidth estimation based on passive measurements can be as
high as 41% [Lai and Baker 2001]. However, as shown in Section 6, our results
indicate that these techniques combined with some simple filtering mechanism
give us reasonable approximation to estimate bottleneck bandwidth for driving
our simulation model.

9. FUTURE WORK

For future work, we describe some possible improvements to RAMP. These im-
provements include a better queuing model, support of backbone-style traffic,
real-time model parameterization, support of other types of important traffic,
further validation of RAMP with traces having different characteristics, model-
ing of temporal relationships among different types of traffic, long-term traffic
prediction, and integration of distributed measurements.

We model queuing delay as an extra component of propagation delay in-
stead of the end result of interaction between aggregation of flows and limited
buffer size (which is hard to characterize just by looking at TCP/IP header in-
formation). This approach is sufficient for our data sets, which have low link
utilization and zero packet drop. However, for sites that experience serious con-
gestion (like flash crowd), our approximation might introduce some inaccuracy
in the result and require further study.

The current design of RAMP has an implicit assumption that the measured
traffic is captured at the edge link (such as the link between a campus network
and its ISP), so that the end-to-end path characteristics such as bottleneck
bandwidth can be estimated via passive measurements. When applying RAMP
to backbone-style traffic, we expect this limitation can be ameliorated with
extra information obtained using existing active probing techniques [Jacobson
1997; Downey 1999; Carter and Crovella 1996].

Currently RAMP takes a trace file as input and processes the traffic off-line.
Although for our current processing power and trace traffic, RAMP processing is
slightly slower than real time, with slightly more computing power (or slightly
lower-speed traces) and minor software changes, RAMP could parameterize the
model in real-time. The primary change to RAMP would be to incrementally
update the output CDFs as each new flow arrives, instead of computing all flows
at once.

Our tool currently supports web and FTP traffic, which only accounts for a
subset of real network traffic. To make the output of RAMP more representative,
we would like to incorporate other types of important traffic such as DNS,
multimedia traffic (such as Real Audio/Video) and increasingly popular peer-
to-peer traffic (such as Morpheus) into our tool.

In this study, we use only two set of traces (from ISI and ITA respectively) for
the design and validation of RAMP. We plan to collect more traces from other
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places, particularly those that potentially have very different traffic character-
istics (such as at a very high speed link or a very congested site), to further
investigate and validate RAMP.

To accurately model traffic, it is important to characterize the temporal rela-
tionship between different types of traffic. For example, DNS behavior is very
likely linked closely to web traffic patterns since most of the web connections
are preceded by DNS lookups. We plan to study this issue and understand how
to correctly orchestrate different traffic classes in the model.

Currently our model is based on the trace recorded at a single tap point of
the network. However, distributed measurement is required in order to get a
network-wide view of traffic and correctly model the behavior of cross traf-
fic, while keeping the size of collected data maintainable. To integrate dis-
tributed data will require approaches for overlap detection and hole filling.
To address this problem, we plan to explore and extend the techniques devel-
oped in previous work of distributed network monitoring such as SCAN [Govin-
dan et al. 1997] and recent work in network tomography [CAIDA 2002;
Mathis and Mahadavi 1996; Vardi 1996; Cao et al. 2000a, 2000b], and em-
ploy new algorithms and tools to merge distributed data into a coherent
model.

Measurement study of Internet traces shows that the WAN performance is
reasonably stable over terms of several minutes; meanwhile, nearby hosts ex-
perience similar or identical throughput performance within a time period mea-
sured in minutes [Balakrishnan et al. 1997; Paxson 1997]. Our model parame-
terization tool outputs simulation model at the time scale of tens of minutes for
hour-long traffic, which matches the level of stability reported in previous study
and hence is applicable to simulate present traffic and predict the short-term
traffic trend. However, to simulate and predict the long-term trend of traffic
(for example, at the time scale of days), we need to understand how the traffic
evolves and correlates in time.

10. CONCLUSION

Floyd and Paxson [2001] characterized the problems—the constantly-changing
and decentralized nature of the Internet, resulting in a poor understanding of
traffic characteristics and making it difficult to define a typical configuration
for simulating it. Motivated by their observations, we developed a tool called
RAMP that supports rapid parameterization of live network traffic for gen-
erating realistic application-level simulation models. Our model is based on
estimation of user behaviors and network conditions from captured tcpdump
traces. We validate our methodology by comparing some first order statistics of
traces against the simulation output of the model. We also apply multi-scaling
analytic techniques to debug and validate the model. In this paper, we first
demonstrate that traffic is different in both temporal and spatial space. We
then show the effectiveness of our approaches in terms of the capability of gen-
erating simulation models that capture traffic dynamics in a timely fashion
even when facing the ubiquitous heterogeneity of the Internet. Our work has
three primary results. First, we strengthen Floyd and Paxson’s arguments by
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showing that network characteristics not only change over time but also vary
in other dimensions such as locations and flow directions. Second, we propose
a methodology for rapidly parameterizing traffic models. This approach em-
ploys a trace-analysis tool that infers traffic and topology characteristics, and
a CDF-based traffic model that can capture widely varying web traffic. Finally,
we show how our models can be automatically and rapidly parameterized from
traces, allowing a user to quickly instantiate models that represent current,
local traffic.
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