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Abstract

Theutility of simulationsandanalysisheavily relieson
goodmodelsof network traffic. While network traffic con-
stantly changing over time, existing approachestypically
take yearsfrom collecting trace,analyzingthe datato fi-
nally generating andimplementingmodels. In this paper,
we describeapproachesand tools that support rapid pa-
rameterization of traffic models from live network mea-
surements. Ratherthantreatingmeasuredtraffic asa time-
seriesof statistics,weutilize thetracesto estimateend-user
behavior and network conditions to generate application-
level simulationmodels. We alsoshow multi-scaling an-
alytic techniquesarehelpful for debugging andvalidating
the model. To demonstrateour approaches,we develop
structural source-level modelsfor webandFTPtraffic and
evaluatetheir accuracy by comparing theoutputsof simu-
lationagainsttheoriginal trace.We alsocompareourwork
with existing traffic generation tool andshow ourapproach
is more flexible in capturing the heterogeneityof traffic.
Finally, we automate andintegrate the processfrom trace
analysisto model validation for easymodel parameteriza-
tion from new data.
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1 Intr oduction

Simulationsareimportantfor exploring andunderstand-
ing the complexity of network. However, it is difficult to
simulateandmodeltheInternetdueto its scale,heterogene-
ity anddynamics [21]. Internet traffic is constantlychang-
ing overtimebothin volumeandstatisticalproperties,even
observed at the samelocation. It is well-known that net-
work traffic followsdailypatternswhile traffic changesdur-
ing theday. There arealsolarger-scaletrendsin thetraffic
growth. Kim Claffy etal. [39] showedthevolumeof online
gametraffic is increasingover the yearsin the backbone
traffic. RecentlyZhanget al. showed that, depending on
theparticular aspectof constancy (thedegreeto which the
relevant Internet propertiesholdsteady)andthedatasetun-
derconsideration,theconstancy of Internet pathproperties
will startto breakat thetime scaleof hours [54].

If we fix our interestto a singlepoint of time, thetraffic
still variesat different placesdue to the immensehetero-
geneityof the Internet: the diversity of topology andlink
properties, different protocol usageand user populations
in differentnetworks. For example, the traffic at different
websitesmightbedifferent dueto theircontent differences.
The distribution of file sizein a tracedistribution site like
Internet Traffic Archive [43] is not heavy-tailedbut instead
is bimodal,wheresmallfilesaccount for webpagesthatde-
scribetracesandlargefiles for tracesthemselves.Recently
Caoetal. showedthat,dueto thelower link utilizationand
higherdegreeof multiplexing, thetraffic in backbone-style
links tendsto havehighernon-stationaritythantraffic in the
accesslinks [12].

Even when we only look at one particular part of the
network at a singlepoint of time, network traffic canstill
show greatvariations just in termsof direction of flows.
For example, inbound traffic andoutboundtraffic seenat
theingressor egresspointsof thenetwork typically differs
for thesamereasons astraffic differs by places;bandwidth
asymmetriesof up to 10:1arenotuncommon[3].
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Rapid� andunpredictablechangeof traffic will threatento
makesomeresearchobsoletebefore it is finished.Someas-
sumptions about traffic mix, topology or protocols might
only be valid for less than a few years. However, take
today’s most widely-used web modelsas an example, it
still takesyearsfrom collectingtraces,analyzing the data
to finally generating andimplementingmodels [6]. Three
stagesare involved in this time-consuming process:trace
collection, designof traffic modelandmodel parameteriza-
tion from measurement. In prior work, thesestageshave
typically beencombined,with eachnew experimentrequir-
ing developmentandparameterizationof new models.We
insteadsuggestthatasufficiently powerful model canaccu-
ratelysimulatea wide rangeof webtraffic, andthenshow
how thatmodel canbeautomaticallyparameterized.

Furthermore,theexistingmodelsareall basedonasmall
setof tracescollectedfrom oneparticular part of the net-
work within someparticular time period. Consideringthe
Internet’s greattechnicalandadministrative diversity and
immensevariations over time regarding how applications
areused,it is notobviousthatonecanmodel his traffic ac-
curatelybasedon the modelsderived from measurements
takenpreviously from otherpartsof thenetwork.

Motivatedby the challengeand difficulty of modeling
constantly-changing Internet traffic, we have developed
methodologiesandtoolsthatallow usersto quickly param-
eterizetraffic modelsbasedon themeasurementsandgen-
eraterealisticcontemporary traffic in theirsimulations. Our
approachdoesnotmakeany underlyingassumptionof traf-
fic properties(for example,heavy-taileddistributionfor file
size/transmissiontime) andhenceis moreapplicablethan
existing approachesin coping with the heterogeneousna-
tureof theInternet traffic.

Opposed to traditional trace-replay techniques which
typically ignorethefact that traffic frequentlyreactsto the
network’scurrentproperties,ourapproachesfocusonchar-
acterizingsource-level patternin which the data is sent.
Wehavedevelopedtoolsandmethodologies to support this
trace-driven application-level modeling approach for gen-
eratingsynthetictraffic. Our initial studiesemphasizetwo
typesof traffic, webandFTPtraffic, andshow thatwe can
accuratelygeneratethesimulationmodelfrom live datain
a timely fashion,thatallows usersto simulatetheir current
traffic several times per day. Potentialapplications of a
rapidmodelparameterizationtool will include traffic plan-
ning andprovisioning, on-linesimulationfor network con-
trol, input to network prediction algorithm andgeneration
of high-speedsynthetictraffic [27].

Our work hasthreeprimaryresults.First, we strengthen
Floyd and Paxson’s argumentsby showing that network
characteristics not only changeover time but also show
greatvariations in otherdimensions suchaslocationsand

flow directions(Section4). Second, we proposea method-
ology for rapidly parameterizing traffic models. This ap-
proachemploys a trace-analysistool that infers traffic and
topology characteristics,and a CDF-basedtraffic model
that can capture widely varying web traffic (Section6).
Finally, we show how our models can be automatically
andrapidly parameterizedfrom traces,allowing a userto
quickly instantiatemodelsthatrepresentcurrent,local traf-
fic (Section5).

2 RelatedWork

Our work builds on prior work in traffic modeling, trace
compaction, workload generation and bandwidth estima-
tion.

2.1 Traffic modeling

Floyd and Paxsonpointed out, to cope with the con-
stantly changing natureof Internet traffic, it is important
to capture theinvariantsof thetraffic in modeling theInter-
net[21]. Our methodology is basedon structuralmodeling
approachwhich emphasizeson characterizing source-level
patternin which datais sent. For most applications, the
application-level pattern(suchasrequest/reply patterns in
webtraffic) in whichdatais sent,doesnotreactthenetwork
dynamics. In thisaspect,weconsiderourmodelshavecap-
turedtheapplication structureinvariantin thetraffic.

Thestructure we chooseto modeluserbehaviors of web
traffic is similar to previouswork of Mah[34] andCrovella
et al. [6, 16]. We alsoadoptMah’s approachin termsof
describing traffic basedon CDF of realdata,which hasthe
advantageof beingableto representarbitrary distribution.

2.2 Trace compaction

Tracecompactiongenerally refersto thetechniquesused
to retrieve “relevantcharacteristics”from thetrace. In this
aspect,we have taken similar approachesas the previous
studiesof Feldmannet al. [19] andSmithet al. [50] in the
sensethatwe alsomanage to reconstructapplication-level
statistics(eg. request/response)of web traffic on-the-fly
from individual packetscaptured by the sniffer. However,
in Feldmann’s work, it requires specialhardware andsoft-
wareto beableto extractfull HTTP level information.The
methodology we adopt to construct webmodelis closerto
Smith’s work wherethey reconstructthedataexchangesin
theHTTPconnectionsbasedononly theTCP/IPheaderin-
formation. (In fact,wehaveincorporatedpartof theircodes
into our tool for parsingTCP/IPheaderinformation.) Ad-
ditionally, wealsomodel pathcharacteristics(hencethere-
sultedmodelscanbedirectlybuilt into thewidely usedNS
network simulator [8]) and provide more comprehensive
validationmechanism including a wavelet-basedanalysis.
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Further� more,we includeanother dominant traffic, namely
FTPtraffic, in ourstudyexceptfrom webtraffic whichpre-
vious work hasfocusedon, andautomatethe whole pro-
cessfrom traceanalysisto finally implement andvalidate
themodels.

2.3 Workload generation

Researchon Internet workloadgenerationhastypically
focusedon creatinggenerative models basedon packet
tracesof various applications. Several studieshasadopted
this approachto developworkloadgenerators for webtraf-
fic including SURGE[6], IPB [35] andwork at RPI [53].
Their work focusedon fitting statisticsderived from a set
of tracesto somewidely-useddistributionswhich arethen
usedto generatesynthetictraffic workload.

However, first, their approachesfrom collecting traces,
analyzing thedata,to finally generatingandimplementing
models taketoolong, (eg. in Crovella’sstudy[6], it requires
modification of browser codes in order to captureweb-
user’s browsing behavior) considering the network condi-
tionsareconstantlychanging. Giventhat Internet traffic is
changingconstantly, it is generallynotapplicable to charac-
terizethecurrent traffic simplybasedonstatisticscollected
yearsagofrom differentpartsof network. Second, evenwe
assumetheexistenceof someuniversalstatisticalproperty
(eg. heavy-tail distribution of file size), parameterization
is still a non-trivial job for the previous models which are
fairly static.

On thecontrary, ourapproachis capable of parameteriz-
ing thetracesandgenerating simulationmodels in a timely
fashionthat allows the usersto studytheir current traffic.
Additionally, exceptfrommodeling user/applicationbehav-
ior, our work alsomanagesto estimatepathcharacteristics
(namely, delayandbottleneckbandwidth)whichareimpor-
tantparameters to drive simulation.

2.4 Bandwidth estimation

Therehavebeena numberof techniquesproposedin the
areaof bandwidth estimation.In general, thesetechniques
canbeclassifiedinto two groups:singlepacketandpacket-
pair techniques.Thename refersto thenumberof packets
thatareusedin asingleprobe.

Single packet techniquesare basedon the observation
that slower links will take longer to transmit a packet
thanfasterlinks. If we know how long a packet takes to
crosseachlink, the bandwidth of that link can be calcu-
lated.There havebeena number of implementationof sin-
gle packet technique including Jacobson’s pathchar [26],
clink [17], utimer [15] andpchar [36]. Packet pair tech-
niquesareoftenreferredto aspacketdispersion techniques.
A packet experiencesa serializationdelayacrosseachlink
due to the bandwidth of the link. Packet pair techniques

sendtwo identicallysizedpacketsback-to-back,andmea-
surethedifferencein time betweenthepacketswhenthey
arriveat thedestination. All recent researchinto packetpair
techniquesincludebprobe,cprobe [13], tcpnanly[46] and
theworkof Lai etal. [28, 29, 30]. Therecent packettailgat-
ing technique [29] proposedby Lai andBaker canbecon-
sideredahybrid of bothsingleandpacketpair techniques.

The approach we adopt to estimatebottleneck band-
width is in spirit a combination of Sender BasedPacket
Pair (SBPP)andReceiver Only Packet Pair (ROPP),asde-
scribedin [30], dueto the fact we only take passive mea-
surements atonesinglepointof thenetwork.

3 Background

In this sectionwe will describethedatasetweusein this
studyandtwo statisticaltechniques,including waveletscal-
ing plot andKolmogorov-Smirnov goodness-of-fittest,that
helpusvalidatethemodels.

3.1 Traces

Thedatausedin ourstudyarefromtwosources. Onewas
collectedonthewebserverof InternetTraffic Archive(this
setof tracewill bereferredto as“ITA” in this paper). The
otherwasrecordedat a 100MbpsEthernet link connecting
the InformationScienceInstituteto therestof the Internet
(referredto as“ISI”).

ITA tracewascollectedusingpublicly availablesoftware
tcpdump. ISI trace was captured via tcpdpriv [41] util-
ity whichanonymizeslibpcap-format (sameformat usedin
tcpdump) traces.tcpdpriv cancollecttracesdirectlyorpost-
processthem after collection using a tool like tcpdump.
Both tracescapturedall inbound andoutboundtraffic but
only TCP/IPheader informationwasrecorded for reasons
like privacy andstorageoverhead.Notethatthetraffic vol-
umeof ITA traceis significantlylowerthanthatof ISI trace
andmainlyconsistsof outboundtraffic.

The ITA trace was collectedduring a 24-hour period
startingfrom 15:20Nov 6, 2001, andshows obviously bi-
modal distribution of traffic mix consistingprimarily of
HTTP andFTPtraffic. TheISI traceswascollectedduring
six one-hour samplingperiods eachday over a seven-day
periodstartingfrom Nov 9, 2001. Theone-hoursampling
periodswerechosensomewhat arbitrarily with theintention
to capture thevariation of traffic betweendifferent time of
theday.

The typical link utilization during collection period is
around 16% to 23% and there is no packet drop in our
measurement. For simplicity, in this paperwe only show
the analysisof two setsof one-hour long ISI datawhich
werecollectedat different time of thesameday. Onewas
recorded startingat 2:00 pm Nov 13 2001(referred to as
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Trace ITA ISI
Date Nov 2001 Nov 2001

Duration(hr) 24 42
Total Packets 2.5M 218M

Bytes 2.4G 187G
TCPPackets 2.5M (100%) 143.9M (66%)

Bytes 2.4G(100%) 122G (65%)
UDP Packets 3 (0%) 69.8M(32%)

Bytes 150(0%) 65G(35%)
HTTP Packets 0.1M (4%) 50M (23%)

Bytes 50M (2%) 71G(38%)
FTPPackets 2.4M (96%) 39M (18%)

Bytes 2.35G(98%) 64G(34%)

Table1: Summaryof ITA andISI traces

ISI-1) andtheotherwasrecordedstartingat 7:00pm Nov
13 2001 (referredto asISI-2). Intuitively, onecapturesthe
traffic in anormal businesshour andtheothershows traffic
in after-hours.Thedetailsof tracesaregivenin Table1.

3.2 Wavelet ScalingPlot

Oneof the tools we usefor validation, the scalingplot,
is a wavelet-basedanalysis [1] that utilizes wavelet trans-
form of a timeseriesto studyits globalscalingproperty, by
which we meanthe statisticsof the time seriesviewed at
eachresolution level or scale,takenasa function of scale.
Moredetailsof this techniqueweredescribedin [20, 25].

To determine theglobal scalingpropertyof data,weplot
log(��� ), where �	� is the average energy at scale 
 , as a
function of scale
 . Theenergy level � � is corresponding
to the level of irregularity or burstinessof sampleddata.
Thehigher � � is, themoreburstythetraffic is at timescale
j. Theresultingscalingplot canbeusedto determinequali-
tativeaspectsof thescalingbehavior of theunderlyingtime
series,and identify highly regular traffic patterns that are
well-localizedin scale. For example, this wavelet-based
analysiscanuncoverthedominantRTT behavior associated
with thepacketsthatmakeup themeasuredtraffic. For our
purposein this study, we validateour modelby comparing
its scalingplot againstthe trace’s andseeif they qualita-
tively matchclosely.

3.3 Kolmogorov-Smirnov goodnessof fit test

We useKolmogorov-Smirnov goodnessof fit test [37]
to formally determine if two setsof traffic data are sig-
nificantly different from eachother, in addition to visu-
ally examining theirCDF plots.TheKolmogorov-Smirnov
D valueis the largestabsolutedifferencebetweenthe cu-
mulative distributions of two setsof data. We first com-

puteD valueof two datasetsandthencompare the result
to the critical value of D. For large number of samples,
the critical value at the .05 level significanceis approxi-
mately �� 
 , wheren is thesamplesizeandc is a constant
that is distribution-dependent. For example, if the tested
datacomesfrom a normal distribution then ������� ��� [49]
( ������� ��� for exponentialdistribution [31] and ������� ���! 
for Weibull distribution [14]) If thecomputedD is lessthan
thecritical valuethenweacceptthenull hypothesisthatthe
distributions of two datasetsarenot statisticallydifferent
from eachother. Therearetwo limitationsto applying K-S
test to our data. First, we do not make assumptions about
data’s distribution, andso we cannot directly apply K-S
test sincewe cannot determine � . However, comparison
of theabsolutevalueof D is appropriate,andwe quantita-
tively usethe most restrictive c ( �"�#� �$�% ) asan approxi-
mationto perform the test. In otherwords, at a 0.05level
significanceandfor 10000samples,wewill claim two data
setsarestatisticallydifferentif themaximumabsolutedevi-
ationbetweentheir cumulative distributions is greaterthan
0.00874. Second,asreported by previous studies[44, 6],
it is difficult to apply goodness-of-fit test for large empir-
ical dataset (it is well known in the statisticscommunity
that largedatasetsalmostnever have statisticallyexactde-
scription). Thereforewe alsoadoptsimilarapproachasde-
scribedin previous work by usingrandom sub-samples in
our test [7, 44, 6]. Thenumber of samples(whichareran-
domlypicked) weusefor K-S testare10000throughout the
paper. (In otherwords,we comparethecomputedD value
with a critical valueof 0.00874in eachtest.)

4 Traffic is differ ent any which way you look

In this section,we show Internet traffic looksdifferently
both in time andspacedomain after examining the traces
we obtainedfrom different locations andat different time.
Theseobservations stressthe importance of beingable to
parameterizemodelsfrom new datato account for changes
of thetraffic.

4.1 Metrics usedfor comparison

Wedetermine if two setsof dataaredifferent by compar-
ing themqualitatively andquantitatively.

By qualitatively, we visually inspectthe CDF plots of
first-order statisticsat threedifferent levels (i.e. packet-,
flow- anduser-level statistics)andthewaveletscalingplots
betweenthe traceandmodel to seeif they matchclosely.
Here we define a flow as an unidirectional seriesof IP
packet traveling betweena sourceanda destinationIP/port
pair within a certainperiod of time, andan unique IP ad-
dressasa user. Specifically, themetricswe usefor com-
parisonincludepacket inter-arrival time, packet size,flow
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Protocol Inbound Outbound
NNTP(% packets) 39.4% 8%

(% bytes) 64.4% 0.02%
(% no. of flows) 0.06% 0.08%

HTTP(% packets) 15.8% 27.6%
(% bytes) 20.0% 50%

(% no. of flows) 38.5% 35.8%
DNS(% packets) 29.9% 31.6%

(% bytes) 4.8% 4.8%
(% no. of flows) 51.4% 30.1%
FTP(% packets) 5.5% 20.4%

(% bytes) 4.1% 33.7%
(% no. of flows) 8.7% 26.2%

OTHERS(% packets) 9.4% 20.4%
(% bytes) 6.7% 13.3%

(% no. of flows) 1.5% 7.8%

Table2: Summaryof protocol mix of in ISI-1 traffic

duration,flow size,flow inter-arrival,userinter-arrival, user
duration, protocol mix andtraffic volume. We only show
theCDFsof flow statisticsandwaveletscalingplot in this
paperfor brevity sincethey arelessdependenton theden-
sity of traffic.

By quantitatively, we perform theKolmogorov-Smirnov
Test, as describedin Section3.3, to seeif the distribu-
tionsof traceandmodel arestatisticallydifferentfrom each
other.

4.2 Traffic seenin differ ent dir ection

First we look at traffic flows in different direction (i.e.
inboundtraffic versusoutboundtraffic) duringthesamepe-
riod of time. We found inbound traffic andoutboundtraffic
aresignificantlydifferent in termsof protocol mix andvia
comparisonof first-order statisticsandwaveletanalysis.

Theprotocol mixesfor inbound andoutboundtraffic of
ISI-1 dataareshown in Table2. Thetraffic mix is notice-
ablydifferentin different direction, wheretheinboundtraf-
fic is dominatedby News traffic while theoutbound traffic
mainly consistsof web andFTP traffic. Note that NNTP
traffic in outbounddatamainly consistsof ACKs,which is
thereasonit contributesvery little in termsof bytesto the
total traffic volume. In termsof the number of flows, the
majority of theflows arecontributedby DNS traffic in in-
bound traffic while by webtraffic in outbounddata.

We next look at the first-order statistics. The compari-
sonof flow statistics,including flow duration, flow sizeand
inter-arrival time of inboundandoutbounddataareshown
in Figure1. Outboundtraffic hascomparatively longerflow
durationandsizethaninboundtraffic, whichis possiblydue
to thefact thatthemajority of theflows arecontributedby
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Figure2: Comparison of wavelet scalingplot of inbound
andoutboundtraffic in ISI-1 data

DNStraffic in inboundtraffic while by webandFTPin out-
bound traffic, asshown in Table2. Although in Figure1(b)
andFigure 1(c) the CDF plots for outbound and inbound
traffic look similar in thetail of thedistributions(lower tail
in flow size and upper tail in flow inter-arrival), none of
thempassesthe Kolmogorov-Smirnov test. The D values
for Figure 1(b)andFigure1(c)are0.121 and0.097 respec-
tively, whicharelarger thanthecritical valueandhencefail
the test. (Thenumber of sampleswe useare10000 which
correspondsto a critical valueof 0.00874.)

Thecorrespondingwaveletscalingplot is shown in Fig-
ure2. Weobservethereis apronounceddip ontheorderof
about128ms,which reflectsthe underlying periodiccom-
ponent (i.e. RTT) for outboundtraffic, while thedominant
RTT for inboundtraffic is onarelativelysmallertimescales
(about 40ms).

All the statisticsconclude that ISI-1 inbound and out-
bound traffic arenoticeablydifferentfrom eachother.

4.3 Traffic seenat differ ent time

Wenext lookattwosetsof ISI traffic capturedatdifferent
time(i.e. ISI-1andISI-2). Hereweconcentrateonthecom-
parisonof outboundtraffic. SinceISI-2 datawasrecorded
during the time whenmostpeople have left the office, in-
tuitively the inboundtraffic in ISI-2 will bedifferent from
ISI-1 becauseof its smalleruserpopulation. (For inbound
traffic, ISI-1 has517userswhile ISI-2 hasonly 128users.
For outboundtraffic, ISI-1 has16447 usersandISI-2 has
14259 users.)The following statisticalcomparisonsshow
thatISI-1 andISI-2 outboundtraffic aredifferent from each
other.

First we look at the traffic mix, as shown in Table 3.
Although large percentagesof traffic in both datasetsare
madeup by webandFTP traffic, but oneis dominatedby
FTPwhile theotherby webtraffic.
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Figure1: Comparison of flow statisticsin ISI-1 data

Protocol ISI-1 ISI-2
NNTP (% packets) 8% 10%

(% bytes) 0.02% 0.02%
(% no. of flows) 0.08% 0.09%

HTTP (% packets) 27.6% 17.5%
(% bytes) 50% 24.0%

(% no. of flows) 35.8% 32.6%
DNS (% packets) 31.6% 41.0%

(% bytes) 4.8% 11.4%
(% no. of flows) 30.1% 34.5%
FTP(% packets) 20.4% 22.1%

(% bytes) 33.7% 45.7%
(% no. of flows) 26.2% 31.3%

OTHERS(% packets) 20.4% 9.4%
(% bytes) 13.3% 18.9%

(% no. of flows) 7.8% 7.0%

Table3: Summaryof protocol mix of ISI outboundtraffic
at differenttime
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Figure4: Waveletscalingplot for ISI-1 andISI-2 outbound
traffic

The distributions of flow statisticsincluding flow dura-
tion, flow sizeandinter-arrival timefor ISI-1 andISI-2 data
areshown in Figure3. Theflow durationin ISI-2dataissig-
nificantly longerthanthatin ISI-1, asshown in Figure3(a),
which is probably due to that ISI-1 datais dominatedby
webtraffic while ISI-2 is dominatedby FTPflows. In terms
of flow size,therearemore shortflows in ISI-2, which is
probablybecausethereis moreDNStraffic andshortHTTP
connectionsin ISI-2 data,asshown in Table3.

Again, although the CDF plots betweenISI-1 and ISI-
2 in Figure 3(b) andFigure3(c) have similar shapes,they
all fail theKolmogorov-Smirnov test(theD valuesare0.09
and0.14respectively, for 10000 samples).

The wavelet scalingplot, asdepictedin Figure4, indi-
catesISI-2 traffic hassmallerandmoreheterogeneousRTT
behavior shown asadip stretchesfrom 8msto 128mswhile
ISI-1 datahasa maindip at 128ms.

All the statisticalcomparisons indicate that ISI-1 out-
bound traffic is different from ISI-2 outboundtraffic.
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Figure3: Comparisonof flow statisticsfor ISI outboundtraffic at differenttime

4.4 Traffic seenat differ ent location

Finally we look at the comparison betweenISI-1 and
ITA dataandshow traffic is differentat different locations.
Again, we only focus onoutboundtraffic.

In termsof protocol mix, ITA dataonlyconsistsof HTTP
andFTPtraffic, which is obviously different from thepro-
tocolmix in ISI-1 traffic.

Thedistributions of flow statistics,including flow dura-
tion, flow sizeandinter-arrival time for ISI-1 andITA data
areshown in Figure5. We seeISI-1 haslonger flow du-
ration but smallerflow size. A closelook shows that the
long flows in ISI-1 mainly arecontributedby DNS, NTP
(periodic timesynchronizationbetweenservers)andNNTP
traffic (periodic newsexchangesbetweenservers).ITA data
haslargerflow sizebecauseit mainly consistsof bulk FTP
transfer. It is not surprisingthat ITA hasmuchlargerflow
inter-arrival time sinceits traffic is muchmoresparsethan
ISI-1. We did not apply the Kolmogorov-Smirnov Test to
ITA andISI-1 datasincetheirCDF plotsareobviouslydif-
ferent.

In thewaveletscalingplot, asshown in Figure6, we ob-
serve thereis a maindip at time scaleof around 500msfor
ITA data,which is about 4 timeslarger thanthe128ms in
ISI-1 data.A closerlook shows ITA traffic is dominatedby
a few FTPtransfersbetweenITA siteandsomehostsin the
US westcoastandEurope.

All thestatisticalcomparisonshereshow that traffic can
bedifferentat different sitesbecauseof thenature of their
contents difference.

Theabove discussionconcludesthatnetwork traffic not
only changesover time but alsoshows greatvariations in
differentdirectionsanddifferentlocations. Wedemonstrate
the differencescanbe dueto a variety of reasonssuchas
user behavior, path characteristics and applicationusage
etc., and hence it is difficult to obtain a “general” traffic
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model.

5 RAMP: RApid Model Parameterization

Motivatedby the previous observation that it is impor-
tant to quickly parameterizemodels from new datato ac-
countfor thediversity of thetraffic, we designa tool called
RAMP. RAMP canconvert live measurementsinto simula-
tion models which thenbe usedto generate realisticsyn-
thetic traffic. In this sectionwe describeour approaches
from analyzingthe traceto finally generatingthe simula-
tion model.

Our approachis to automatically generatestatisticsthat
modeluserbehaviors andnetwork pathcharacteristics by
analyzing TCP/IPheader informationcapturedin themea-
surements. The resultedmodelwill thenbe built into the
widely-usedNSnetworksimulator[8] andvalidatedagainst
theoriginal tracevia wavelet-basedanalysisandfirst order
statisticalcomparison.
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Theinput of RAMP is atcpdump-formatfile, recordedat
asingletappointof thenetwork, thatcontainsonly TCP/IP
headerinformation. Theoutputof RAMP is a setof CDF
(CumulativeDistributionFunction) filesthatmodelthecor-
responding traffic, asshown in Figure7. Specifically, the
CDFfilesconsistof two typesof data.Onesetof CDFfiles
model user/application level statisticsof thetraffic, suchas
usersessionarrival, page/filesize etc. Currently RAMP
only supports web and FTP traffic which are among the
mostdominant typesof traffic [39] of thepresent Internet.
The otheronemodelspathcharacteristicsof the network.
In particular, we focus on characterizing RTT andbottle-
neckbandwidth of the measuredtraffic sincethey areim-

portant parametersfor driving network simulation. Typi-
cally it takestensof minutesfor RAMP to processa trace
file with thesizeof severalhundredsmegabytes.

5.1 User and application behavior
characterizat ion

In this sectionwe describethetechniqueswe employ to
characterizethesource-levelbehaviorsbasedontheTCP/IP
headerinformationcapturedin the trace. We focus on the
analysisof webandFTPtraffic which areamong themost
dominanttypes of traffic of thepresent Internet.

5.1.1 Web traffi c

Herewe present themethodologyusedto characterize the
importantcomponentsof webtraffic basedon only the in-
formation in theTCP/IPheadersandknowledgeof theTCP
andHTTPprotocol.

To reconstruct the data exchanges in the HTTP con-
nectionsbasedon only the informationin TCP/IPheader,
we adopta similar approachandheuristics from previous
work [50]. Oneobservation in their studyis thatwhenthe
server receivesa HTTP requestit will sendTCPacknowl-
edgments (ACKs) indicatingthe in-order byte sequenceit
hasreceived,andall of therequestmessageswill beACKed
before thecorrespondingHTTP responsedatais sent(note
that herewe assumethereis no pipelining in use). Hence
we can infer the size of request by the amount of ACK
valueadvancesandthe sizeof responseby the amount of
datasequencenumber advances.As theexample shown in
Figure8, theACK-only segmentfrom theserver following
theSYN+ACK segment indicatesthefirst requestwas325
bytesin size. In thefollowing segments,thedatasequence
numbersadvanceto 2458 (thesizeof first response)with no
further changesin theACK values.In thenext segment,the
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advanceof ACK numberindicatesthesizeof thesecondre-
questwas349bytes(675- 326). In thefollowing segments,
thedatasequencenumbersadvancewith nofurther changes
in the ACK values. The sizeof secondresponseis 11756
bytes(14124- 2458).

Adopting similarheuristicsasthosedevelopedoriginally
byMah[34] andBarfordandCrovella [6], weassumeanew
pageis requestedaftersomeperiodof idle time (or “think”
time) at theclient. We identify idle periodsin which either
the client hasno establishedTCP connectionor no estab-
lishedconnection hasanactive request/responseexchange
in progress.

Ourwebtraffic model is similar to thosedevelopedorig-
inally by Mah[34] andBarfordandCrovella [6]. However,
we found it is important, but not capturedby the previous
studies,to model the TCP window size and the usageof
persistentconnection.

It is important to model TCPwindow sizein order to ac-
curatelycharacterizesending rateof theservers.For exam-
ple, asshown in Figure9, morethan80%of clientsin the
ISI1 inbound traffic usewindow sizelessthan16K. Using
smallwindow sizewill limit theservers from fully utilizing
increasingly-popularbroadbandnetworks suchasDSL and
cablemodem.Notethatwedid notobserveany connection
thatusesTCPwindow scaleoptionin our traces.

Motivatedby the increasingly important role of persis-
tent connection in web traffic, as reported by previous
study [50], we also model the persistentconnectionused
in HTTP/1.1, As shown in Table4, although only lessthan
20% of connectionsarepersistent,they account for about
50% of all objectstransferred and more than 20% of all
bytestransferred. This clearlyshows persistentconnection
playsanimportantrolein thedynamicsof TCPconnections
for theWeb. In ourdatasets,over 50%of persistentconnec-
tionsareusedfor threeor morerequest/responseexchanges

Protocol Inbound Outbound
Number of connections 26426 4425

objects 44399 7187
bytes 318.7MB 424MB

Persistentconnections 4756 (18%) 708(16%)
ObjectsonPersistent 22841(51%) 3506 (49%)

BytesonPersistent 121.5 MB (38%) 85.4MB (20%)

Table4: Summary for the usageof HTTP persistentcon-
nectionsin ISI-1 traffic

and10%of themcarrymorethannine(thegraphs arenot
shown here). Our resultfor theusageof persistentconnec-
tionsshowsstrongagreementwith recentstudies[50]. Note
that although we have observed in our datasetsthat some
browsers still usemultipleconcurrentconnectionsto trans-
mit onesinglepageasreportedin Balakrishnan’sstudy[4],
we did not model that sinceit accounts for only lessthan
two percentsof totalnumber of pagesin our traces.

5.1.2 FTP traffic

In thissectionweshow thatit is non-trivial to extractFTP
flowsin thetraces.(In particular, it is notsufficient thatone
only looksat theflowsthatorigin from or destineto port20
or 21.)

For FTP traffic, we assumean unique IP addressrepre-
sentsa single humanuserand a new TCP connection is
usedfor eachfile transmission.This heuristics allows us
to identify thepointswhenclientstartsanew file. TheFTP
protocol [47] specifiesthat the client first connects from a
random unprivilegedport ( 021��3��45 ) to theFTPserver’s
command port, port 21. The client thenstartslisteningto
portN+1 andsendstheFTPcommand“PORT N+1” to the
FTPserver. Theserverwill thenconnectbackto theclient’s
specifieddataport from its localdataportwhich is port20.
This is alsoknown asActive-modeFTP.

However, from our datasetswe observed that thereare
significantnumber of clientsareusingPassive-mode FTP,
in which the client initiatesboth control anddataconnec-
tions to theserver. Whenopening anFTPconnection,the
client openstwo randomunprivilegedports locally ( 061
�7��45 andN+1). The first port contactsthe server on port
21, but insteadof then issuinga PORT commandandal-
lowing theserver to connectbackto its dataport, theclient
will issuethePASV command.Theresultof this is thatthe
server thenopens a random unprivilegedport ( 8�19�3�$4% )
andsendsthe PORT P command backto the client. The
client then initiates the connectionfrom port N+1 to port
P on the server to transferdata. To identify FTP traffic,
we first locateFTP clientsby looking at thoseconnected
to server port 20 and find out what are the control ports

9



997826350.2 96819 10.1.7.14.80 > 10.3.162.34. 4645: S 2278247361:2 278247361(0) ack 132534867 win 8760
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997826350.4 30730 10.1.7.14.80 > 10.3.162.34. 4645: P 1461:2458(99 7) ack 326 win 8760
997826367.5 49809 10.1.7.14.80 > 10.3.162.34. 4645: . 2458:3918(14 60) ack 675 win 8760
997826367.5 49942 10.1.7.14.80 > 10.3.162.34. 4645: P 3918:5378(14 60) ack 675 win 8760
997826367.5 50065 10.1.7.14.80 > 10.3.162.34. 4645: P 5378:6838(14 60) ack 675 win 8760
997826367.5 65980 10.1.7.14.80 > 10.3.162.34. 4645: . 6838:8298(14 60) ack 675 win 8760
997826367.5 66105 10.1.7.14.80 > 10.3.162.34. 4645: . 8298:9758(14 60) ack 675 win 8760
997826367.5 66228 10.1.7.14.80 > 10.3.162.34. 4645: P 9758:11218(1 460) ack 675 win 8760
997826367.5 81947 10.1.7.14.80 > 10.3.162.34. 4645: . 11218:12678( 1460) ack 675 win 8760
997826367.5 82068 10.1.7.14.80 > 10.3.162.34. 4645: P 12678:14124( 1446) ack 675 win 8760
997826397.5 49684 10.1.7.14.80 > 10.3.162.34. 4645: F 14124:14124( 0) ack 675 win 8760

Figure8: tcpdumptracethatshows two request/responseexchangesin apersistentHTTPconnection

(N) they use.We thenlook for theconnectionsoriginating
from the neighboring ports (N+1) of client’s control port
andclassifythemasFTPdataconnections.

5.2 Characterization of network path properties

In thissectionwedescribehow doweestimatethetopol-
ogyinformationfrom themeasurement.Particularly wefo-
cuson characterizing the round trip delayandbottleneck
bandwidth sincebothof themareimportantfor driving the
simulation.

5.2.1 Round-trip Delay

We determine the RTT of eachTCP connectionin our
tracesby computing the differenceof timestampbetween
datapacket andthe first ACK packet which hasthe same
sequence number. However, this approachis not applica-
blefor packetscapturedat thedatareceiversend,wherethe
timestampdifferencebetweendataandACK doesn’t reflect
thepathdelay. For situationwheretheclientsarenearthe
measurementpointwhile serversareat theremoteend(eg.
theinbound traffic), we rely on thethree-wayhandshake at
the startof eachTCP connection to calculatethe delayof
the path. In otherwords,we compute the RTT by taking
the timestampdifferencebetweenthe SYN packet andits
corresponding ACK. For eachconnectionwe take themin-
imum of RTT samplesasanapproximationof propagation
delayof thepath(afterdividing theRTT by 2) andconsider
thedeviationsfrom theminimum RTT asvariances caused
by queuing delayandtransmissiondelay. We usethis ap-
proximationto driveoursimulation.

5.2.2 Bottleneckbandwidth

Our tracescontains both outbound and inbound traffic.
For outbound traffic, we use SenderBasedPacket Pair
(SBPP)[45] to computethebottleneck bandwidth between
the local serversandthe remoteclients. That is, we esti-

matethespacingbetweenapairof back-to-backTCPpack-
etsafter passingthe bottlenecklink by examining the ar-
rival timesof their correspondingACKs (for delayed-ACK
packets,we estimatethe spacingbetweenthe secondand
the forth packets of a group of 4 back-to-back packets).
For inbound traffic, we rely on Receiver Only Packet Pair
(ROPP)[28], which usesthe arrival timesof two consec-
utive full-size packets at the receiver to estimatethe bot-
tleneckbandwidth betweenremote servers and the local
clients.Wealsoapplysimilartechniquesto filter noisesuch
asdensityestimationasdescribedin [30].

5.3 Structural simulation model

Traditional blackboxapproachestypically treatthemea-
surement as a time series. They focus on capturing the
statisticalcharacteristics (particularly autocorrelation and
marginal distribution) of empirical datato modelnetwork
traffic, basedon various approachessuchasMarkov pro-
cess,ARIMA, TESetc.[24, 33, 48, 42, 32, 18, 23, 32, 40].
Although beingableto reproducethemeasuredtraffic cor-
rectly, theseapproachesgenerally ignore the underlying
network structureand henceprovide little or no insight
aboutthe observed characteristicsof measured traffic and
its underlying causes.On the otherhand, structuralmod-
eling, first discussedby Willinger [52], proposesthat we
shouldimplicitly takeintoaccount thecomplex hierarchical
structureof application andintertwinednetworking mecha-
nismsin order to accuratelyreproducethetraffic while still
providing aphysicalexplanationfor observedphenomena.

Opposedto trace-replay, thereareseveraladvantagesfor
this approach:: Someprotocolsmustbe modeledasend-to-endenti-

tiesin ordertocapturethefeedbackeffectsuchasTCP
congestioncontrol, while trace-replay techniquestyp-
ically ignorethe fact that traffic is frequently shaped
by thenetwork’s currentproperties,: Internet protocolspresentvery rich, multi-fractal be-
havior acrossa rangeof time scales. Simple trace-
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Figure10: Multiple levelsof feedbackin webtraffic

replayapproachwill fail to capturethis richness.: By capturing the detailsof datatransferin an algo-
rithmwecanreproducethattraffic with muchlessstor-
agerequirementsthantrace-replay.

As shown in Figure 10, we can seethereare multiple
levelsof feedbackeffectwithin thehierarchical structureof
webtraffic, andeachlevel operatesat differenttime scales.
For example, TCP hasits own congestioncontrol mech-
anismwhich operatesat the time scaleof seconds,while
HTTPhastherequest-responseloopfunctioning at thetime
scaleof tensof seconds.Hence,it is important to repro-
ducethe structure of applicationin the model in order to
accuratelyreproducethetraffic.

Baseon the structural modeling approach,we designa
three-level simulationmodelto characterizewebtraffic and
two-level model to characterizeFTPtraffic asshown in Ta-
ble 5 andTable6. Note that we only modelthe datacon-
nections of FTP traffic for simplicity sincethe bandwidth
usageof control channel is negligible (typically lessthan
onepercent of total traffic in ourdatasets).

Ourwebtraffic model is similar to thosedevelopedorig-
inally by BarfordandCrovella [6]. Additionally, wemodel
TCP window sizeandthe usageof persistentconnection.
We alsomodel HTTP requestsizemotivatedby the trend
in usinglarge requestsdueto the increasingpopularity of
“web email” [50].

6 Validation of RAMP

To validateif RAMP accuratelyreproducethetraffic un-
derstudy, we incorporateits outputinto ns-2simulatorand
comparetheresultof simulationagainst theoriginal traces.
To understandif RAMP can perform as well as existing

work in termsof generatingrealistic syntheticworkload,
wealsocompareRAMP againstSURGE[6], apopularweb
traffic workloadgenerator.

6.1 Comparison with original traces

In this sectionweuseISI-1 datato evaluate theaccuracy
of RAMP. Theresultshows theoutput of simulationmatch
theoriginal tracesclosely. Notethatbecausecurrently our
tool only supports web andFTP traffic, we first filter the
tracesso that they only containweb andFTP databefore
beingcomparedagainstthesimulationresult(togetherweb
andFTPtraffic account for 83.7%of thetotal traffic in term
of thenumberof bytes,and48%in termsof thenumberof
packetsin ISI-1 trace).

Thestatisticshereweusefor validationincludingthedis-
tributions of flow arrival, flow size, flow duration, packet
inter-arrival time,waveletscalingplot andtheapplication-
specificparameters,suchaspagesize,pagearrival, object
size(for webtraffic), file size,file arrival (for FTPtraffic),
userarrival anduserduration. Again, herewe only show
outbound traffic andonly CDF plots of flow statisticsfor
simplicity (although the graphs of inbound traffic arenot
shown here, they areconsistentwith theresultsof outbound
traffic).

TheCDF plotsof flow statisticsfor ISI-1 modelarede-
picted in Figure11, which shows the modelmatchesthe
traceclosely. The Kolmogorov-Smirnov testD valuesfor
Figure 11(a), Figure 11(b) and Figure 11(c) are 0.0019,
0.0013, 0.0018 respectively. They all passthe K-S test
givena critical valueof 0.00874.

Thecorrespondingwaveletscalingplot for ISI-1 model,
asdepictedin Figure12,alsoshows largedegree of resem-
blancebetweentrace and model, suchas similar energy
value(the modelhasslightly lower energy though) anda
dip around 128ms (which reflectstheRTT of theunderly-
ing traffic).

The CDF plots of model parameterssuchas page/file
size, userarrival etc. also matchclosely (which are not
shown here), which are not surprisingthough since the
modelis directlydriven by thoseparameters.

All thestatisticalcomparisonsshow RAMP is ableto ac-
curatelyreproducetheoriginal traffic.

6.2 Comparison with SURGE

In order to understandif RAMP cangeneraterepresenta-
tive workload,we compare RAMP against anexisting traf-
fic generator, namelySURGE[6]. We demonstratethat
ourmodelparameterizationtool is capableof achieving the
samefunctionality of SURGE(i.e. generating similar traf-
fic workload like SURGE) without suffering its limitation
dueto someof its implicit assumptions.

SURGEcontainsasetof programsthatpre-computesev-
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User behavior
1. Userarrival is modeled asaPoissonprocesswith certainrate.
2. Thenumberof pagesperusersessionis randomly pickedfrom theCDF(CumulativeDistributionFunction) of trace.
3. thesourceof page arechosenfrom aCDF thatmatchesthepopularity of servers
4. Eachpageis sequentiallyrequestedby theusersasdescribedbelow.

Page
1. Pagesizeis chosenfrom a CDF
2. Theinter-arrival time of pageis pickedfrom aCDF
3. Thenumberof objectswithin onepageis pickedfrom aCDF
4. Thesizeof requestto apageis pickedfrom a CDF
5. Userdecidesa TCPconnection is usedfor multiple request/responseexchangesor a singlerequest/responseexchange

basedon the probability of persistentconnection (HTTP1.1) versusnon-persistentconnection (HTTP1.0) computed
from thetrace.In persistentconnectionmode,all objectswithin thesamepagearesentvia thesameTCPconnection.

Object
1. Theinter-arrival time of object is pickedfrom aCDF
2. Thesizeof object is pickedfrom aCDF
3. TheTCPwindow sizefor bothservers andclientsarealsorandomly chosenfrom aCDF

Table5: Structuralmodel of webtraffic

User behavior
1. Userarrival is modeled asaPoissonprocesswith certainrate.
2. Thenumberof file transmittedperusersessionis randomly pickedfrom theCDF(CumulativeDistributionFunction) of

trace.
3. thesourceof file arechosenfrom a CDF thatmatchesthepopularity of servers
4. Userstartsanew TCPconnection for eachnew file which is sequentiallytransmittedasdescribedbelow.

File
1. file sizeis chosenfrom a CDF
2. Theinter-arrival time of file is pickedfrom a CDF
3. TheTCPwindow sizefor bothservers andclientsarealsorandomly chosenfrom aCDF

Table6: Structural modelof FTPtraffic
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eraldatasetsanda multi-threadedprogramthatmakesweb
requests usingthosedatasets.Both arewritten in C. The
datasetsconsistof thedistributionmodelsof number of re-
quests,file sizes,popularity of files,embeddedobjects,file
temporal locality andOFFtime.

To validateRAMP against SURGE,we performeda lab
experimentby running SURGEfor 30 minutesandrecord-
ing the traffic via tcpdump. We thenfed theSURGEtrace
into RAMP andinspectedif the output of ns-2simulation
model from RAMP agrees with SURGEtrace. The envi-
ronment of experiment consistsof five PCsconnectedby
an10MBpsEthernetswitch. Four of theseboxesareused
asSURGEclientswhich arePentiumII/II I class(266MHz
andabove) Linux boxes. We usea PentiumIV Linux box
(1.7GHz with 750M memory) asSURGEserverwhich ran
Apachev.1.3.22.Thenumberof UE (userentity, SURGE’s
representationof awebuser)andCP(clientprocess,which
decideshow the threadsarespawn) are5 and50 respec-
tively. We ranSURGEv.1.00awith HTTP1.0.

We look at thepacket inter-arrival timeandwaveletscal-
ing plot of the outputs of SURGEandour model respec-
tively. All the statisticsmatchclosely, as shown in Fig-
ure13andFigure14.

One limitation of SURGEis that it attemptsto fit the
models into somewidely-usedanalyticfunctions (suchas
usingParetoto describethe distributions of file sizesand
off time). However, it is not universally true that all the
web traffic follow theseassumptions. For example, these
assumptions might breakfor a tracedistribution site like
ITA. We have observedthedistribution of page sizein ITA
traffic (which aremainly madeup by simpleplain HTML
filesthatdescribetracesandcollection/analysissoftware)is
notheavy-tailed,andhencecannotbemodeledbySURGE.
Thepresenceof heavy tails typically is indicated by anap-
proximatelystraightline in the tail in theLLCD plot [16],
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whichwedonotobservein ITA data,asshown in Figure15.
On theotherhand, our tool is basedon empirical distri-

butionsof traffic anddoesnothaveany implicit assumption
aboutthe distribution of the traffic, and henceit is more
flexible to copewith the diversity of the traffic. As the
waveletplot shown in Figure16, theITA model generated
by RAMP doescapturetheimportantfeaturesof ITA traffic
(suchasadip at 500msandsimilarenergy levels).

7 Performanceof RAMP

The time required for RAMP from analyzingthe traces
to finally generating the simulationmodelstypically takes
tensof minutesfor an tracewith size of several hundred
megabytes,although theprocessspeedalsodepends on the
natureof the traffic (currently RAMP only supports web
andFTP traffic) andits actualvolume. In this section,we
show thespeedof RAMP is afunctionof numberof packets
in the tracefile. Currently we support tracescaptured in
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model andtracefor ITA outboundtraffic

Trace ISI-1 ISI-2 ITA
file size(MB) 614 561 203

no. of bytes(GB) 1.0 7.3 2.4
no. of packets(M) 9.2 8.4 2.5

no. of flows(K) 506 398 1.3
processtime(min) 25 21 8

speed(thousandpackets/sec) 6.1 6.3 5.7

Table7: Processtime of RAMP for different traces

tcpdump format.
To understandwhat are the factorsthat will affect the

performanceof RAMP, we ranRAMP on a 1.7GHz Pen-
tium IV Linux boxwith 1Gmemoryfor differenttracefiles
obtainedat differenttime anddifferent places. As shown
in Table 7, we canseethe processtime of RAMP is ap-
proximately proportional to the number of packets in the
trace(andhence alsoproportional to thefile size). In gen-
eral, it takestensof minutes for RAMP to processa hour-
longtrace,allowing usersto simulatecurrenttraffic several
timesperday.

8 Limitation

In thissection,wedescribesomeinherentlimitationsthat
will affect our results.Theselimitationsinclude theuncer-
taintieswhenreconstructingHTTP level informationfrom
TCP/IPheader, incompleteflows in thetracesandthelim-
itation of estimatingbandwidth basedon passive measure-
ment.

Our methodology to infer the sourcebehavior of web
traffic is basedon the limited information available in
TCP/IP headerfor one direction of a TCP connection.
Thereareanumberof uncertaintiesarisingfrom issuessuch
aspipelining, user/browserbehavior, cachesandTCPseg-
mentre-orderingwill affect our inference,asdescribedby
Smithet al. [50]. However, we expect thesecaseswill typ-
ically only appearasvery small percentageof total traffic
andwill not noticeably affect the normal operating condi-
tion of ourmodelparameterizationtool.

We find incomplete TCP connections at the beginnings
and endsin the datasinceour tracesonly cover specific
intervalsof time (i.e. onehour). We excludedtheseincom-
pleteconnections from our analysis. However, we expect
thismighthavesomeeffectontheresultssinceit will affect
someof themodelparameters(eg. pagesizeandnumberof
objectsperpage). In our studytheincompleteconnections
account for 2-4%of thetotal connections.Sincewe ignore
theseconnections,we expectthatour modelwill underes-
timate traffic volume. To quantify this error we analyzed
the distribution of long flows in two 24-hour long traces
from NLANR [2]. Although therearea small number of
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flowsC longer thananhour(0.02% by flow count,about 5%
by packet count) if we examine all flows of the NLANR
traces,themajorityof theseflowsareNNTP traffic. Exam-
ining merelyweb andFTP traffic we seeonly 0.006% of
flows or 0.01%of packetsarein flows longer thananhour.
Therefore we believe that our modelwill not significantly
underestimatewebandFTPtraffic.

There are some known issueswith using SBPP and
ROPPto measurethebottleneck bandwidth. For example,
crosstraffic andpost-bottleneckqueuing tendto distortthe
estimation. Previous studyby Lai et al. showed that the
inaccuracy of bandwidth estimationbasedon passive mea-
surements canbeashigh as41%[30]. However, asshown
in Section6,ourresultsindicatesthatthesetechniquescom-
binedwith somesimplefilteringmechanismgiveusreason-
able approximation to estimatebottleneck bandwidth for
driving oursimulationmodel.

9 Future Work

As future work, here we describesomepossibleim-
provementsto RAMP. Theseimprovements includebetter
queuing model,support of backbone-styletraffic, real-time
model parameterization, support of other typesof impor-
tant traffic, further validationof RAMP with traceshaving
differentcharacteristics,modeling of temporal relationship
betweendifferenttypesof traffic, long-term traffic predic-
tion andintegrationof distributedmeasurements.

Wemodelqueuingdelayasanextracomponentof propa-
gationdelayinsteadof theendresultof interaction between
aggregationof flows andlimited buffer size(which is hard
to characterize just by looking at TCP/IPheader informa-
tion). This approach is sufficient for our datasetswhich
have low link utilization andzeropacket drop. However,
for sites which experience seriouscongestion(like flash
crowd), our approximation might introduce someinaccu-
racy in theresultandrequire furtherstudy.

Thecurrent designof RAMP hasanimplicit assumption
that themeasured traffic is capturedat theedgelink (such
asthelink betweena campusnetwork andits ISP),sothat
theend-to-endpathcharacteristicssuchasbottleneckband-
width canbe estimatedvia passive measurements. When
applying RAMP to backbone-styletraffic, we expect this
limitation can be amelioratedwith extra information ob-
tainedusingexistingactiveprobing techniques[26, 17, 13].

CurrentlyRAMP takesa tracefile asinputandprocesses
the traffic off-line. Although for our current processing
powerandtracetraffic, RAMP processingis slightly slower
than real time. With slightly more computing power (or
slightly lower-speedtraces)and minor software changes,
RAMP couldparameterize themodelin real-time.Thepri-
mary changeto RAMP would be to incrementally update
theoutput CDFsaseachnew flow arrives, insteadof com-

putingall flowsat once.
Our tool currently supports web andFTP traffic, which

only accountsfor a subsetof realnetwork traffic. To make
theoutput of RAMP more representative,we would like to
incorporateother typesof important traffic suchasDNS,
multimedia traffic (suchasRealAudio/Video)andincreas-
ingly popular peer-to-peertraffic (suchasMorpheus)into
our tool.

In this study, we useonly two setof traces(from ISI and
ITA respectively) for the designandvalidation of RAMP.
We plan to collect moretracesfrom otherplaces,particu-
larly thosethat potentially have very different traffic char-
acteristics(suchasat a very high speedlink or a very con-
gestedsite),to further investigate andvalidate RAMP.

To accuratelymodeltraffic, it is importantto characterize
thetemporal relationshipbetweendifferenttypesof traffic.
For example,DNS behavior is very likely linked closely
to web traffic patternsincemost of the web connections
areusuallypreceded by DNS lookups. We plan to study
this issueandunderstandhow to orchestratedifferenttraffic
classescorrectlyin themodel.

Currentlyour model is basedthetracerecordedat a sin-
gle tap point of network. However, distributed measure-
mentis requiredin ordertogetanetwork-wideview of traf-
fic andcorrectly modelthebehavior of crosstraffic, while
keepingthesizeof collecteddatamaintainable.To integrate
distributeddatatogetherwill require approachesfor overlap
detectionandholefilling. To addressthisproblem,weplan
to exploreandextendthetechniquesdevelopedin previous
work of distributednetwork monitoring suchasSCAN[22]
andrecentwork in network tomography[9, 38, 51, 10, 11],
andemploy new algorithmsandtools to merge distributed
datainto a coherentmodel.

Measurement study of Internet tracesshows that the
WAN performance is reasonably stableover termsof sev-
eral minutes; meanwhile,nearby hostsexperiencesimilar
or identical throughput performance within a time period
measuredin minutes[5, 45]. Our modelparameterization
tool outputs simulationmodel at the time scaleof tensof
minutesfor hour-long traffic, which matchesthe level of
stability reportedin previous studyand henceis applica-
ble to simulatepresenttraffic andpredictshort-term traffic
trend.However, to simulateandpredict long-term trendof
traffic (for example, at the time scaleof days),we needto
understandhow thetraffic evolves andcorrelatesin time.

10 Conclusion

Floyd andPaxson[21] characterized the problems, the
constantly-changing anddecentralizednatureof the Inter-
net, result in a poor understanding of traffic characteris-
tics andmake it difficult to definea typical configuration
for simulatingtheInternet. Motivated by thetheirobserva-
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tions,C wedevelop atool calledRAMPthatsupport rapidpa-
rameterizationof livenetwork traffic for generatingrealistic
application-level simulationmodels.Ourmodel is basedon
estimationof userbehaviors andnetwork conditions from
captured tcpdumptrace. We validateour methodology by
comparing somefirst order statisticsof tracesagainstthe
simulationoutput of model. We alsoapply multi-scaling
analytic techniques to debug and validatethe model. In
this paper, we first demonstratetraffic is different in both
temporal andspatialspace.We thenshow theeffectiveness
of our approachesin termsof the capability of generating
simulationmodelsthatcapture traffic dynamics in a timely
fashioneven whenfacingthe ubiquitous heterogeneityof
the Internet. Our work has threeprimary results. First,
we strengthenFloyd andPaxson’s argumentsby showing
thatnetwork characteristicsnot only changeover time but
alsovaryin otherdimensionssuchaslocationsandflow di-
rections. Second, we proposea methodology for rapidly
parameterizing traffic models. This approach employs a
trace-analysis tool that infers traffic and topology charac-
teristics,and a CDF-basedtraffic model that can capture
widely varying webtraffic. Finally, weshow how ourmod-
els can be automatically and rapidly parameterized from
traces,allowing a userto quickly instantiatemodels that
represent current, local traffic.
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