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Abstract

The utility of simulationsandanalysisheaily relieson
goodmockls of network traffic. While network traffic con-
stantly changng over time, existing appr@chestypically
take yearsfrom collectingtrace,analyzingthe datato fi-
nally geneating andimplementing mocels. In this paper
we describeappoachesand tools that suppat rapid pa-
rameteriation of traffic mocels from live network mea-
suremets. Ratherthantreatingmeasuredraffic asatime-
serief statisticswe utilize thetracego estimateend-ser
behaior and network conditions to geneate application
level simulationmocels. We also shav multi-scalirg an-
alytic techniguesare helpful for dehuggng andvalidatirng
the model. To demmstrateour appraches,we develop
structur sourcelevel modelsfor web andFTP traffic and
evaluatetheir accurag by compaing the outputs of simu-
lation againsthe originaltrace.We alsocompareourwork
with existing traffic generdéion tool andshow our apgoach
is more flexible in capturirg the hetergeneity of traffic.
Finally, we automéae andintegrate the processfrom trace
analysisto mode validation for easymockl paraneteriza-
tion from new data.
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1 Intr oduction

Simulationsareimportantfor exploring andundestand-
ing the compexity of network. However, it is difficult to
simulateandmodelthelnterretduetoits scale heterogne-
ity anddynanics [21]. Interrettraffic is constantlychang
ing overtime bothin volumeandstatisticalproperties,even
obsered at the samelocation. It is well-known that net-
work traffic followsdaily patternswhile traffic changsdur
ing theday Ther arealsolarge-scaletrendsin thetraffic
growth. Kim Claffy etal. [39] shavedthevolumeof online
gametraffic is increasingover the yearsin the backlone
traffic. RecentlyZhanget al. shaved that, depenthg on
the particdar aspecif constang (the degreeto which the
relevart Interne propetieshold steady)andthe datasetin-
derconsideation, the constang of Interret pathproperties
will startto breakat thetime scaleof hours [54].

If we fix ourinterestto a singlepoirt of time, the traffic
still variesat different placesdueto the immensehetere
geneityof the Interret: the diversity of topdogy andlink
properties, different pratocol usageand user populations
in differentnetworks. For exanmple, the traffic at different
websitegnightbedifferent dueto their conten differences.
The distribution of file sizein atracedistribution site like
Interret Traffic Archive [43] is not heary-tailed but instead
is bimodal, wheresmallfiles accoumfor webpageghatde-
scribetracesandlargefiles for tracesthemseles. Recently
Caoetal. shovedthat,dueto thelower link utilizationand
higherdegree of multiplexing, thetraffic in backbme-style
links tendsto have highernon-stationaritythantraffic in the
accesdinks [12].

Even when we only look at one particdar part of the
network at a single point of time, network traffic canstill
shav greatvariatiors just in termsof direction of flows.
For exampe, inbound traffic and outtoundtraffic seenat
theingressor egresspointsof the network typicdly differs
for thesamereasos astraffic differs by placespandwidh
asymmetrie®f upto 10:1arenotuncanmon|3].



Rapidandunpiedictablechargeof traffic will threaterto
malke someresearclobsoletebeforit is finished.Someas-
sumptiors abou traffic mix, topolagy or pratocols might
only be valid for lessthan a few years. However, take
todays most widely-used web modelsas an example it
still takesyearsfrom collectingtraces,analyzirg the data
to finally generéing andimplementingmockls [6]. Three
stagesareinvolved in this time-consming process:trace
collection designof traffic modelandmockl| paraneteriza-
tion from measuement. In prior work, thesestageshave
typically beencombined,with eachnew expeimentrequir-
ing developmentandparametédration of new models.We
insteadsuggesthata sufiiciently powerful modé canaccu-
rately simulatea wide rangeof webtraffic, andthenshav
how thatmodé canbeautomaticallyparaméerized.

Furthemore,theexistingmodelsareall basebnasmall
setof tracescollectedfrom one particula part of the net-
work within someparticula time period Consideringthe
Interret’s greattechnicaland administratve diversity and
immensevariatians over time regarding how applicdions
areused,t is notobviousthatonecanmockl his traffic ac-
curatelybasedon the modelsderived from measurernts
takenpreviously from otherpartsof the network.

Motivated by the challengeand difficulty of modelirg
constantlychangng Interné traffic, we have developed
methologiesandtoolsthatallow usersto quicky param
eterizetraffic models basedon the measuremntsandgen-
eraterealisticcontemprary traffic in theirsimulatiors. Our
appr@chdoesnotmake ary underlyingassumptiorof traf-
fic propeties(for exanple, heary-taileddistributionfor file
size/transmissiotime) and henceis more applicablethan
existing appoachesn copng with the heterogneousna-
tureof the Interrettraffic.

Oppcsed to traditional trace-eplay techniqies which
typically ignorethe factthattraffic frequently reactsto the
network's currentpropeties,ourapprachesocuson char
acterizingsourcelevel patternin which the datais sent.
We have develgpedtoolsandmethalologies to suppat this
trace-diven applicationlevel mockling apprachfor gen-
eratingsynthetictraffic. Our initial studiesemplasizetwo
typesof traffic, webandFTP traffic, andshav thatwe can
accuratelygereratethe simulationmodelfrom live datain
atimelyfashion thatallows usersto simulatetheir current
traffic several times per day Potentialapplicatios of a
rapid modelparaméerizationtool will include traffic plan-
ning andprovisioning on-line simulationfor network con-
trol, input to network predictian algoithm andgeneratia
of high-speedsynthetictraffic [27].

Ourwork hasthreeprimaryresults.First, we strengtha
Floyd and Paxson$ amgumentsby shaving that network
charactestics not only changeover time but also shov
greatvariatiors in otherdimensiois suchaslocationsand

flow directins (Sectiond). Secondwe propcsea method
ology for rapidly parametgzing traffic models. This ap-
proachemplgys a trace-aalysistool thatinferstraffic and
topolagy chamcteristics,and a CDF-basedtraffic model
that can captue widely varying web traffic (Section6).
Finally, we shav how our mocels can be automéically
andrapidly paraméerizedfrom traces,allowing a userto
quickly instantiatemocklsthatrepresentcurrent,local traf-
fic (Sectionb).

2 RelatedWork

Ourwork builds on prior work in traffic mockling, trace
compation, workload geneation and bandwidh estima-
tion.

2.1 Traffic modeling

Floyd and Paxsonpointed out, to cope with the con-
stantly changng natureof Intemet traffic, it is important
to captue theinvariantsof thetraffic in modelirg theInter-
net[21]. Our methalology is basedn structuralmodelirg
appr@achwhich emphasizesn charactazing soure-level
patternin which datais sent. For mostapplicatias, the
applicationlevel pattern(suchasrequest/rely patterrs in
webtraffic) in which datais sent,doesnotreactthenetwork
dynanics. In thisaspectwe considgrour mocelshave cap-
turedthe applicdion structureinvariantin thetraffic.

The structue we chooseo modeluserbehaiors of web
traffic is similarto previouswork of Mah[34] andCrovella
etal. [6, 16. We alsoadoptMah’s appoachin termsof
describimg traffic basecdon CDF of real data,which hasthe
adwartageof beingableto representarbitrasy distribution.

2.2 Trace compaction

Traceconpactiongenerdly refersto thetechniqesused
to retrieve “relevantcharateristics”from thetrace. In this
aspect,we have taken similar appoachesasthe previous
studiesof Feldmanret al. [19] andSmithetal. [50] in the
sensehatwe alsomana@ to recanstructapplicationlevel
statistics(eg. requet/responsedf web traffic onthe-fly
from individual pacletscaptued by the sniffer. However,
in Feldmants work, it requires specialhardware andsoft-
wareto beableto extractfull HTTP level information.The
methoalogy we adop to constriet web modelis closerto
Smith’s work wherethey recorstructthe dataexchangesn
theHTTP conrectionsbasednonly the TCP/IPheadein-
formation. (In fact,we haveincomporatedoartof theircodes
into our tool for parsingTCP/IP headelinformation.) Ad-
ditionally, we alsomocel pathcharactéstics (hercethere-
sultedmocels canbe directly built into thewidely usedNS
network simulator[8]) and provide more compehensie
validation mecharsm including a wavelet-tasedanalysis.



Furthemore,we includeanotrer dominant traffic, namely
FTPtraffic, in our studyexceptfrom webtraffic which pre-
vious work hasfocusedon, and automatethe whade pro-

cessfrom traceanalysisto finally implement andvalidate
themodels.

2.3 Workload generation

Researcton Interret workload gererationhastypically
focusedon creating generatie models basedon paclet
tracesof variows applicatiors. Severd studieshasadoped
this apprachto developworkloadgenerates for webtraf-
fic including SURGE[6], IPB [35] andwork at RPI [53].
Their work focusedon fitting statisticsderived from a set
of tracesto somewidely-useddistributionswhich arethen
usedto generatesynthetictraffic workload.

However, first, their apprachesfrom collecting traces,
analyzirg the data,to finally geneatingandimplementing
modds taketoolong, (eg. in Crovella’s study[6], it requires
modification of browser coces in order to captureweb-
users browsing behaior) consideing the network cond-
tionsareconstantlychangng. GiventhatInterret traffic is
changng constantlyit is gererally notapplicalbe to chara-
terizethecurren traffic simply basedn statisticscollected
yearsagofrom differentpartsof network. Secoml, evenwe
assumehe existenceof someuniversalstatisticalproperty
(eg. heavy-tail distribution of file size), paraneterization
is still a non-tivial job for the previous models which are
fairly static.

Onthecontray, ourappoachis capalte of parameter-
ing thetracesandgeneratig simulationmodds in atimely
fashionthat allows the usersto studytheir current traffic.
Additionally, exceptfrom modding user/apficationbeha-
ior, our work alsomanagsto estimatepathcharactestics
(namdy, delayandbottleneckbandvidth) whichareimpor-
tantparametesto drive simulation

2.4 Bandwidth estimation

Therehave beena nunberof techniqiesproposedin the
areaof bandvidth estimation.In geneal, thesetechniqies
canbeclassifiednto two groups: singlepacletandpaclet-
pair techniqies. The nane refersto the number of paclets
thatareusedin asingleprobe

Single paclet techriques are basedon the obsevation
that slower links will take longer to transmit a paclet
thanfasterlinks. If we know how long a paclet takesto
crosseachlink, the bandwidh of thatlink canbe calcu-
lated. Theie have beena numbe of implementationof sin-
gle paclet technige including Jacobso's pathclar [26],
clink [17], utimer [15] and pcha [36]. Packet pair tech-
nigues areoftenreferedto aspaclet dispersia techniqes.
A paclet expeiiencesa serializationdelayacrosseachlink
dueto the bandwidh of the link. Packet pair techniqies

sendtwo identically sizedpacletsback-teback,andmea-
surethe differencein time betweerthe pacletswhenthey
arrive atthedestination All recen researclhinto pacletpair
techniqeesincludebprdoe, cprdbe [13], tcpnanly[46] and
thework of Lai etal.[28, 29, 30]. Therecen paclettailgat-
ing technique [29] proposedby Lai andBaker canbe con-
sidereda hybrid of bothsingleandpaclet pairtechniqes.
The appoach we adoptto estimatebottlereck band

width is in spirit a combination of Sende BasedPacket
Pair (SBPP)andRecever Only Packet Pair (ROPP),asde-
scribedin [30], dueto the factwe only take passie mea-
suremets at onesinglepoint of the network.

3 Background

In this sectionwe will describethe datasetve usein this
studyandtwo statisticatechniqes,includng waveletscal-
ing plot andKolmogprov-Smirnos goochess-of-fitest,that
helpusvalidatethemodels.

3.1 Traces

Thedatausedn ourstudyarefromtwo sourcs. Onewas
collectedonthewebsener of Intemet Traffic Archive (this
setof tracewill bereferedto as“ITA” in this pape). The
otherwasrecorddat a 100Mbps Etherret link conrecting
the Information Sciencelnstituteto the restof the Interret
(referedto as“ISI”).

ITA tracewascollectedusingpuHicly availablesoftware
tcpdump ISI trace was capturel via tcpdpiv [41] util-
ity whichanorymizeslibpcapformat (sameformat usedin
tcpdumptracestcpdpiv cancollecttracesdirectlyor post-
processthem after collection using a tool like tcpdump
Both tracescapturedall inbourd and outboundtraffic but
only TCP/IP heacr informationwasrecorad for reasons
like privagy andstorageovethead.Notethatthetraffic vol-
umeof ITA traceis significantlylowerthanthatof ISl trace
andmainly consistsof outtoundtraffic.

The ITA trace was collectedduring a 24-hour pericd
startingfrom 15:20Nov 6, 2001, andshows obviously bi-
modal distribution of traffic mix consistingprimaiily of
HTTP andFTPtraffic. ThelSI traceswascollectedduring
six onehour samplingperiads eachday over a sevenday
periodstartingfrom Nov 9, 200L. The onehoursamplirg
periods werechosersomavha arbitraily with theintention
to captue the variatian of traffic betweerdifferent time of
theday

The typicd link utilization during collection period is
arourd 16% to 23% and thereis no paclet drap in our
measurernt. For simplicity, in this paperwe only shav
the analysisof two setsof one-lour long ISI datawhich
were collectedat differenttime of the sameday Onewas
recorabd startingat 2:00 pm Nov 13 2001 (refered to as



Trace ITA ISI
Date Nov 2001 Nov 2001
Duration(hr) 24 42
Total Packets 2.5M 218v
Bytes 2.4G 187G
TCPPaclets | 2.5M (100%) | 1439M (66%)
Bytes | 2.4G(100%) 122G (65%)
UDP Paclets 3 (0%) 69.8M(32%)
Bytes 150(0%) 65G (35%)
HTTP Packets | 0.1M (4%) 50M (23%)
Bytes | 50M (2%) 71G(38%)
FTPPaclets | 2.4M (96%) 39M (18%)
Bytes | 2.35G(98%) 64G (34%)

Tablel: Summary of ITA andISI traces

ISI-1) andthe otherwasrecorad startingat 7:00 pm Nov
132001 (referredto aslISI-2). Intuitively, onecaptuesthe
traffic in anormal busineshou andthe othershovs traffic
in afterhours. The detailsof tracesaregivenin Tablel.

3.2 Wavelet ScalingPlot

Oneof thetoolswe usefor validation the scalingplot,
is a wavelet-basednalysis [1] that utilizes wavelet trans-
form of atime seriego studyits globalscalingproperty, by
which we meanthe statisticsof the time seriesviewed at
eachresolution level or scaletakenasa function of scale.
More detailsof this techniqueweredescribedn [20, 25].

To deternine theglobd scalingproperty of data,we plot
log(E;), where E; is the averag enegy at scalej, asa
function of scalej. Theenepy level E; is correspondiry
to the level of irreguarity or burstinessof sampleddata.
ThehigherE; is, themoreburstythetraffic is attime scale
j- Theresultingscalingplot canbeusedto deternine quali-
tative aspect®f thescalingbehaior of theunderlyingtime
series,andidentify highly regular traffic patterrs that are
well-localizedin scale. For exanple, this wavelet-tased
analysiscanunaverthedominantRTT behaior associated
with the pacletsthatmalke up the measuedtraffic. For our
purposein this study we validateour modelby comparing
its scalingplot againstthe traces and seeif they qualita-
tively matchclosely

3.3 Kolmogorov-Smirnov goodnesf fit test

We use Kolmogorov-Smirnor goochessof fit test[37]
to formally deternine if two setsof traffic dataare sig-
nificantly different from eachothert in addition to visu-
ally examning their CDF plots. The Kolmogaov-Smirnos
D valueis the largestabsolutedifferencebetweenthe cu-
mulative distributions of two setsof data. We first com-

puteD value of two datasetsandthencompae the result
to the critical value of D. For large numbe of samples,
the critical value at the .05 level significanceis appoxi-
mately ﬁ wheren is the samplesizeandc is a constant
thatis distribution-depenént. For exanple, if the tested
datacomesfrom a normal distributionthenc = 1.36 [49]
(¢ = 1.08 for exponentialdistribution [31] andc = 0.874
for Weibull distribution [14]) If thecomputedD is lessthan
thecritical valuethenwe accepthenull hypothesighatthe
distributions of two datasetsare not statisticallydifferent
from eachother Therearetwo limitationsto applying K-S
testto our data. First, we do not make assumptias abaut
datas distribution, and so we can not directly apgdy K-S
testsincewe cannot detemine ¢. However, comparison
of the absolutevalueof D is appopriate,andwe quariita-
tively usethe mostrestrictive ¢ (= 0.874) asan appoxi-
mationto perfam the test. In otherwords, ata 0.05level
significanceandfor 10000 sampleswe will claimtwo data
setsarestatisticallydifferentif themaximumabsolutedevi-
ation betweertheir cumdative distributions is greaterthan
0.0874. Secondasrepated by previous studies[44, 6],
it is difficult to apply goadness-ofit testfor large empir
ical dataset(it is well known in the statisticscomnunity
thatlarge dataset@almostnever have statisticallyexactde-
scription) Therebrewe alsoadoptsimilar appoachasde-
scribedin previous work by usingrandan sub-samplgin
ourtest [7, 44, 6]. Thenumkber of samplegwhichareran-
domly picked we usefor K-S testare10000throughou the
paper (In otherwords,we conmparethe computedD value
with a critical valueof 0.0B74in eachtest.)

4 Traffic is differ ent any which way you look

In this section,we shawv Interret traffic looks differently
bothin time and spacedoman after examinirg the traces
we obtainedfrom differert locatiors andat differert time.
Theseobsenations stressthe importarce of beingableto
paramgerizemodelsfrom new datato account for charges
of thetraffic.

4.1 Metrics usedfor comparison

We determire if two setsof dataaredifferert by compa-
ing themqualitatively andquariitatively.

By qualitatively, we visually inspectthe CDF plots of
first-orde statisticsat threedifferent levels (i.e. paclet-,
flow- anduserlevel statisticsyandthe waveletscalingplots
betweenthe traceand modelto seeif they matchclosely
Here we define a flow as an unidirectional seriesof IP
paclettraveling betweera sourceanda destinationP/port
pair within a certainperiad of time, andan unique IP ad-
dressasa user. Specifically, the metricswe usefor com-
parisoninclude paclet inter-ariival time, paclet size, flow



Protocol | Inbound | Outbound
NNTP (% paclets) | 39.%%6 8%
(% bytes) | 64.4% 0.02%
(% no. of flows) | 0.08% 0.08%
HTTP (% paclets) | 15.8%6 27.6%
(% bytes) | 20.0% 50%
(% no. of flows) | 38.%% 35.8%
DNS (% paclets) | 29.9% 31.6%
(% bytes) | 4.8% 4.8%
(% no.of flows) | 51.4% 30.1%
FTP(% paclets) | 5.5% 20.4%
(% bytes) | 4.1% 33.7%
(% no. of flows) 8.% 26.2%
OTHERS(% paclets) | 9.4% 20.4%
(% bytes)| 6.7 13.3%
(% no. of flows) 1.5% 7.8%

Table2: Summaryof protacol mix of in ISI-1 traffic

duratian, flow size flow interarival, userinterarival, user
duration, protoml mix andtraffic volume. We only shav
the CDFsof flow statisticsandwaveletscalingplot in this
paperfor brevity sincethey arelessdeendentontheden-
sity of traffic.

By quartitatively, we perfam the Kolmogaov-Smirnos
Test, as describedin Section3.3, to seeif the distribu-
tionsof traceandmockl arestatisticallydifferentfrom each
other

4.2 Traffic seenin different dir ection

First we look at traffic flows in differert direction (i.e.
inbowndtraffic versusoutbaindtraffic) duringthe samepe-
riod of time. We found inbound traffic andoutbaindtraffic
aresignificantlydifferentin termsof pratocol mix andvia
comparisonof first-orde statisticsandwaveletanalysis.

The proto®l mixesfor inbound andouttoundtraffic of
ISI-1 dataareshavn in Table2. Thetraffic mix is notice-
ably differentin differert direction wheretheinboundtraf-
fic is dominatedby News traffic while the outbound traffic
mainly consistsof web and FTP traffic. NotethatNNTP
traffic in outbaind datamainly corsistsof ACKs, whichis
thereasonit contibutesvery little in termsof bytesto the
total traffic volume. In termsof the number of flows, the
majority of the flows arecontibutedby DNS traffic in in-
bourd traffic while by webtraffic in outhounddata.

We next look at the first-orde statistics. The compair-
sonof flow statisticsjncluding flow duration flow sizeand
inter-arrival time of inbound andoutbounddataare shavn
in Figurel. Outbaundtraffic hascormparatizely longerflow
duration andsizethaninboundtraffic, whichis possiblydue
to thefactthatthe majority of the flows are contrituted by
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Figure2: Comparisa of wavelet scalingplot of inbound
andoutboundtraffic in ISI-1 data

DNStraffic in inboundtraffic while by webandFTPin out-

bourd traffic, asshavn in Table2. Althoughin Figure1(b)

and Figure 1(c) the CDF plots for outbaind andinbound

traffic look similarin thetail of thedistributions(lower tail

in flow size and upper tail in flow interarrival), nore of

thempasseghe Kolmogorov-Smirnor test. The D values
for Figure 1(b) andFigurel(c)are0.121 and0.09 respec-
tively, whicharelarger thanthe critical valueandhenefail

thetest. (The numter of samplesve useare 10000 which

correspndsto acritical valueof 0.00874)

The correspadingwaveletscalingplot is shavn in Fig-
ure2. We obsenethereis apronoun@ddip onthe order of
about128ms,which reflectsthe underlying periodiccom-
ponet (i.e. RTT) for outbaundtraffic, while the dominant
RTT for inboundtraffic is onarelatively smallertime scales
(abou 40ms).

All the statisticsconcluck that I1SI-1 inbound and out-
bourd traffic arenoticeablydifferentfrom eachother

4.3 Traffic seenat differ ent time

We next look attwo setsof ISI traffic capturedatdifferent
time(i.e. 1SI-1andISI-2). Herewe con@ntrateonthecom-
parisonof outbaindtraffic. SincelSI-2 datawasrecaded
during the time whenmostpeope have left the office, in-
tuitively the inbound traffic in 1SI-2 will be different from
ISI-1 becausef its smalleruserpopuation. (For inbound
traffic, 1ISI-1 has517 userswhile 1SI-2 hasonly 128 users.
For outboundtraffic, ISI-1 has16447 usersandISI-2 has
1429 users.) The following statisticalcompaisonsshav
thatISI-1 andISI-2 outboundtraffic aredifferent from each
other

First we look at the traffic mix, as shavn in Table 3.
Although large percemagesof traffic in both datasetsare
madeup by web andFTP traffic, but oneis donminatedby
FTPwhile the otherby webtraffic.
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Protocol | ISI-1 ISI-2
NNTP (% paclets) | 8% 10%

(% bytes) | 0.026 | 0.02%

(% no. of flows) | 0.086 | 0.09%
HTTP (% paclets) | 27.68% | 17.5%
(% bytes) | 50% | 24.0%

(% no. of flows) | 35.86 | 32.6%
DNS (% paclets) | 31.8%6 | 41.0%
(% bytes) | 4.8 | 11.4%

(% no. of flows) | 30.1% | 34.5%
FTP (% paclets) | 20.86 | 22.1%

(% bytes) | 33.®6 | 45.7%

(% no. of flows) | 26.26 | 31.3%
OTHERS(% paclets) | 20.86 | 9.4%
(% bytes) | 13.36 | 18.9%

(%o no.of flows) | 7.80 | 7.0%

Table3: Summaryof protacol mix of ISI outboundtraffic
atdifferenttime

time (sec)

1024256 64 16 4 1 .3 .06 .02 .004 .001
32 T T T

. |SI-1 Outbound
30 /N 1SI-2 Outbound ------- -

28 |
26 |

24

log2(Energy(j))

22 |
20 |

2 4 6 8 10 12 14 16 18 20 22
Scale j

Figure4: Waveletscalingplot for ISI-1 andISI-2 outbaind
traffic

The distributions of flow statisticsincluding flow dura-
tion, flow sizeandinter-arrival time for 1SI-1 andISI-2 data
areshavnin Figure3. Theflow durationin 1SI-2 datais sig-
nificantlylongerthanthatin 1SI-1, asshavn in Figure3(a)
which is probably dueto thatISI-1 datais domiratedby
webtraffic while ISI-2 is domindaedby FTPflows. In terms
of flow size,therearemore shortflows in ISI-2, which is
probably becagethereis moreDNS traffic andshortHTTP
connetionsin I1SI-2 data,asshovn in Table3.

Again, althoudh the CDF plots betweenlSI-1 and ISI-
2 in Figure 3(b) andFigure 3(c) have similar shapesthey
all fail the Kolmogorov-Smirnor test(the D valuesare0.09
and0.14respectiely, for 100 samples).

The wavelet scalingplot, asdepictedin Figure 4, indi-
catedSI-2 traffic hassmallerandmore heterogneousRTT
behaior shavn asadip stretchegrom 8msto 128mswhile
ISI-1 datahasa maindip at 128ms.

All the statisticalcompaisons indicate that ISI-1 out-
bourd traffic is differert from ISI-2 outloundtraffic.
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4.4 Traffic seenat differ ent location

Finally we look at the comparison betweenlSI-1 and
ITA dataandshaw traffic is differentat different locations.
Again, we only focus on outbaundtraffic.

In termsof protacol mix, ITA dataonly corsistsof HTTP
andFTPtraffic, whichis obviously differentfrom the pro-
tocol mix in 1SI-1 traffic.

The distributions of flow statistics,including flow dura-
tion, flow sizeandinter-arrival time for 1SI-1 andITA data
areshown in Figure5. We seelSI-1 haslonger flow du-
ration but smallerflow size. A closelook shavs thatthe
long flows in 1SI-1 mainly are contibutedby DNS, NTP
(periadic time synchonizationbetweerseners) andNNTP
traffic (periadic nevsexcharmesbetweerseners).ITA data
haslargerflow sizebecausét mainly consistsof bulk FTP
transfer It is not surprisingthatITA hasmuchlargerflow
inter-arrival time sinceits traffic is muchmoresparsethan
ISI-1. We did not apply the Kolmogorov-Smirnor Testto
ITA andISI-1 datasincetheir CDF plotsareobviously dif-
ferent.

In thewaveletscalingplot, asshovn in Figure6, we ob-
sene thereis amaindip at time scaleof around 500msfor
ITA data,which is abou 4 timeslarger thanthe 128msin
ISI-1 data.A closerlook shawvs I TA traffic is domimatedby
afew FTPtransferdetweenTA siteandsomehostsin the
US westcoastandEurge.

All the statisticalcompaisonshereshaw thattraffic can
be different at different sitesbecausef the natue of their
conters differerce.

The above discussiorcorcludesthat network traffic not
only changsover time but also shavs greatvaiiationsin
differentdirectionsanddifferentlocatiors. We demorstrate
the differencescanbe dueto a vatiety of reasonsuchas
user behaior, path charateristics and applicationusage
etc., and herce it is difficult to obtaina “generd’ traffic
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Figure6: Compaisonof waveletscalingplot betweeriSI-1
andITA outbaindtraffic

model.

5 RAMP: RApid Model Parameterization

Motivatedby the previous obseration thatit is impor-
tantto quicky paraméerize modds from new datato ac-
countfor the diversity of thetraffic, we designatool called
RAMP. RAMP cancorvertlive measuementdnto simula-
tion mockls which thenbe usedto geneate realistic syn-
thetic traffic. In this sectionwe describeour appoaches
from analyzingthe traceto finally gereratingthe simula-
tion model.

Our apprachis to automaically geneate statisticsthat
modeluserbehaiors and network path charactestics by
analyzirg TCP/IPheackr informationcaptuedin the mea-
suremets. Theresultedmodelwill thenbe built into the
widely-usedNS network simulato{8] andvalidatedagainst
the original tracevia wavelet-basednalysisandfirst order
statisticalcormparison.
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Theinput of RAMP is atcpdunp-formatfile, recoreedat
asingletappointof thenetwork, thatcontainsonly TCP/IP
headeiinformation. The outputof RAMP is a setof CDF
(Cumulatve Distribution Functior filesthatmodelthecor
respomling traffic, asshovn in Figure7. Specifically the
CDFfiles consistof two typesof data.Onesetof CDFfiles
modé user/apfication level statisticsof thetraffic, suchas
usersessionarrival, pageffilesize etc. Currently RAMP
only suppots web and FTP traffic which are amorg the
mostdomnanttypesof traffic [39] of the preseh Interret.
The otherone modelspath charateristicsof the network.
In particdar, we focus on charactaeing RTT and bottle-
neckbardwidth of the measuredraffic sincethey areim-

portart paranetersfor driving network simulation. Typi-
cally it takestensof minutesfor RAMP to processa trace
file with the sizeof severalhurdredsmegabytes.

5.1 Userand application behavior
characterization

In this sectionwe describethetechniqeswe employ to
characterethesource-lgel behaiorsbasebnthe TCP/IP
headeilinformationcapturedn the trace. We focus on the
analysisof webandFTP traffic which areamorg the most
domiranttypes of traffic of the presehlinterret.

5.1.1 Webtraffic

Herewe presehthe methoalogy usedto characteze the
important compnentsof webtraffic basedon only thein-
formation in theTCP/IPhea@rsandknowledgeof the TCP
andHTTP protacol.

To recorstruct the data excharmges in the HTTP con-
nectionsbasedon only the informationin TCP/IP header
we adopta similar apprach andheuistics from previous
work [50]. Oneobsenretion in their studyis thatwhenthe
senerrecevesa HTTP requesit will sendTCP acknavl-
edgmats (ACKs) indicatingthe in-order byte sequencét
hasreceved, andall of therequestmessagewill be ACKed
before the correspadingHT TP responselatais sent(note
thatherewe assumehereis no pipelining in use). Hence
we can infer the size of request by the amouwnt of ACK
value advarcesandthe size of respose by the amount of
datasequenceumkber advances.As the examge shavn in
Figure8, the ACK-only sgmentfrom the senerfollowing
the SYN+ACK se@gmeri indicatesthefirst requestwas325
bytesin size. In thefollowing sggmentsthe datasequene
numtersadvarceto 2458 (thesizeof first respose)with no
furthe change#n the ACK values.In thenext sggment the
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adwarceof ACK nunberindicateghesizeof theseconde-
guestwvas349bytes(675- 326) In thefollowing segments,
thedatasequenenumkbersadwancewith nofurther changes
in the ACK values. The size of secondresponsés 117%
bytes(14124 - 2458.

Adopting similar heuistics asthosedevelgpedoriginally
by Mah[34] andBarfordandCrovella [6], weassum&new
pageis requestedfter someperiodof idle time (or “think”
time) atthe client. We identify idle periadsin which either
the client hasno establishedl CP conrectionor no estab-
lishedconnectio hasan active request/respnseexchange
in progiess.

Ourwebtraffic mockl is similar to thosedevelopedorig-
inally by Mah[34] andBarfordandCrovella[6]. However,
we found it is importan, but not capturedoy the previous
studies,to modelthe TCP window size and the usageof
persistentonrection.

It isimportar to mocel TCPwindow sizein orderto ac-
curatelychaacterizesendig rateof theseners.For exam
ple, asshavn in Figure9, morethan80% of clientsin the
ISI1 inbouwnd traffic usewindow sizelessthan16K. Using
smallwindow sizewill limit theseners from fully utilizing
increasinty-popularbreadbanchetworks suchasDSL and
cablemodem. Notethatwe did notobseve arny comection
thatusesTCPwindow scaleoptionin ourtraces.

Motivatedby the increaingly importart role of persis-
tent comection in web traffic, as repoted by previous
study [50], we also mockl the persistenttomectionused
in HTTP/1.1 As shavn in Table4, althoudh only lessthan
20% of conrectionsare persistentthey accoun for about
50% of all objectstransfered and more than 20% of all
bytestransfered. This clearly shawvs persistentomection
playsanimpottantrolein thedynamicsof TCPconnetions
for theWeh In ourdatasetspver 50%o0f persistentonne-
tionsareusedfor threeor more request/responsexcharges

Protocol Inbound Outbound
Numter of conrections 26426 4475
objects 44309 7187
bytes 318.7MB 424MB
Persistentonrections 47% (18%) 708 (16%)
ObjectsonPersistent] 22811 (51%) 3505 (49%)
Byteson Persistent] 1215 MB (38%) | 85.4MB (20%)

Table4: Summay for the usageof HTTP persistenton-
nectionsn ISI-1 traffic

and10% of themcarry morethannine (the grapts arenot
shawvn here) Ourresultfor the usageof persistentonne-

tionsshavs strongagreenentwith recentstudied50]. Note
that although we have obsered in our datasetghat some
browses still usemultiple concurentcomectiongo trans-
mit onesinglepageasrepatedin Balakrishnats study[4],

we did not mocel thatsinceit accounts for only lessthan
two perentsof total numker of pagesin ourtraces.

5.1.2 FTP traffic

In this sectionwe shaw thatit is nontrivial to extractFTP
flowsin thetraces.(In particularit is notsuficientthatone
only looks attheflows thatorigin from or destineto port20
or21.)

For FTP traffic, we assumean unique IP addressepie-
sentsa single humanuseranda new TCP conrection is
usedfor eachfile transmission.This heuistics allows us
to identify thepointswhenclientstartsanew file. TheFTP
protacol [47] specifiesthatthe client first connets from a
randan unpiivilegedport (N > 1024) to the FTP sener’s
commaul port, port 21. The client thenstartslisteningto
portN+1 andsendghe FTP command“PORT N+1" to the
FTPsener. Thesenerwill thenconrectbackto theclient’s
specifieddataport from its local dataportwhichis port 20.
Thisis alsoknown asActive-modeFTR

However, from our datasetave obsered that thereare
significantnumbe of clientsare using Passve-moad FTR,
in which the client initiates both contrd anddataconne-
tionsto the sener. Whenopernng an FTP conrection,the
client openstwo randomungrivilegedportslocally (N >
1024 andN+1). Thefirst port contactsthe sener on port
21, but insteadof thenissuinga PORT commandandal-
lowing thesenerto conrectbackto its datapott, the client
will issuethe PASV command. Theresultof thisis thatthe
sener thenopers a rancom unpiivilegedport (P > 1024)
and sendsthe PORT P commaul backto the client. The
client theninitiates the conrectionfrom port N+1 to port
P on the sener to transferdata. To identify FTP traffic,
we first locate FTP clients by looking at thoseconnectd
to sener port 20 andfind out what are the contrd ports
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Figure8: tcpdumptracethatshavs two request/responsexchangesn apersistenHTTP connectio

(N) they use.We thenlook for the conrectionsoriginatirg
from the neighboring ports (N+1) of client’s cortrol port
andclassifythemasFTP datacomections.

5.2 Characterization of network path properties

In this sectionwe describéhow dowe estimatehetopd-
ogy informationfrom themeasurerent. Particulaty we fo-
cuson characterizig the rourd trip delay and bottlene&
bandvidth sinceboth of themareimportantfor driving the
simulation.

5.2.1 Round-trip Delay

We deternine the RTT of eachTCP comectionin our
tracesby computing the differenceof timestampbetween
datapaclet andthe first ACK paclet which hasthe same
sequene numbe. However, this apprachis not applica-
blefor pacletscapturedatthedatarecevversend,wherethe
timestampifferencebetweerdataandACK doesn't reflect
the pathdelay For situationwherethe clientsarenearthe
measurerantpointwhile senersareattheremoteend(eg.
theinbouwnd traffic), we rely onthethree-vay handhale at
the startof eachTCP connetion to calculatethe delay of
the path. In otherwords, we compute the RTT by taking
the timestampdifferencebetweenthe SYN paclet andits
correspndirg ACK. For eachconrectionwe take the min-
imum of RTT samplesasanapproximation of propagatio
delayof thepath(afterdividing theRTT by 2) andcorsider
the deviationsfrom theminimum RTT asvariance caused
by queuirg delayandtransmissiordelay We usethis ap-
proximationto drive our simulation.

5.2.2 Bottleneck bandwidth

Our tracescontairs both outbound and inbound traffic.
For outbaund traffic, we use SenderBasedPacket Pair
(SBPP)[45] to conputethe bottlenek bandwidh between
the local senersandthe remoteclients. Thatis, we esti-
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matethespacingbetweera pair of back-tebackTCPpack
ets after passingthe bottlenecklink by examiring the ar
rival timesof their correspading ACKs (for delayedACK
paclets, we estimatethe spacingbetweenthe secondand
the forth paclets of a groyp of 4 back-teback paclets).
For inbound traffic, we rely on Recever Only Packet Pair
(ROPP)[28], which usesthe arrival times of two consec-
utive full-size paclets at the recever to estimatethe bot-
tleneck bandwidh betweenremde seners and the local
clients.We alsoapplysimilartechnigesto filter noisesuch
asdensityestimationasdescribedn [30].

5.3 Structural simulation model

Traditioral blackboxappro@hestypicdly treatthemea-
suremenh as a time series. They focus on capturirg the
statistical charactestics (particulaty autocarelation and
mauginal distribution) of empiiical datato modelnetwork
traffic, basedon various appr@achessuchas Markov pro-
cessARIMA, TESetc.[24, 33, 48,42, 32, 18, 23, 32, 40].
Although beingableto repralucethe measuredraffic cor
rectly, theseapprachesgeneally ignare the undetying
network structureand henceprovide little or no insight
aboutthe obsened characteristicof measued traffic and
its undelying causes.On the otherhand structuralmod
eling, first discussedy Willinger [52], propsesthat we
shouldimplicitly takeinto accoutnthecompex hierarclical
structureof application andintertwinednetworking mecta-
nismsin orderto accuratelyrepraducethetraffic while still
providing a physical explarationfor obseved pheromena.

Opposedo trace-refay, therearesereraladwantagedor
thisappoach:

e Somepratocols mustbe modeled as endto-endenti-
tiesin orderto capturehefeedbacleffectsuchasTCP
congstioncontrd, while trace-refay techniqiestyp-
ically ignorethe fact that traffic is frequently shape
by the network’s currentpropeties,

e Interret pratocols presentvelty rich, multi-fractal be-
havior acrossa rangeof time scales. Simple trace-



page tansmission Tyser thinktime| time
I "t | )

user
. click end of @ge

client server
request
»
responsg
.
request

r
responsd

W D=<XTT

Van Jacobson88

Figure10: Multiple levelsof feebackin webtraffic

replayapprachwill fail to capturethis richness.

e By captuing the detailsof datatransferin an algo-
rithm we canreprodicethattraffic with muchlessstor
agerequilementghantrace-relay.

As shown in Figure 10, we can seethereare multiple

levelsof feedbacleffectwithin thehierarctical structureof

webtraffic, andeachlevel operatest differenttime scales.

For exanple, TCP hasits own congestioncontiol mech-
anismwhich operatesat the time scaleof secondswhile
HTTP hastherequest-esponséoopfunctioring atthetime
scaleof tensof seconds.Hence,it is important to repre
ducethe structue of applicationin the mocel in orderto
accuratelyepralucethetraffic.

Baseon the structur& modelirg apprach, we designa
three-lerel simulationmodelto characterizevebtraffic and
two-level mockl to characteze FTPtraffic asshovn in Ta-
ble 5 andTable6. Notethatwe only modelthe datacon-
nectiors of FTP traffic for simplicity sincethe bandwidh
usageof contrd chanml is negligible (typically lessthan
onepercet of total traffic in our datasets).

Ourwebtraffic mocel is similar to thosedevelopedorig-
inally by BarfordandCrovella [6]. Additionally, we model
TCP window size andthe usageof persistentconrection.
We alsomocel HTTP requestsize motivatedby the trend
in usinglarge requestsdueto the increasingpopuarity of
“web email” [50].

6 Validation of RAMP

To validateif RAMP accuratelyreprodicethetraffic un-
derstudy we incormporateits outputinto ns-2simulatorand

compmretheresultof simulationagairst theoriginal traces.

To undestandif RAMP can perform as well as existing
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work in termsof gereratingrealistic syntheticworkload,
wealsocommreRAMP agairst SURGE[6], apopularweb
traffic workload gererator

6.1 Comparisonwith original traces

In this sectionwe uselSI-1 datato evaluge theaccurag
of RAMP. Theresultshavs the outpu of simulationmatch
theorigind tracesclosely Notethatbecasecurrerly our
tool only suppots web and FTP traffic, we first filter the
tracesso that they only containweb and FTP databefae
beingcommaredagainsthe simulationresult(togetherweb
andFTPtraffic account for 83.7% of thetotaltraffic in term
of thenunber of bytes,and48%in termsof the nurmber of
pacletsin ISI-1 trace).

Thestatisticsherewe usefor validationincludingthedis-
tributions of flow arrival, flow size, flow duration, paclet
inter-arrival time, wavelet scalingplot andthe application
specificparaneters,suchaspagesize, pagearrival, object
size (for webtraffic), file size,file arriva (for FTPtraffic),
userarrival anduserduraion. Again, herewe only shov
outbaind traffic and only CDF plots of flow statisticsfor
simplicity (althowgh the graghs of inbourd traffic are not
shawvn here they areconsistentvith theresultsof outbaind
traffic).

The CDF plots of flow statisticsfor 1SI-1 modelarede-
pictedin Figure 11, which showvs the model matchesthe
traceclosely The Kolmogorov-Smirnor testD valuesfor
Figure 11(g, Figure 11(b and Figure 11(c) are 0.0Q1L9,
0.0013, 0.00L8 respectidly. They all passthe K-S test
givenacritical valueof 0.00&4.

The correspadingwaveletscalingplot for ISI-1 mocel,
asdepictedn Figure12,alsoshows largedegree of resem-
blancebetweentrace and mocel, suchas similar enegy
value (the modelhasslightly lower enegy thowgh) anda
dip arownd 128ns (which reflectsthe RTT of the underly-
ing traffic).

The CDF plots of model paraneterssuch as page/file
size, userarrival etc. also matchclosely (which are not
shavn here), which are not surprisingthough since the
modelis directly driven by thoseparametes.

All thestatisticalcompaisonsshav RAMP is ableto ac-
curatelyrepralucetheorigind traffic.

6.2 Comparisonwith SURGE

In orderto undestandif RAMP cangereraterepreseta-
tive workload,we compae RAMP aganst anexisting traf-
fic generatg namely SURGE[6]. We demorstratethat
ourmodelparaneterizatiortool is capableof achieving the
samefunctionality of SURGE(i.e. generatig similar traf-
fic workload like SURGE) without suffering its limitation
dueto someof its implicit assumptions.

SURGEcontans asetof progamsthatprecompue sev-



User behavior
1. Userarrival is modded asa Poissomprocesswith certainrate.
2. Thenumker of pagegerusersessioris rancbmly pickedfrom the CDF(Cumulatve Distribution Functian) of trace.
3. thesourceof page arechoserfrom a CDF thatmatcheghe popularity of seners
4. Eachpageis sequentiallyrequestedy theusersasdescriledbelow.
Page
Pagesizeis choserfrom a CDF
Theinter-ariival time of pageis pickedfrom a CDF
Thenumker of objectswithin onepageis pickedfrom a CDF
Thesizeof requestto apageis pickedfrom a CDF
Userdecidesa TCP connectim is usedfor multiple request/responsexchangesor a singlerequet/responsexchange
basedon the probaility of persistentconrection (HTTP1.])) versusnon-gersistentconnetion (HTTP10) computed
from thetrace.In persistentonrectionmode all objectswithin the samepagearesentvia the sameTCP connetion.
Object
1. Theinter-ariival time of objed is pickedfrom a CDF
2. Thesizeof objed is pickedfrom a CDF
3. TheTCPwindow sizefor bothseners andclientsarealsorandanly choserfrom a CDF

agrwdE

Table5: Structuralmockel of webtraffic

User behavior
1. Userarrival is modded asa Poissomprocesawith certainrate.
2. Thenumter of file transmittedberusersessioris randbmly pickedfrom the CDF(Cumulatve Distribution Functior) of
trace.
3. thesourceof file arechasenfrom a CDF thatmatcheghe popuarity of seners
4. Userstartsanen TCP connetion for eachnew file whichis sequentiallytransmittecasdescritedbelow.
File
1. file sizeis choserfrom a CDF
2. Theinter-ariival time of file is pickedfrom a CDF
3. TheTCPwindow sizefor bothseners andclientsarealsorandanly choserfrom a CDF

Table6: Structurdamodelof FTPtraffic
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eraldataset@anda multi-threadedprogamthatmakesweb
requests usingthosedatasets.Both arewritten in C. The
datasetgonsistof the distribution mocels of numker of re-
guestsfile sizes popularity of files,embedédobjects file
tempoal locality andOFFtime.

To validateRAMP agairst SURGE,we perfomedalab
expelimentby running SURGEfor 30 minutesandrecord
ing thetraffic via tcpdump We thenfed the SURGEtrace
into RAMP andinspectedf the output of ns-2simulation
modéd from RAMP agres with SURGEtrace. The envi-
ronment of experiment consistsof five PCscomectedby
an 10MBpsEthernetswitch. Four of theseboxesareused
asSURGEclientswhich arePentiumll/Il | class(26GMHz
andabove) Linux boxes. We usea PentiumlV Linux box
(1.7GHz with 750M memay) asSURGEsenerwhichran
Apachev.1.3.22. Thenunberof UE (userentity, SURGES
represetationof awebuser)andCP (clientprocesswhich
decideshow the threadsare spavn) are 5 and 50 respec-
tively. Weran SURGEv.1.00awith HTTP 1.0.

We look atthe pacletinter-arival time andwaveletscal-
ing plot of the outpus of SURGEand our modelrespec-
tively. All the statisticsmatchclosely as shovn in Fig-
urel1l3andFigurel4.

One limitation of SURGE s that it attemptsto fit the
modds into somewidely-usedanalyticfunctions (suchas
using Paretoto describethe distributions of file sizesand
off time). However, it is not universally true that all the
web traffic follow theseassumptias. For example these
assumptios might breakfor a tracedistribution site like
ITA. We have obseredthe distribution of page sizein ITA
traffic (which are mainly madeup by simpleplain HTML
filesthatdescribdracesandcollection/alysissoftware)is
notheary-tailed,andhen@ cannotbemodeledhy SURGE.
Thepresencef heavy tails typically is indicatal by anap-
proximately straightline in thetail in the LLCD plot [16],
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Figure 14: Comparisa of wavelet scalingplots between
SURGEandRAMP

whichwedonotobserein ITA data,asshavnin Figurels.
On the otherhand our tool is basedon empiiical distri-
butionsof traffic anddoes nothave ary implicit assumptia
aboutthe distribution of the traffic, and henceit is more
flexible to copewith the diversity of the traffic. As the
waveletplot shavn in Figure 16, the ITA mockl generatd
by RAMP doescaptue theimportantfeaturesof ITA traffic
(suchasadip at500nsandsimilar enegy levels).

7 Performanceof RAMP

The time requred for RAMP from analyzingthe traces
to finally generatig the simulationmodelstypically takes
tensof minutesfor an tracewith size of several hurdred
megébytes,althoudh the processspeedalsodepend onthe
natureof the traffic (curently RAMP only suppats web
andFTP traffic) andits actualvolume. In this section,we
shav thespeedf RAMP is afunctionof numker of paclets
in the tracefile. Currerly we suppat tracescaptued in
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Trace | ISI-1 | ISI-2 | ITA

file size(MB) | 614 | 561 | 203

no. of bytes(GB) | 1.0 73 | 24

no. of paclets(M) | 9.2 84 | 25

no. of flows(K) | 506 | 398 | 1.3
processtime (min) | 25 21 8

speedthousandpaclets/sec)| 6.1 6.3 | 5.7

Table7: Processime of RAMP for differen traces

tcpdunp format.

To uncerstandwhat are the factorsthat will affect the
perfamanceof RAMP, we ranRAMP ona 1.7GHz Pen-
tium IV Linux boxwith 1G memoryfor differenttracefiles
obtainedat differenttime anddifferent places. As shavn
in Table 7, we canseethe processtime of RAMP is ap-
proximately propational to the numter of pacletsin the
trace(andhene alsoproportioral to thefile size). In gen-
eral, it takestensof minutes for RAMP to processa hou-
longtrace,allowing usersto simulatecurrenttraffic several
timesperday

8 Limitation

In thissectionwe descrile someinheentlimitations that
will affectourresults. Theselimitationsinclude theunce-
taintieswhenrecastructingHTTP level informationfrom
TCP/IPheaderinconpleteflows in thetracesandthelim-
itation of estimatingbandwidh basedon passie measue-
ment.

Our methalology to infer the sourcebehaior of web
traffic is basedon the limited information available in
TCP/IP headerfor one directin of a TCP conrection.
Thereareanunmberof uncetaintiesarisingfromissuesuch
aspipelining, user/lvowserbehaior, cachesand TCP seg-
mentre-aderingwill affectourinference,asdescribedyy
Smithetal. [50]. However, we expect thesecasewill typ-
ically only appearasvery small percetageof total traffic
andwill not noticealty affect the normal opesating cond-
tion of our modelparaneterizatiortool.

We find incomgete TCP connetions at the beginnings
and endsin the datasince our tracesonly cover specific
intervalsof time (i.e. onehour). We excludedtheseincom
plete connetions from our analysis. However, we expect
thismighthave someeffectontheresultssinceit will affect
someof themodelparametes (eg. page sizeandnunberof
objectsperpage). In our studytheinconpleteconnectios
accoum for 2-4%of thetotal conrections.Sincewe ignore
theseconnetions,we expectthatour modelwill undees-
timate traffic volume. To quantify this error we analyzel
the distribution of long flows in two 24-hour long traces
from NLANR [2]. Although thereare a small nunber of



flows longer thananhour (0.026 by flow count,abou 5%
by paclet count)if we examire all flows of the NLANR
tracesthe majority of theseflows areNNTP traffic. Exam
ining merelyweb and FTP traffic we seeonly 0.006% of
flows or 0.01%o0f pacletsarein flows longe thananhou.
Therebre we believe that our modelwill not significantly
undeestimatevebandFTPtraffic.

There are some known issueswith using SBPP and
ROPPto measurdhe bottlenek bandwidh. For exampe,
crosstraffic andpost-lottleneckqueuirg tendto distortthe
estimation. Previous study by Lai et al. shaved thatthe
inaccuacgy of bandwdth estimationbasedon passie mea-
suremets canbeashigh as41%[30]. However, asshavn
in SectiorB, ourresultsndicaesthatthesetechniqescom-
binedwith somesimplefiltering mecharsmgive usreason
able appoximatian to estimatebottlene& bandwidh for
driving our simulationmodel.

9 Future Work

As future work, herewe describesome possibleim-
provementsto RAMP. Theseimprovemants include better
gueung model,suppat of backbme-styletraffic, real-time
modd parametdration, supprt of othertypesof impor-
tanttraffic, further validationof RAMP with traceshaving
differentcharacteristicanodelirg of tempoal relatiorship
betweerdifferenttypesof traffic, long-tem traffic predc-
tion andintegrationof distributedmeasurerants.

We modelqueuirg delayasanextracompnentof propa-
gationdelayinsteadbf theendresultof interaction between
aggreationof flows andlimited buffer size (whichis hard
to charactdre just by looking at TCP/IP heacer informa-
tion). This apprachis sufiicient for our datasetswhich
have low link utilization andzero paclet drop. However,
for sites which expeiience seriouscongestion(like flash
crowd), our appgoximation might introduce someinaccu
ragy in theresultandrequre furtherstudy

Thecurrert designof RAMP hasanimplicit assumptia
thatthe measurd traffic is captued at the edgelink (such
asthelink betweera campusetwork andits ISP),sothat
theendio-endpathcharateristicssuchasbottlereckband
width canbe estimatedvia passve measurerents. When
applyng RAMP to backlone-styletraffic, we expectthis
limitation can be amelioratedwith extra information ob-
tainedusingexistingactive proking techniqes[26, 17, 13].

CurrentlyRAMP takesatracefile asinputandprocesses
the traffic off-line. Although for our current processing
powerandtracetraffic, RAMP processings slightly slower
thanreal time. With slightly more computing power (or
slightly lower-speedtraces)and minor software charges,
RAMP couldparametdre the modelin real-time.The pri-
mary changeto RAMP would be to incrememally update
the output CDFsaseachnew flow arrives, insteadof com-
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putingall flows at once.

Our tool currently suppots web and FTP traffic, which
only accountsfor a subsebf real network traffic. To make
the output of RAMP more representiave, we would like to
incorporate othe typesof important traffic suchas DNS,
multimeda traffic (suchasReal Audio/Video)andincreas-
ingly popular peerto-peertraffic (suchas Morpheus)into
ourtool.

In this study we useonly two setof traces(from ISI and
ITA respectrdy) for the designandvalidaion of RAMP.
We planto collectmoretracesfrom otherplaces,particu
larly thosethat potertially have very differert traffic char
acteristicysuchasat a vety high speedink or avery con-
gestedsite),to further investigae andvalidae RAMP.

To accuratelymodeltraffic, it is importantto charactdare
thetemporéarelationshipbetweerdifferenttypesof traffic.
For example,DNS behaior is vely likely linked closely
to web traffic patternsince mostof the web connectios
are usually precedd by DNS lookups. We planto study
thisissueandunderstanchow to orchestratedifferenttraffic
classegorrectlyin themockel.

Currentlyour mode is basedhetracerecodedat a sin-
gle tap point of network. However, distributed measue-
mentis requiledin orderto getanetwork-wide view of traf-
fic andcorredly modelthe behavior of crosstraffic, while
keepinghesizeof collecteddatamaintairable. To integrate
distributeddatatogetterwill require apgoachedor overlap
detectiorandholefilling. To addressthis problem,we plan
to explore andextendthetechniqiesdevelopedin previous
work of distributednetwork monitoiing suchasSCAN|[22]
andrecentwork in network tomogaphy[9, 38, 51, 10, 11],
andemplg new algolithms andtoolsto memge distributed
datainto a coheentmodel.

Measuremet study of Interret tracesshaws that the
WAN perfamane is reasoably stableover termsof sev-
eral minutes; meanwhile,nearly hostsexperiencesimilar
or identical throughput performane within a time periad
measuredn minutes[5, 45]. Our modelparaméerization
tool outputs simulationmocel at the time scaleof tensof
minutesfor hourlong traffic, which matchesthe level of
stability reportedin previous study and henceis apgica-
ble to simulatepresenttraffic andpredictshort-tem traffic
trend. However, to simulateandpredct long-tem trendof
traffic (for examge, at the time scaleof days),we needto
undestandhow thetraffic evolves andcorreldesin time.

10 Conclusion

Floyd and Paxson[21] characteried the prodems, the
constantlychangng and decerralized natureof the Inter-
net, resultin a poa understading of traffic charateris-
tics andmale it difficult to definea typical configuation
for simulatingthe Internet. Motivated by thetheir obsenre



tions,we develop atool calledRAMPthatsupprt rapid pa-
rameteriationof live network traffic for geneatingrealistic
application-level simulationmodels.Ourmockl is basedn
estimationof userbehaiors and network conditiors from
captued tcpdumptrace. We validateour methoalogy by
comparing somefirst order statisticsof tracesagainstthe
simulationoutpu of model. We also apply multi-scalirg
analytic techniges to dehug and validatethe model. In
this paper we first demorstratetraffic is differentin both
tempoal andspatialspace We thenshawv the effectiveness
of our appoachesn termsof the capaliity of generatig
simulationmocklsthat captue traffic dynanics in atimely
fashioneven whenfacingthe ubiqutous heterogneity of
the Interné. Our work hasthreeprimary results. First,
we strengtherFloyd and Paxsons argumentsby shoving
that network characteristicsiot only changeover time but
alsovaryin otherdimensimssuchaslocatiors andflow di-
rections. Second we propose a methoalogy for rapidy
paraneterizingtraffic modds. This apprach emplgss a
trace-aalysis tool that infers traffic andtopdogy chara-
teristics, and a CDF-basedraffic modelthat can captue
widely varying webtraffic. Finally, we shav how ourmod
els can be automdcally and rapidly parametgzed from
traces,allowing a userto quicKy instantiatemockls that
represehcurren, localtraffic.
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