
Impact of Network Density on Data Aggregation in Wireless Sensor
Networks �

Chalermek Intanagonwiwat, Deborah Estrin y, Ramesh Govindan z,
John Heidemann

USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292, USA

fintanago, estrin, govindan, johnhg@isi.edu

November 4, 2001

Abstract

In-network data aggregation is essential for wireless sensor networks where resources (e.g., bandwidth, en-
ergy) are limited. In a previously proposed data dissemination scheme, data is opportunistically aggregated at the
intermediate nodes on a low-latency tree which may not necessarily be energy efficient. A more energy-efficient
tree is a greedy tree which can be incrementally constructed by connecting each source to the closest point of the
existing tree. In this paper, we propose a greedy approach for constructing a greedy aggregation tree to improve
path sharing. We evaluated the performance of this greedy approach by comparing it to the prior opportunistic
approach. Our preliminary result suggests that although the greedy aggregation and the opportunistic aggregation
are roughly equivalent at low-density networks, the greedy aggregation can achieve signficant energy savings at
higher densities. In one experiment we found that the greedy aggregation can achieve up to 45% energy savings
over the opportunistic aggregation without an adverse impact on latency or robustness.

1 Introduction

Advances in radio, sensor, and VLSI technology will enable small and inexpensive sensor nodes capable of wireless

communication and significant computation. Large-scale networks of such sensors may require novel data dissemi-

nation paradigms which are scalable, robust, and energy-efficient [7]. One such paradigm is directed diffusion [12]

which incorporates data-centric routing and application-specific processing inside the network (e.g., data aggrega-

tion). Given that the communication cost is several orders of magnitude higher than the computation cost [16],

directed diffusion can achieve significant energy savings with in-network data aggregation. This benefit of data

aggregation has been confirmed theoretically [14] and experimentally [10].

The instantiation of directed diffusion described in the earlier work establishes low-latency paths between

sources (sensor nodes that detect phenomena) and sinks (user nodes) using only localized algorithms. Data from dif-

ferent sources can be opportunistically aggregated at intermediate nodes along the established paths. Energy-wise,
�This work was supported by the Defense Advanced Research Projects Agency under grant DABT63-99-1-0011. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency.

yUniversity of California, Los Angeles and USC/Information Sciences Institute
zInternational Computer Science Institute and USC/Information Sciences Institute

1

Source 1

Source 2
Sink

(a) Late Aggregation

Source 1

Source 2
Sink

(b) Early Aggregation

Figure 1: An Example of Late Aggregation and Early Aggregation.

such path selection with opportunistic aggregation is not optimal because paths from different sources to a sink may

not be early shared or merged. Thus, data may not be aggregated (or reduced) near the sources (Figure 1). To achieve

more energy savings, one could design another diffusion instantiation which favors path selection to increase early

sharing of paths and reduce energy consumpition.

However, there are drawbacks for early path sharing: higher latency and less robustness. Some paths will

be longer to trade off for early aggregation. Given that an aggregate generally contains more information than a

non-aggregated message, a loss of an aggregate adversely impacts the quality of the result more than a loss of a

non-aggregated message. Conversely, there are practical constraints that favor early path sharing. For example, the

early aggregation reduces overall traffic which is preferable, given the limited bandwidth (Section 5).

Nevertheless, it is not obvious that such path optimization will practically lead to significant energy savings.

Specifically, the additional cost of establishing the optimal aggregation tree could be dramatically high. Assuming

perfect aggregation (i.e., the data size of an aggregate is equal to the data size of an individual event), the cost of the

tree is the number of links on the tree. Therefore, finding the optimal aggregation tree is computationally infeasible

because it is equivalent to finding the Steiner tree that is known to be NP-hard [23]. Thus, we do not expect to get

an optimal tree. Imperfect aggregation and a sub-optimal aggregation tree can further limit the energy savings.

One promising heuristic is a greedy incremental tree (GIT) [18]. To construct a greedy incremental tree, a

shortest path is established for only the first source to the sink whereas each of the other sources is incrementally

connected at the closest point on the existing tree. In this paper, we propose a new instantiation of directed diffusion

that uses a GIT-like algorithm (Section 4) to improve path sharing. We have implemented this greedy-tree approach

in ns-2 and we compare it to our prior opportunistic approach (Section 5). Our preliminary result suggests that

although the two are roughly equivalent at low-density networks, the greedy-tree can achieve signficant energy

savings at higher densities. Recent work has compared the greedy incremental tree with the shortest path tree

(SPT) using abstract simulations [14]. Based on the event-radius model and the random sources model, their results

indicate that the transmission savings by the GIT over the SPT do not exceed 20%. However, the energy savings

of our greedy aggregation can definitely be much higher than 20%, given our source placement schemes and high-

density networks (Section 5.4).

2

Sink

Event

Source

Interests

(a) Interest propagation

Sink

Event

Source

Gradients

(b) Initial gradients set up

Sink

Event

Source

(c) Data delivery along rein-
forced path

Figure 2: A simplified schematic for directed diffusion.

2 Directed Diffusion

Directed diffusion [12] is an approach to attribute-based data communication for wireless sensor networks. The goal

of directed diffusion is to establish efficient communication between sources and sinks. Directed diffusion consists

of several elements. Data is named using attribute-value pairs. A sensing task (or a subtask thereof) is disseminated

throughout the sensor network as an interest for named data. This dissemination sets up gradients within the network

designed to “draw” events (i.e., data matching the interest). Events start flowing towards the originators of interests

along multiple paths. The sensor network reinforces one, or a small number of these paths. Figure 2 illustrates these

elements.

To describe the elements of diffusion, we take the simple example of a sensor network designed for tracking

animals in a wilderness refuge. Suppose that a user in this network would like to track the movement of animals

in some remote sub-region of the park. In directed diffusion, this tracking task represents an interest. An interest

is a list of attribute-value pairs that describe a task using some task-specific naming scheme. Intuitively, attributes

describe the data that is desired by specifying sensor types and some geographic region. They are then used to

identify and contact all relevant sensors. We use the term sink to denote the node that originates an interest.

The interest is propagated from neighbor-to-neighbor towards sensor nodes in the specified region. A key feature

of directed diffusion is that every sensor node is task-aware—by this we mean that nodes store and interpret interests,

rather than simply forwarding them along. In our example, each sensor node that receives an interest remembers

which neighbor or neighbors sent it an interest. To each such neighbor, it sets up a gradient. A gradient represents

both the direction towards which data matching an interest flows, and the status of that demand (whether it is active

or inactive and possibly the desired update rate). Subsequent to setting up a gradient, the sensor node redistributes

the interest to its neighbors. To do this, the node floods the interest to all its neighbors, or send only to a subset of

neighbors in the direction of the specified region.

When a sensor node that matches the interest is found, it activates its local sensors to begin collecting data.

(Prior to this, the node’s sensing circuitry operates in a low-power mode). The sensor node then generates data

messages matching the interest. In directed diffusion, data is also represented using an attribute-value pair based

naming scheme. A sensor node that generates such an event description is termed a source.

The source sends the data message to each of those neighbors for which it has gradients for the matching interest.

3

A node that receives this message checks if it has received the identical message before—for this purpose, each node

maintains a small cache of recently received data items. This cache serves to avoid duplicates, prevent loops, and

can be used to preferentially forward interests. This is a key capability of directed diffusion. If an identical data

item exists in the cache, the node drops the message. The node also triggers application-specific filters that do more

sophisticated processing. Application-specific, in-network processing is another key feature of diffusion; in-network

aggregation can reduce data transferred across the network, and thereby conserve energy. If this data item does not

exist in its cache, the node determines the matching interest, and resends the data along the gradient towards the

neighbor.

If the sink has multiple neighbors, it chooses to receive subsequent data messages for the same interest from a

preferred neighbor (for example, the one which delivered the first copy of the data message). To do this, the sink

reinforces the preferred neighbor, which, in turn reinforces its preferred upstream neighbor, and so on. Finally, if a

node on this preferred path fails, sensor nodes can attempt to locally repair the failed path.

Even this simplified description points out several key features of diffusion, and how it differs from traditional

networking. First, diffusion is data-centric; all communication in a diffusion-based sensor network uses interests to

specify named data. Second, all communication in diffusion is neighbor-to-neighbor or hop-by-hop, unlike tradi-

tional data networks with end-to-end communication. Every node is an “end” in a sensor network. A corollary to

this previous observation is that there are no “routers” in a sensor network. Each sensor node can interpret data and

interest messages. This design choice is justified by the task-specificity of sensor networks. Sensor networks are not

general-purpose communication networks. Third, nodes do not need to have globally unique identifiers or globally

unique addresses. Nodes, however, do need to distinguish between neighbors. Finally, because individual nodes can

cache, aggregate, and more generally, process messages, it is possible to perform coordinated sensing close to the

sensed phenomena. It is also possible to perform in-network data reduction, thereby resulting in significant energy

savings.

3 Data Aggregation and Directed Diffusion

Once sensors detect phenomena, generated events are disseminated to users. Intermediate nodes may aggregate

several events into a single event to reduce transmissions and total data size for system resource savings. The total

size reduction mainly depends on data characteristics, event representations, and applications. Only data aggregation

that leads to total size reduction is considered and justified in this paper. Furthermore, data aggregation will also

reduce transmissions. As a result, the total per-transmission overhead (e.g., packet headers, MAC control packets)

will be reduced and the energy savings will be even more evident.

Similar to data compression, data aggregation can be classified into two approaches (i.e., lossless and lossy).

With lossless aggregation, all detailed information is preserved. However, according to information theory, the total

size reduction is upper bounded by entropy (i.e., a measure of how much information is encoded in a message). The

basic principle of data reduction is to eliminate redundant information. Given that events may be highly correlated,

there will be a significant amount of redundancy among them. Unlike lossless aggregation, lossy aggregation may

discard some detailed information and/or degrade data quality for more energy savings.

Examples of lossless aggregation are the timestamp aggregation and the packing aggregation. The timestamp

4

aggregation can be used in a remote surveillance application where an event consists of several attributes including

a timestamp. Distinct events may actually be temporally correlated (within seconds of one another). The redundant

information (e.g., the hour and minute field in the timestamp) may be minimized (i.e., not repeated) using an efficient

representation for aggregated events. For the packing aggregation, several non-aggregated messages are packed

into one aggregate without compression. The only savings are the total per-transmission overhead, such as packet

headers.

An example of lossy aggregation is the outline aggregation used in eScan [24]. The goal of eScan is to depict

the remaining energy levels of sensor nodes. Leveraging the spatial locality of energy usage, topologically adja-

cent nodes can sometimes be approximately represented by a bounding polygon. This approach trades off some

inaccuracy in node energy representation for reduced energy usage.

Directed diffusion was designed with application-level data processing in mind. Unsurprisingly, directed diffu-

sion can take advantage of data aggregation due to in-network data processing capability. Nevertheless, some di-

rected diffusion mechanisms can be adjusted to achieve even more benefit out of data aggregation. It is expected that,

with the proper interactions between data aggregation rules and reinforcement rules, energy efficient paths would be

selected rather than low delay paths. In particular, if aggregated data are distinguishable from non-aggregated data,

it will be possible to design reinforcement rules that favor aggregated data paths over non-aggregated data paths.

Those rules will encourage path sharing and achieve even more energy saving due to more data aggregation (See

Section 4).

Energy savings of data aggregation depend on reduction in total data size. If the total data size is rarely reduced

after aggregation, a shortest path will be more energy efficient than an aggregated data path. Moreover, without

a reasonable reduction in total data size, aggregated data paths introduce traffic concentration (and probably also

congestion) which adversely impacts network lifetime. Under this scenario, path optimization is not worth perform-

ing. Conversely, if the total data size is dramatically reduced after aggregation, it will be reasonable to trade off

delay for energy efficiency by favoring longer but aggregated data paths over shorter but non-aggregated data paths.

A gradient map (i.e., data gradients from sources to sinks) similar to a greedy tree will be preferred. Specifically,

aggregation points need to be carefully selected (using reinforcement) so that additional dissipated energy (due to

longer paths) does not exceed energy savings (due to total data size reduction).

4 Greedy Aggregation

Greedy aggregation is a novel diffusion approach to construct a greedy incremental tree for data aggregation. This

approach differs from the previous diffusion approach (i.e., the opportunistic aggregation on a lowest latency tree) in

path establishment and maintenance. To construct a greedy incremental tree, a shortest path is established for only

the first source to the sink whereas each of the other sources is incrementally connected at the closest point on the

existing tree.

4.1 Path Establishment

For the opportunistic aggregation, the sink initially diffuses an interest for a low event-rate notification (i.e., an

exploratory event) intended for path establishment and repair. We call the gradients set up for sending exploratory

5

events exploratory gradients. Once a source detects a matching target, it sends exploratory events, possibly along

multiple paths, toward the sink. After the sink receives these exploratory events, it reinforces one particular neighbor

in order to “draw down” real data (i.e., events at a higher data rate that allow high quality tracking of targets). We

call the gradients set up for sending high quality tracking events data gradients. The local rule for selecting an

empirically low delay path is to reinforce any neighbor from which a node recieves a previously unseen exploratory

event.

For our greedy aggregation, each event contains an additional attribute E, the energy cost for delivering this

event from the source to the current node. Once a source detects phenomena, it sends exploratory events with E = 1

to each neighbor for whom it has a gradient. After a node receives these previously unseen exploratory events,

it adds the cost of that transmission to E before resending. Since our radios have fixed transmission power, we

measure energy as equivalent to hops, but direct measures of variable energy could also be used. Although this

energy attribute is useful for selecting a lowest-energy path, it is not sufficient for constructing a greedy incremental

tree because there is no path-sharing information.

To provide such information, each source on the existing tree (i.e., a source with data gradients) also generates an

incremental cost message, once it receives a previously unseen exploratory message generated by other sources. The

incremental cost message contains the random message id of the corresponding exploratory event and the additional

energy cost C required for delivering that exploratory event to the existing tree. This incremental cost message is

only sent along the existing tree using data gradients. Unlike the energy cost E, the incremental energy cost C can

only be decreased (in order to find the closest point on the existing tree). Once an on-tree node receives a previously

unseen incremental cost message, it searches for the corresponding exploratory event in its message cache. The

node updates C of the incremental cost message to the minimum value between the current C and the energy cost

E0 of the exploratory event retrieved from the cache, before sending the incremental cost message to its outgoing

data gradients.

Once a sink receives a previously unseen exploratory event, it does not reinforce a neighbor immediately because

an energy-efficient path is not necessarily a lowest-delay path. Instead, a reinforcement timer of Tp is set up. After

the timer expires, the sink reinforces any neighboring node that sent the exploratory event or the incremental cost

message (of the corresponding exploratory event) at the lowest energy cost. If the energy cost of an exploratory event

and the incremental cost message are equivalent, the sink reinforces the neigbhoring node that sent the exploratory

event. Other ties are decided in favor of the lowest delay. When the neighboring node receives the reinforcement

message (associated with the random message id of the exploratory message), the node sets a data gradient towards

the sink (or the node that sends the reinforcement) and reinforces an upstream neighboring node immediately using

the above local rule without setting up a timer.

As a result, a greedy incremental tree can be constructed using the described local rule (See Figure 3 for exam-

ple). Unlike the exploratory event, the incremental cost message contains the minimum energy cost of delivering

data from a new source to the existing tree (not to the sink). The path from the first source to the sink is a lowest

energy path because of no existing tree or no incremental cost message genearted yet. Each subsequent source is

incrementally connected to the aggregation tree at the closest point (using the energy cost information provided by

the incremental cost message). Hence, one might wonder if this algorithm requires unsynchronized sources so that

each source can be incrementally connected to the tree. We do not make that assumption because sources can be

6

Source 1

Source 2
Sink

E2 = 0

E2 = 2

E2 = 1

E2 = 1

E2 = 2

E2 = 2 E2 = 3

E2 = 4

E2 = 2

E2 = 3
E2 = 4

E2 = 5

C 2 = 2
C 2 = 2

C 2 = 2

C 2 = 2

(a) An Incremental Cost Message

Source 1

Source 2
Sink

(b) Reinforcement

Figure 3: An Example of Path Establishment.

synchronized if they are triggered by the same phoenomena. Although we have described the algorithm using ex-

amples in which different sources start at different times, the algorithm in fact works when sources start transmitting

events in near simultaneity. In that scenario, the algorithm initially constructs a lowest-energy-path tree (i.e., each

source is connected to the sink using the lowest-energy path), but this problem is not persistent. At the subsequent

round of exploratory events, the greedy incremental tree will be constructed and the lowest-energy-path tree will be

pruned off using the negative reinforcement mechanism in Section 4.3.

4.2 Data Aggregation and Set Covering Problem

To enable data aggregation, intermediate nodes will process or delay received data for a period of time Ta before

sending them. This delay is crucial for data aggregation because multiple data will not be received at the same time.

The delay should be selected based on the application or other system factors. For example, in a TDMA MAC, one

might match the aggregation time to a multiple of the TDMA frame duration, or as a fraction of the periodicity of

sensor data generation. Thus, unsent data can be periodically aggregated and appropriately delivered to neighbors

using data gradients. However, intermediate nodes do not necessarily delay received data for the same period of

time. An intermediate node that receives a sufficient amount of data for aggregation does not need to delay the

received data any further. In addition, an intermediate node that is not an aggregation point does not need to delay

the data at all.

Similar to exploratory events, messages and aggregates also contain the energy cost attribute. After aggregat-

ing multiple messages into an aggregate, the final step before sending the aggregate is to compute the associated

energy cost for that aggregate. This energy information will be used for empirical adaptation to energy-efficient

paths. Specifically, the negative reinforcement rule uses this information for path truncation (Section 4.3). However,

different neighbors might report aggregates of different subsets of data items, with varying costs. The challenge is

to find the set of incoming aggregates which cover the data items at the smallest cost. Given incoming aggregates,

it is not trivial to calculate the minimum energy cost of the outgoing aggregate because it is a weighted set-covering

problem [4, 6] (i.e., a generalized version of an NP-hard set-covering problem).

An instance of the set-covering problem consists of a finite set X = fx1; x2; :::; xmg and a family F of subsets

7

L

G

H

K

P

S1 = {a 1, a2, b1}

S2 = {b 1, b2}

S3 = {a 2, b2}

S4 = {a 1, a2, b1, b2}

w1 = 5

w2 = 6

w3 = 7

w4 = 12

(a) Data Aggregation

L

G

H

K

P

S” 1 = {A, B}

S” 2 = {B}

S” 3 = {A, B}

w” 1 = 10/3

w” 2 = 3

w” 3 = 7

(b) Negative Reinforcement

Figure 4: The Use of Weighted Set Covering Problems.

Si of X , F = fS1; S2; :::; Sng, such that every element of X belongs to at least one subset in F : X = [ni=1Si. The

regular set-covering problem is to determine a minimum-size subset C � F whose members cover all of X , i.e.,

X = [Si2CSi. For the weighted set-covering problem, each set Si in the family F is associated with a weight wi
and the weight of a cover C is

P
Si2C

wi. The problem is to find a minimum-weight cover (The regular set-covering

problem is a special case of the weighted set-covering problem with wi = 1 for all i).

Our problem can be directly mapped into the weighted set-covering problem as follows. An incoming aggregate

is a subset Si whereas the outgoing aggregate is X . Each incoming aggregate is associated with the energy cost wi.

Therefore, the energy cost of the outgoing aggregate is the minimum weight of the cover plus 1.

Approximate algorithms for this problem include greedy heuristics [4, 6], probabilistic methods [17], genetic-

algorithms-based heuristics [15], neural-networks-based techniques [9], and Lagrangian heuristics [5]. We chose

the greedy heuristic because of its high-quality solutions (The worst ratio between the cost of a greedy solution and

the optimal solution is lnd + 1 where d is the maximum size of any set Si [6, 9]). The heuristic of the greedy

set-covering algorithm is to greedily select the next subset (among the remaining subsets) for covering uncovered

elements at the lowest cost ratio until all elements are covered. The cost ratio ri of Si is wi=jS0
ij where S0

i � Si is the

set of uncovered elements in Si. However, there might exist a subset Sk in C where all elements in Sk are covered

by the union of other subsets in C . The final step of the greedy heuristic is to remove such redundant subsets from

C .

For example (Figure 4(a)), node L receives incoming aggregates S1 = fa1; a2; b1g; S2 = fb1; b2g; and S3 =

fa2; b2g. Suppose that w1 = 5; w2 = 6; and w3 = 7 are the associated energy costs. Therefore, r1 = 5=3; r2 = 6=2;

and r3 = 7=2 are the initial cost ratios. Given that r1 is the minimum cost ratio, S1 is the first selected subset

and the remaining uncovered element is b2. At the second step, r2 = 6=1 and r3 = 7=1 because S0
2
= fb2g and

S0
3
= fb2g. Thus, S2 is selected as the final subset of the cover. L then sends an outgoing aggregate S4 = S1[S2 =

fa1; a2; b1; b2g to P with associated energy cost w4 = w1 + w2 + 1 = 12.

8

4.3 Path Truncation

The algorithm described in Section 4.1 can result in more than one path being reinforced after multiple rounds of ex-

ploratory events (due to synchronized sources and network dynamics). For energy efficiency, we need a mechanism

to negatively reinforce (to truncate) unnecessary or inefficient paths.

To find the inefficient paths, our trucation rule might also need to compute the set cover. Given that different

neighbors might report aggregates of different subsets of data items, with varying costs, the challenge is to find the

set of neighbors who cover the data items at the smallest cost. A simple truncation rule is to negatively reinforce

neighbors that are not in the set cover.

Specifically, one plausible choice for a truncation rule is to negatively reinforce neighbors from which no energy-

efficent aggregates have been received within a window of N events or time Tn. The local rule we evaluate in

Section 5 is based on a time window of Tn, chosen to be 2 seconds in our simulations (or 4 times of the aggregation

delay Ta). An incoming aggregate is considered energy-efficient if it is selected as a subset in the set cover C .

For example (Figure 4(a)), node L will negatively reinforce node K because S3 is not in C . However, given that

events ai and bi are generated by sources A and B, respectively, this direct approach is a bit conservative and energy

inefficient (G will likely send b2 in its next aggregate. Therefore, H should also be negatively reinforced).

Our more energy-efficient rule is to compute the set cover C of sources not events. To do this, each event in

an aggregate is replaced by its source. To preserve the initial cost ratio, the new associated energy cost w00i of the

transformed aggregate S00
i is wi � jS00

i j=jSij. For example, the subsets of events in Figure 4(a) can be transformed

to the subsets of sources in Figure 4(b). After the transformation, S00
1
= fA;Bg; S00

2
= fBg; and S00

3
= fA;Bg

whereas w00
1
= 5 � 2=3; w00

2
= 6 � 1=2; and w00

3
= 7 � 2=2 . The cost ratios are still r1 = 5=3; r2 = 3; and r3 = 7=2.

Using the greedy heuristic, S00
1

is selected as the only subset in C . Therefore, L negatively reinforces H and K.

When H receives this negative reinforcement, it degrades its gradient towards L (from a data gradient to an

exploratory gradient). Furthermore, if all its gradients are now exploratory, H negatively reinforces those neighbors

that have been sending data to it (as opposed to exploratory events). This sequence of local interactions ensures that

the path through H is degraded rapidly.

5 Performance Evaluation

In this section, we report on some results from a preliminary simulation. We use a packet-level simulation to explore

(in some detail) the implications of some of our design choices. This section describes our methodology, compares

the performance of the greedy aggregation against the opportunistic aggregation, then explores impact of network

dynamics and other factors on simulation.

5.1 Methodology

We implemented our greedy aggregation in the ns-2 simulator [3]. Our goals in conducting this evaluation study

were four-fold: First, verify the viability of the greedy aggregation as an alternative instantiation of directed diffu-

sion. Second, understand the impact of network dynamics (e.g., node failures) on the greedy aggregation and the

opportunistic aggregation. Third, explore the influence of the source placement scheme on the performance of both

9

approaches. Finally, study the sensitivity of the greedy aggregation to the parameter choices.

We select three metrics to analyze the performance of the greedy aggregation and to compare it to the oppor-

tunistic aggregation: average dissipated energy, average delay, and distinct-event delivery ratio. These metrics were

used in earlier work to compare diffusion with other idealized schemes [12]. Average dissipated energy measures

the ratio of total dissipated energy per node in the network to the number of distinct events received by sinks. This

metric computes the average work done by a node in delivering useful information to the sinks. The metric also in-

dicates the overall lifetime of sensor nodes. Average delay measures the average one-way latency observed between

transmitting an event and receiving it at each sink. This metric defines the temporal accuracy of the phenomena

detection delivered by the sensor network. The distinct-event delivery ratio is the ratio of the number of distinct

events received to the number originally sent. This metric indicates the robustness to network dynamics. We study

these metrics as a function of sensor network density.

To completely specify our experimental methodology, we need to describe the sensor network generation proce-

dure (e.g., our choice of ratio parameters, our workload). In order to study the performance of the greedy aggregation

as a function of network density, we generate a variety of sensor fields in a 200m by 200m square. In most of our

experiments, we study seven different sensor fields, ranging from 50 to 350 nodes in increments of 50 nodes. Each

sensor field generated by randomly placing the nodes in the square. Each node has a radio range of 40m. Thus,

the radio density (expressed in terms of how many other nodes each node can hear on average) ranges from 6 to 43

neighbors. For each network size, our results are averaged over ten different generated fields.

The ns-2 simulator implements a 1.6 Mbps 802.11 MAC layer. Our simulations use a modified 802.11 MAC

layer. To more closely mimic realistic sensor network radios [13], we altered the ns-2 radio energy model such that

the idle time power dissipation was about 35mW, or nearly 10% of its receive power dissipation (395mW), and about

5% of its transmit power dissipation (660mW).

Finally, in most of our simulations, we use a fixed workload which consists of five sources and one sink. All

sources are randomly selected from nodes in a 80m by 80m square at the bottom left corner of the sensor field.

The sink is randomly selected from nodes in a 36m by 36m square at the top right corner of the field. This source

placement scheme differs from the event-radius model [14] for the low-level data aggregation because sources may

not be triggered by the same phenomena and may not be within one hop from one another. Similar to the random

source placement model [14], our source placement scheme is intended for the high-level data aggregation except

that all sources in our placement scheme are placed in a subregion of the sensor field far from the sink. Our greedy

aggregation targets high-level data (e.g., abstract event represenation) because we expect that low-level data (e.g.,

seimic signals) will be locally processed. Therefore, only the random source placement scheme and our source

placement scheme are used in this evaluation.

Each source generates two events per second. Thus, the aggregation delay Ta is set to 0.5 seconds. The rate

for exploratory events was chosen to be one event in 50 seconds. Events were modeled as 64 byte packets and

other messages were 36 byte packets. The size of aggregates depends on the aggregation function and the number

of data items in the aggregates (Section 5.4). For the perfect aggregation, the aggregate size is 64 bytes. Interests

were periodically generated every 5 seconds and the gradient timeout was 15 seconds. We chose the window Tn for

negative reinforcement to be 2 seconds and the timer Tp for positive reinforcement to be 1 second.

10

5.2 Comparative Evaluation

Our first experiment compares the greedy aggregation to the opportunistic aggregation for data dissemination in

sensor networks. Figure 5(a) shows the average dissipated energy per packet as a function of the network density.

Assuming the perfect aggregation, the greedy aggregation has noticeably better energy efficiency than the oppor-

tunistic approach for high-density networks. For some sensor fields, its dissipated energy is only 55% that of the

opportunistic aggregation. Given a high-density network, there exist several shortest paths from a source to a sink.

The available path diversity reduces the probability of path sharing among different sources for the opportunistic

aggregation. The dissipated energy for both approaches increases with network size due to some diffusion overhead

(e.g., flooding of interests and exploratory events).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(b) Average delay

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

Number of Neighbors

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 5: The greedy aggregation compared to the opportunistic aggregation.

Figure 5(b) plots the average delay observed as a function of the network density. The greedy aggregation has

a delay comparable to the opportunistic aggregation. This is a bit surprising because we expected that the greedy

aggregation would trade off delay for energy efficiency. In low-density networks, the greedy aggregation has a bit

longer delay because there are not many shortest paths. Thus, a shared path to a new source is unlikely to be a

shortest path. Conversely, in high-density networks, the greedy approach has a bit lower delay because a shared

path to a new source can still be close to a shortest path. Unlike the greedy aggregation, the opportunisitc approach

does not encourage path sharing. Given the random jitter delay and the MAC fairness, the lowest-delay paths for

sources are unlikely to be shared, particularly in high-density networks. Therefore, in high-density networks, the

opportunistic aggregation is less energy-efficient and the overall traffic reduction is less. As a result, the delay of the

opportunistic aggregation is a bit longer for the high-density networks, given a constant bandwidth.

The result in Figure 5(c) indicates that, for these uncongested networks without network dynamics, both ap-

proaches achieve the similar distinct-event delivery ratio as expected.

5.3 Impact of Network Dynamics

To study the impact of network dynamics on the greedy aggregation and the opportunistic aggregation, we simulated

node failures as follows. For each sensor field, we repeatedly turned off 20% of nodes for 30 seconds. These nodes

were uniformly chosen from the sensor field. Our dynamics experiment imposes fairly adverse conditions for a data

11

dissemination protocol. At any instant, 20% of the nodes in the network are unusable. Furthermore, we do not

permit any “settling time” between node failures.

As expected, node failures adversely impact the event delivery ratio of the greedy aggregation more than that of

the opportunistic aggregation in the low-density networks (Figure 6(c)). With the network density increases, the size

of the opportunistic tree increases due to less path sharing whereas the size of the greedy tree approximately remains

the same. It is likely that there are more node failures on the opportunistic tree than the greedy tree. Therefore, the

event delivery ratio of the greedy aggregation is higher than that of the opportunistic aggregation for high-density

networks. This lower event delivery ratio of the opportunistic aggregation also results in its higher dissipated energy

per event received (Figure 6(a)).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(b) Average delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35 40 45 50

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

Number of Neighbors

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 6: Impact of node failures.

5.4 Impact of Various Factors

To evaluate the sensitivity of our comparisons (Section 5.2), we re-ran our simulations using different parameters.

In our previous comparisons, we placed 5 sources in the bottom left corner of the sensor field. How sensitive is our

comparison to this source placement scheme ? In this experiment, we randomly placed 5 sources in the sensor field

and re-ran our simulations of Section 5.2. Our results in Figure 7(a) indicate that the energy savings of the greedy

aggregation are reduced to 30%. In these scenarios, sources are not necessarily closer to one another than to a sink.

Even using the greedy incremental tree, the paths from the sources to the sink may not be early shared or merged.

We also conducted an experiment to evaluate the sensitivity of our comparisons to the number of sinks (from 1 to

5 sinks) in the sensor field of 350 nodes. Similar to experiments in Section 5.2, 5 sources are randomly selected from

nodes in a 80m by 80m square at the bottom left corner of the sensor field. The first sink is placed at the top right

corner whereas the other sinks are uniformly scattered across the sensor field. With more sinks, the energy efficiency

of the greedy aggregation is comparable to that of the opportunistic aggregation (Figure 8(a)). This impact of the

random sink placement is similar to that of the random source placement. However, the event delivery ratio of the

greedy aggregation is higher than that of the opportunistic aggregation because the early aggregation of the greedy

aggregation reduces the overall traffic in general (Figure 8(c)).

To study the sensitivity of our comparisons to the number of sources, we re-ran our simulations in the sensor

field of 350 nodes with 2, 5, 8, 11, and 14 sources. As the number of sources increases, the energy efficiency of

12

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

Number of Neighbors

Opportunistic
Greedy

(b) Average delay

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

Number of Neighbors

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 7: Impact of the random source placement.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 1 2 3 4 5 6

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

The Number of Sinks

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

The Number of Sinks

Opportunistic
Greedy

(b) Average delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

The Number of Sinks

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 8: Impact of the number of sinks.

the greedy aggregation coverges to that of the opportunistic aggregation (Figure 9(a)). Given the high number of

sources in the fixed area, our source placement scheme is approaching the event-radius model whereby sources are

very close to one another. In these scenarios, paths from several sources are likely to be merged early even without

path optimization.

So far, we assumed perfect aggregation for all our previous experiments. Of particular interest is the impact of

other aggregation functions on the energy savings of the greedy aggregation. In this experiment, we used the linear

aggregation for such sensitivity study. Given the linear aggregation, the size of aggregate (denoted by z(Si)) is the

linear function of data items in the aggregate Si. Specifically, z(Si) = di � jxj + h where di is the number of data

items in the aggregate, each data item size jxj is 28 bytes, and the header size h is 36 bytes for our experiment. This

linear aggregation is lossless but not energy-efficient because the only savings are the packet headers. Given that

this aggregation function depends on the number of data items, we re-ran the previous experiment with this linear

aggregation. As expected, the adverse impact of the inefficient aggregation function becomes more evident with

the increased number of sources or data items (Figure 10(a)). In one experiment (11 sources), we found that the

greedy aggregation can achieve 36% energy savings using the linear aggregation function whereas it can achieve

43% energy savings using the perfect aggregation function.

13

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 2 4 6 8 10 12 14

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

The Number of Sources

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

The Number of Sources

Opportunistic
Greedy

(b) Average delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

The Number of Sources

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 9: Impact of the number of sources.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

D
is

tin
ct

 E
ve

nt
)

The Number of Sources

Opportunistic
Greedy

(a) Average dissipated energy

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

A
ve

ra
ge

 D
el

ay
 (

se
co

nd
s/

re
ce

iv
ed

 d
is

tin
ct

 e
ve

nt
)

The Number of Sources

Opportunistic
Greedy

(b) Average delay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

D
is

tin
ct

 E
ve

nt
 D

el
iv

er
y

R
at

io

The Number of Sources

Opportunistic
Greedy

(c) Distinct-event delivery ratio

Figure 10: Impact of the linear aggregation.

6 Related Work

Our work has been informed and influenced by a variety of other research efforts, which we now describe. Recent

work in active networks [19, 22] and active services [1] has examined ways to provide in-network processing for the

Internet. Sample applications include information transcoding, network monitoring, and caching. Their work targets

Internet-like domains where communications are plentiful and computatonal power (expressed as CPU-cycles-per-

packet) is limited. Conversely, our work targets sensor networks where communications are expensive and compu-

tational power is comparatively plentiful.

Another applicaiton of active services is Gathercast [2]. The goal of Gathercast is to losslessly aggregate small

packets (with the same destination) into a larger packet for reducing the overhead of routing table lookups (not for

reducing the total data size). Their work opportunistically aggregates small packets without altering any routing

mechanisms or paths. Our work optimizes the aggregation tree for more energy savings.

Considered the reverse of a multicast tree, our aggregation tree has been inspired by some research efforts on

the multicast tree construction. A greedy multicast tree [18] is probably the most energy efficient tree used by

existing multicast protocols. The greedy multicast tree has been shown to outperform the shortest path tree in

various studies [20, 21]. QoSMIC [8] constructs its greedy tree using the local search and offers alternate paths for

14

QoS requirements. Our greedy aggregation differently constructs the reverse tree using directed diffusion primitives

coupled with a greedy heuristic for an NP-hard weighted set-covering problem.

In addition, recent efforts have pointed out some of the advantages of data aggregation in the context of sensor

networks. Particularly, LEACH [11] can achieve energy savings by processing application-level data at its cluster

heads whereas our approach can process such data along the greedy tree.

7 Conclusions

In this paper, we described a novel instantiation of directed diffusion (the greedy aggregation) that uses a GIT-like

algorithm to improve path sharing with the low additional cost. Our greedy approach constructs an energy-efficient

aggregation tree using data-centric reinforcement mechanisms (based on a greedy heuristic for weighted set-covering

problems). We evaluated the performance of this greedy-tree approach by comparing it to our prior opportunistic

approach. Our preliminary result suggests that although the greedy aggregation and the opportunistic aggregation

are roughly equivalent at low-density networks, the greedy-tree approach can achieve signficant energy savings at

higher densities. In one experiment we found that the greedy aggregation can achieve up to 45% energy savings

over the opportunistic aggregation without an adverse impact on latency or robustness. Given that the energy is the

scarce resource, this path optimization technique is essential for prolonging the lifetime of the highly-dense sensor

networks.

References

[1] Elan Amir, Steven McCanne, and Randy H. Katz. An active service framework and its application to real-time multimedia
transcoding. In Proceedings of the ACM SIGCOMM, pages 178–189, Vancouver, Canada, September 1998. ACM.

[2] B. Badrinath and P. Sudame. Gathercast: The design and implementation of a programmable aggregation mechanism for
the internet. In IEEE International Conference on Computer Communications and Networks (ICCCN), October 2000.

[3] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,
John Heidemann, Polly Huang, Satish Kumar, Steven McCanne, Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu,
Haobo Yu, and Daniel Zappala. Improving simulation for network research. Technical Report 99-702b, University of
Southern California, March 1999. revised September 1999, to appear in IEEE Computer.

[4] Thomas Bäck, Martin Schütz, and Sami Khuri. A comparative study of a penalty function, a repair heuristic, and stochastic
operators with the set-covering problem. In Artificial Evolution, pages 3–20. Springer, Berlin, 1996.

[5] J.E. Beasley. A lagrangian heuristic for set-covering problems. Naval Research Logistics, 37:151–164, 1990.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[7] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next century challenges: Scalable coordination
in sensor networks. In Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and
Networking (Mobicom’99), Seattle, Washington, August 1999.

[8] M. Faloustsos, A. Banerjea, and R. Pankaj. Qosmic: Quality of service multicast internet protocol. In Proceedings of the
ACM SIGCOMM, September 1998.

[9] T. Grossman and A. Wool. Computational experience with approximation algorithms for the set covering problem. Euro.
J. Operational Research, 101(1):81–92, August 1997.

[10] John Heidemann, Fabio Silva, Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, and Deepak Ganesan.
Building efficient wireless sensor networks with low-level naming. In Proceedings of the ACM Symposium on Operating
Systems Principles, Banff, Canada, October 2001.

15

[11] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient communication protocol
for wireless microsensor networks. In Proceedings of the Hawaii International Conference on System Sciences, Maui,
Hawaii, January 2000.

[12] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: A scalable and robust communi-
cation paradigm for sensor networks. In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom’2000), Boston, Massachusetts, August 2000.

[13] William J. Kaiser. WINS NG 1.0 Transceiver Power Dissipation Specifications. Sensoria Corp.

[14] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. Modelling data-centric routing in wireless sensor net-
works. submitted for publication.

[15] G.E. Liepins, M.R. Hilliard, J. Richardson, and M. Palmer. Genetic algorithms applications to set covering and trav-
eling salesman problems. In Donald E. Brown and Chelsea C. White III, editors, Operations Research and Artificial
Intelligence: The Integration of Problem-Solving Strategies, pages 29–57. Kluwer Academic Publishers, 1990.

[16] G. Pottie and W. Kaiser. Wireless Sensor Networks. Communications of the ACM, 43(5):51–58, May 2000.

[17] S. Sen. Minimal cost set covering using probabilistic methods. In Proceedings 1993 ACM/SIGAPP Symposium on Applied
Computing, pages 157–164, 1993.

[18] H. Takahashi and A. Matsuyama. An approximate solution for the steiner problem in graphs. Math. Japonica, 24(6):573–
577, 1980.

[19] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and Gary J. Minden. A survey of
active network research. IEEE Communications Magazine, 35(1):80–86, January 1997.

[20] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9),
December 1988.

[21] Bernard M. Waxman. Performance evaluation of multipoint routing algorithms. In Proceedings of the IEEE Infocom, San
Francisco, California, March 1993.

[22] D.J. Wetherall and D.L. Tennenhouse. The active ip option. In Proceedings of the ACM SIGOPS European Workshop,
July 1995.

[23] P. Winter. Steiner problem in networks: A survey. Networks, 17(2):129–167, 1987.

[24] Yonggang Jerry Zhao, Ramesh Govindan, and Deborah Estrin. Residual Engery Scans for Monitoring Wireless Sensor
Networks. Technical Report 01-745, University of Southern California, 2001.

16

