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Abstract—In this paper we present tools and methods to
integrate attack measurements from the Internet with con-
trolled experimentation on a network testbed. We show
that this approach provides greater fidelity than synthetic
models. We compare the statistical properties of real-world
attacks with synthetically generated constant bit rate at-
tacks on the testbed. Our results indicate that trace replay
provides fine time-scale details that may be absent in con-
stant bit rate attacks. Additionally, we demonstrate the
effectiveness of our approach to study new and emerging
attacks. We replay an Internet attack captured by the LAN-
DER system on the DETERLab testbed within two hours.

I. Introduction

Testbeds offer a platform for testing and evaluation of
networked systems in controlled and repeatable environ-
ments. They facilitate studying the impact of network con-
ditions on the security of real network systems and applica-
tions [3]. Such study depends on approaches to providing
representative network traffic.

Many approaches have been proposed to create con-
trolled malicious and non-malicious traffic. Creating traffic
in testbeds always involves some level of modeling. Some
models may be completely abstract, such as constant-
bitrate attacks. Others create synthetic traffic models, pos-
sibly parameterized from real network traffic (such as [10],
[17]), or involve tools specific to malicious traffic gener-
ation (such as Metasploit [12]). Synthetic traffic models
are attractive because they allow control and generation of
any amount of traffic with few or no external constraints.
Additionally, such models adapt well to testbeds and they
have no privacy concerns.

The risk of synthetic models is that one gets out only
what one puts in: they may miss the dynamics and sub-
tleties of real-world traffic. Often malicious and regular
network traffic reflects not only end hosts, but also aspects
of the network path [6], [9]. In our previous work, we have
shown attack dynamics are inherently dependent on char-
acteristics such as number of attackers and the attacker
host environment, such as the type of operating system,
system load, and hardware characteristics [7]. These de-
tails are often omitted in synthetic models of malicious
traffic.

Another challenge of synthetic models is that they al-
ways lag current malicious traffic. There is a delay in de-
ploying new models, since models are designed only when
malware is understood, yet attacks change and mutate
rapidly. In the paper, we import denial-of-service (DoS) at-
tacks that we have captured in LANDER, a network traffic
analysis system [5], to provide malicious traffic models in
the DETERLab cyber security testbed [15]. Our approach
recreates source and network path conditions by replaying

the attacks on the DETERLab testbed [15].
The contribution of this paper is to describe an approach

for attack capture and immediate replay on a networking
testbed. The attack replay tools provide a collective rep-
resentation of one or more attackers located downstream
from the capture point mapped onto a specified node in
the testbed (Section II). In Section III, we show that this
approach provides greater fidelity than synthetic models.
We also show that our approach can quickly feed new at-
tacks into a testbed for evaluation (Section IV), where each
attack source may be isolated and modelled individually,
as required by some cyber defense strategies.

We expect our tools will provide timely and realistic traf-
fic with which to test cyber-defenses such as intrusion de-
tection systems and firewalls. The data sets, our tools,
and the DETERLab testbed are all available for use by
network security researchers.

II. Approach

In this paper we discuss a methodology to detect and
capture attacks using LANDER, and then replay this traf-
fic in a scenario constructed on the DETER testbed. We
discuss our approach in this section and present an analy-
sis of the fidelity this approach may offer in the following
section.

A. Capturing Network Traffic with LANDER

We capture network traffic with the LANDER sys-
tem [5]. LANDER supports capture and anonymization of
network traffic, using parallel processing to support high
data rates and significant and varying amounts of analyst-
driven-processing. It is currently in operation, with small
deployments running on single (but multi-core) systems
with commodity network cards, and large deployments
capturing traffic at 10 Gb/s with back-end anonymization
and analysis on shared 1000-node compute clusters.

For this paper, the important aspects of LANDER are
that it provides the policies that enable us to get permis-
sion to collect packet, the flexibility to plug in different
detection modules to detect interesting events, and the
framework to extract anonymized traces in near-real time.
LANDER is built around multiple queues of data, each
of which triggers a callback to a system- or user-provided
function. This structure supports differing policies for
data anonymization. By default, data is placed into a raw
queue, then anonymized, by changing IP addresses using
prefix-preserving anonymization [18] and removing all ap-
plication payloads. This range of policies is important to
enable deployments from environments where high expec-
tations of privacy must be enforced, to laboratories, where
it can serve as a tool to audit consenting but not-fully-
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trusted parties. It allows us to experiment with different
analysis tools, such as our DoS-detection methods [6], as
well as off-the-shelf tools like SNORT [2], Bro [13], and
Suricata [1]. Once an attack is identified, we extract the
packet headers for replay.

B. DETERLab: A playground for Attacks

The DETERLab provides infrastructure, tools, and
methodologies for networking and cyber security exper-
imentation. The DETERLab testbed includes 570 PCs
and specialized hardware located at two sites; USC/ISI in
Marina del Rey, CA and UC Berkeley, Berkeley, CA. The
two sites are interconnected with a shared 10Gbps links.
The DETERLab containerization tools enable researchers
to allocate internet-scale topologies using virtualization of
nodes. DETERLab also provides the Montage AGent In-
frastructure (MAGI) tools for orchestrating a wide range
of networking and cyber security experimentation scenar-
ios [15]. The MAGI tools provide an event-based control
overlay for deploying and controlling agent modules on the
topology. Each agent enacts a particular behavior, for ex-
ample, a attacker behavior, and the behavior is config-
ured and controlled through an Agent Activation Language
(AAL) [15].

C. Replaying An Attack Scenario in DETERLab

DETERLab provides a playground for attack experi-
ments, and the MAGI tools allow researchers to systemat-
ically explore the experimentation design space. The con-
tribution in this paper is to take traces from the real world
with LANDER, and recreate the attack in DETERLab us-
ing the MAGI framework. To make this transformation,
we developed an new agent for MAGI, and a scenario to
replay the attack.

To replay the trace with MAGI we developed a attack-
replay agent. It uses the Tcpreplay toolset [14] to adapt
the real-world trace to the testbed. It uses tcprewrite to
remap the source and destination MAC and IP addresses
in the LANDER attack trace. If the original attack makes
use of IP address spoofing, the source IP addresses are not
modified. It then uses tcpreplay to regenerate the attack
with proper timing and replay it from one or more locations
on a topology in the testbed.

We generate two types of traffic inside DETER. Attack
traffic and non-malicious (or background) traffic. We gen-
erate attack traffic using the attack-replay agent. We de-
ploy additional agents to generate non-malicious traffic.
We mix the two, breaking the scenario into three phases:
(i) pre-attack phase during which we generate only non-
malicious network traffic. (ii) the attack phase, during
which we deploy the attack into the topology and observe
how it interacts with continuing non-malicious traffic. (iii)
The post-attack phase when non-malicious traffic recovers
from the attack.

We generate web traffic to create non-malicious network
traffic throughout the duration of the experiment. We use
the MAGI webserver and webclient agents. The MAGI
webserver agent deploys an Apache web server. The MAGI

webclient agent uses Curl to requests objects from the web
server. The webclient agent can be configured to choose a
webserver in sequence or at random from a list of one or
more web servers. The size of the web page can be defined
as a probabilistic distribution.

We compare our replay of a real attack to an alternative
attack, where we generate synthetic attack traffic with a
MAGI attack-CBR agent. The attack-CBR agent gener-
ates a constant bit rate packet rate stream on the network
that can be used to represent an attack. The agent can be
parametrized with protocol, packet size distributions, port
number distributions, ramp up and ramp down rates, low
and high attack rates.

Lastly, we deploy a packetCapture agent to capture all
the packets seen at the observation point in the topol-
ogy. The packetCapture agent uses tcpdump to capture
packets. It can be configured with a packet filter, capture
packet size, and the capture file storage location.

III. Richness in Replayed Attacks

We present an analysis of the additional fidelity real-
world attacks offer in this section. First, we discuss how
the tools from the last section come together to allow us to
systematically explore and compare the different attacks in
DETERLab. We then provide a qualitative and quantita-
tive analysis of the attack replay as compared to syntheti-
cally generated CBR attacks.

A. Traces to Experiments

We now describe how we create three types of scenarios
to explore the richness of the replayed LANDER attacks
and compare them to synthetically generated CBR attacks
on the DETER testbed.

We conduct three controlled experiments on the DE-
TER testbed: a replay of a real-world attack [16], a single-
attacker, constant-bit rate, synthetic attack with a rate of
4200 packets/s, a ten-attacker, constant-bit rate, synthetic
attack with an aggregate rate of 4200 packets/s (each at-
tacker at 420 packets/s).

Here we use a dataset from lander with three separate
denial-of-service attacks captured in 2002 and 2003 [16]. In
this paper, we use the first attack, a reflector attack that
send ICMP echo reply packets to a victim in Los Nettos.
We refer to this attack as LANDER-2002. The mix of
attack and background traffic is shown in Figure 1, both as
packets per second and bits per second. The attack consists
of echo reply packets from approximately 140 attackers,
with each packet carrying a 28 byte payload. With small
packets, we see the attack most clearly in Figure 1a; it
hardly shows up when one measures bitrate (Figure 1b).
We choose this attack from the dataset since it had the
lowest variance in the attack rate. Even though visually
this attack looks similar to a constant bit rate attack, in
the next section, we systematically explore the richness in
this attack as compared to synthetically generated CBR
attacks.

We first process this trace to filter out attack traffic tar-
geted to the victim. This attack was then transferred to
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(a) Attack and background traffic in packets/s.
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(b) Attack and background traffic in Mbits/s.

Fig. 1: Real-world Captured DoS attack LANDER-2002.

the DETER testbed and processed by the MAGI attack-
replay agent to generate an attack on the experiment topol-
ogy. Additionally, we used the MAGI attack-CBR agent
to generate the two constant bit rate attacks as discussed
above.

We generate non-malicious background traffic using four
webclients agents and two webserver agents on a dumbbell
topology. The web clients request a constant webpage of
10MB from a randomly chosen webserver. The attack is
launched from a bank of attackers attached to one web-
server. We deploy the packetCapture agent at an observa-
tion point on the bottleneck link. It captures all packets
in the experiment with zero packet loss. The complete ex-
periment description along with the traces will be made
available on publication [4].

B. Attack Traffic

As discussed in the previous section, we compare two
types of synthetic attacks with attack trace replay to study
the dynamics.

Figure 2 show the attack rate in packets/second and the
empirical probability distributions for all three types of
attack. The top row shows the attack packet rates. The
x-axis show time in seconds and the y-axis shows the rate
in packets/second. We have parametrized the constant bit
rate attacks based on the LANDER-2002 attack rate. We
observe an attack rate of approximately 4200 packets/sec
in all three cases. The bottom row shows both the empir-

ical probability distribution function and the cumulative
distribution function of the attack rates. The x-axis is
the packet rate sampled at 1 millisecond to expose fine-
timescale dynamics of the packet rate. Bars in the plot
and the left y-axis show the probability distribution func-
tion as the normalized frequency of the observed packet
rate. The line and the right y-axis show the packet rates
plotted as a cumulative distribution function.

Qualitative differences in testbed attacks: We first
look at overall features in the different methods of generat-
ing testbed attack traffic. We begin with the trace replay
in Figure 2c. On the top right, we see the attack traffic
is “noisy” with lots of fine variation. The bottom right
graph shows that the exact attack rate varies quite a bit
in each millisecond with a wide range of possible values,
since both the PDF and the CDF show a smooth variation
over a continuous range. We argue that these variations
are not unusual, but are an inherent part in any real-world
distributed denial-of-service attack. These variations arise
because attacks originate on different types of hardware,
sometimes with other software competing for compute cy-
cles. They also traverse different networks en-route to their
target, experiencing different kinds of cross-traffic, includ-
ing delay and sometimes loss. We have seen these effects
before in wide-area traces and explored them through con-
trolled experiments [6], [7]. In this experiment we show
that through replay, we can recreate these subtleties on
the testbed.

By contrast, Figures 2a and Figure 2b show much less
richness and variation. The synthetic, single-source CBR
attacker in Figure 2a shows very regular traffic occasionally
interrupted by bursts of variation (top graph, with bursts
at about 45 s, 85 s, 125 s, etc.). The distribution of ar-
rivals,however, is strongly modal, with 4 or 5 packets per
millisecond 80% of the time. There is far less variability
than the real-world attack. This lack of variability presents
a much different attack to an intrusion detection system—
an IDS that would see this periodic traffic would easily
find this synthetic attack while missing the more complex,
real-world one.

Figure 2b shows that more synthetic attackers provide
a richer attack. Each attacker sends at a lower rate, but
the aggregate rate is the same. We see more variation in
the CDF (Figure 2b bottom graph), because each of the 10
attackers is slightly different. However, the aggregate traf-
fic (top graph) is much smoother—the 10 attackers jitter
largely cancels each other out.

We conclude that real-world traffic shows variation and
jitter at timescales of milliseconds (Figure 2c). This rich-
ness is lost with synthetic attacker, even when run as teams
on multiple machines. If a testbed is to reproduce the kind
of real-world complexity it must employ more sophisticated
tools and methodologies than just simple synthetic attacks.

Quantifying differences in testbed attacks: To
quantity the difference in the spread and variance we com-
pute the average absolute deviation (AAD). For a given
sampling bin of p seconds, we define the arrival process x(t)
as the number of packets that arrive in the bin [t, t + p).
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(a) CBR: Single Attacker
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(b) CBR: Ten Attackers
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(c) Replay of LANDER-2002 trace

Fig. 2: The packet rates and empirical distributions of attack packet arrival times for the three types of attacks used
in the experiments in DETERLab.

Thus, a T second long packet trace will have N = T/p
samples. The AAD is then defined as

AAD =

N∑
i=1

|(x(i)− X̄)|/N

where X̄ is the mean of the attack rate. Since this mea-
sure does not square the distance from the mean, it is
less affected by extreme observations than metrics such as
variance and standard deviation. Table I summarizes the
mean, median, standard deviation and the average abso-
lute deviation for the three types of attack reply.

The constant bit rate attacks have a similar mean and
median value but for the LANDER-2002 attack, the mean
is almost twice the median value. The results indicate that
there is a wide range of attack packet arrival rates for real-
world attacks when considering the fine time scales. The
arrival process is averaged out as the size of the sampling
bin p increases. As seen in the top row on the Figure 2,
all three attacks qualitatively look similar when sampled
at 1 sec. However, as reported in Table I, the statisti-
cal properties of the attacks are very different when the
attacks are sampled at 1 msec. We see that standard devi-
ation is much higher as more attackers participate, and the
LANDER-2002 trace has the largest standard deviation of
all.

The AAD for the single source attack is the smallest in-
dicating this experiment closely resembles a constant bit
rate of 4200 packets/sec. The AAD for the other two ex-
periments in significantly higher indicating high variability
in the arrival rate of the attack packets.

These measures demonstrate the large difference be-
tween simpler synthetic attacks and trace replay. Taken
with the qualitative comparison, we argue that it is es-
sential to use trace replay if fine timescale details of at-
tacks matter to whatever mechanism is being studied in a
testbed.

metric synthetic (CBR) LANDER-2002
(in pkts/ms) single multiple trace
mean 4.20 4.20 4.11
median 4.00 4.00 2.00
std. deviation 1.77 2.46 4.78
avg. abs. dev. 0.84 2.18 3.62

TABLE I: Statistical properties of two kinds of synthetic
attack and captured traces.

IV. Rapid Attack Turn-around: Today’s Attacks
Today

Trace replay has the promise to rapidly turn around at-
tacks into reusable models. This speed is possible because
replay of traces does not require understanding of their
contents. They can therefore be used to quickly test new
defenses, in parallel with analysis of the underlying attack
that can lead to more parsimonious, parameterized models
that will eventually explore a wider range of scenarios.

To demonstrate the ability to rapidly take an observa-
tion to a replayable tool in a testbed, we next carry out
an experiment to demonstrate the process. Our target is
a DNS amplification attack [8], such as those that took
place in March 2013 [11]. In principle, we could watch our
network for a new attack to appear. However, because of
publishing deadlines, we instead decided to stage our own
mini-attack.

We deployed six DNS servers at ISI in Marina del Rey,
California, U.S.A. An trigger computer, also at ISI, then
sent a stream of 400 DNS queries per second at these
servers with a spoofed source address of a machine loaned
to us by Christos Papadopoulos at Colorado State Univer-
sity (CSU) in Ft. Collins, Colorado. We recorded traffic
as it leaves ISI and as it enters CSU. We detect the at-
tack with a custom SNORT rule. We then extract the
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event start duration
Start of 1st segment with attack start -0:45 1:13
Attack begins 0:00 15:23
End of 1st segment with attack start 1:13 —
SNORT detection under LANDER 6:52 19:57
Start of last segment with attack end 14:28 1:46
Attack ends 15:23 —
End of last segment with attack end 16:14 1:46
Processing trace files 22:09 6:58
Moving trace files to DETER 35:22 2:20
Swap in a topology in DETER 80:40 9:13
Process and deploy traces by MAGI 85:40 22:15

TABLE II: Timing (in minutes:seconds) of our experiment
for rapid attack turn-around.

traces and hand them to MAGI for exploration in DE-
TERLab. Figure 3 shows the attack and background traf-
fic captured by LANDER during the attack. The attack
starts at 403 seconds and lasts for about 900 seconds. Each
attack packet is a 3700B DNS query response packet which
is fragmented by the network into three packets. The rate
changes seen at the start of the attack are due to us ex-
ploring different attack parameters for the experiment.

Table II shows the events for trace detection through
replay. LANDER splits data into 512 MB segments as it
arrives, and processes segments concurrently with collec-
tion. The attack lasts for only about 15 minutes and spans
10 segments. We see that although the attack lasts for
more than 16 minutes, the first segment with the start of
the attack completes about 1 minute into the attack. The
attack continues, but this segment then becomes available
for analysis. The change in traffic rates triggers SNORT
about 7 minutes into the experiment. SNORT runs quickly
(about 5 s per segment), but needs to examine 1 minute of
traffic to establish that the attack traffic has changed the
baseline from regular operation. Due to this parallelism,
we detect the attack while it’s still in progress.

We do not begin processing the trace files until the at-
tack completes. When it completes, we convert the traces
to pcap format, compress them, and move them from the
LANDER system onto shared network. The 17 minutes of
traces are 1278 MB of data compressed. This processing
takes about 7 minutes. If our system was automated, pro-
cessing and transfer could run concurrent with the attack,
reducing this time greatly.

Once LANDER detects and provides the attack trace
files, we copy the data to the DETER testbed’s shared
file system from where it can be accessed by the MAGI
attack-replay agent during the experiment. Transferring
the data to DETER takes about 2.5 minutes. We now
swap-in an experiment and orchestrate it using the MAGI
toolkit. Once the attack-replay agent is deployed on the
attacker nodes in the topology, the agent makes a copy of
the trace file on the local disk for processing. The agent
then installs the tcpreplay tools, uncompresses the trace
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Fig. 3: A DNS amplification attack generated at ISI and
captured by ISI LANDER system.

file, and changes the victim IP address and source and
destination MAC addresses in the trace. Processing the
trace file for replay and deploying it into the testbed takes
about 22 minutes. The attack-replay agent signals the or-
chestrator that it is ready to start the experiment. For
the scenarios explored in the paper, the attack is replayed
100 seconds after the start of the non-malicious traffic.

This exercise shows that we are able to turn around an
attack into a testbed experiment in less than two hours.
The main uncertainty in the process is attack detection,
moving data from the locations of collection to replay, and
human decision making. Our current approach is far from
optimized. With better pipelining, we believe we could
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replay attacks while they are still underway. Also with
greater automation, some steps that currently are human-
driven can be removed. We believe this simple exercise
shows the potential of our approach for researchers requir-
ing fresh data.

V. Conclusions

This paper has outlined the advantages and the potential
of trace replay as a means of improving network security
research. We show that replaying real–world attacks al-
lows including fine time scale detail that are absent in syn-
thetically generated constant bit rate attacks. Integrating
LANDER data sets into the DETERLab provides higher
quality data for testbed experiments. The methodology
presented in this paper provides a way to rapidly incorpo-
rate new attacks into DETERLab experiments. Our tools
and datasets are available for public use [4]. Please contact
the authors if they could be of use to you.
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