Automatic Selection of Nearby Web Servers*

USC TR 98-688

John Heidemann

Vikram Visweswaraiah

December 8, 1998

Abstract

Performance of global services such as the world-
wide web can be improved by physically distributed
replicas. Most replicated systems today request users
to select manually a nearby replica (typically from a
list of sites), yet users often are not willing or able
to make an informed choice. This paper describes an
approach to automatic replica selection which works
without change to existing web clients and web and
FTP servers. We describe the assumptions behind our
approach and propose several metrics for estimation
of network distance. We examine the feasibility be-
hind this approach and compare the time required for
replica-selection by each algorithm. Finally, we de-
scribe a small change to HTTP that would improve
replica selection transparency.

1 Introduction

A strength of the Internet and the world-wide web
is its international character. Web links are location
transparent; users use the same kinds of names to ac-
cess pages coming from a server in London as from one
in New York. A user in Washington, D.C. will likely
notice a performance difference between the pages from
the two servers, though. Web links are not necessar-
ily performance transparent, since frequently congested
links such as trans-oceanic network connections can be
a bottleneck. To address this problem many wide-area
services are replicated (or mirrored) in different physi-
cal locations, allowing users to select a nearby replica
to avoid heavily used network links. Replicated servers

*This research is supported by the Defense Advanced Re-
search Projects Agency (DARPA) through FBI contract #J-
FBI-95-185 entitled “Large Scale Active Middleware”. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of the
Department of the Army, DARPA, or the U.S. Government.

The authors can be contacted at 4676 Admiralty Way,
Marina del Rey, CA, 90292-6695, or by electronic mail to
{johnh,visweswa}@isi.edu.

can balance load on individual network connections or
servers and can reduce client—server propagation la-
tency. Examples of replicated services are the Internet
Movie Database with replicas in England and America,
and the Comprehensive Perl Archive Network (CPAN)
with about 20 replicas spread around the globe.

Two problems often occur with this kind of replica-
tion today. First, objects in the web have the server’s
hostname embedded in the URL. Although a host-
name can point to multiple servers, selection between
these servers is often random [12]. Random selection
works well to balance server load when all replicas are
co-located, but it does little to optimize performance
when they are geographically distributed.

An alternative is to list all the replicas to users and
ask them to pick one. This approach has a number of
problems. Users are distracted by the extra step of se-
lecting a server between presenting a name and getting
a service. This step makes non-interactive use more
difficult. Most importantly, a user is often not willing
or able to make an informed decision. When presented
with a list of 20 or 30 replicas, a hurried user will of-
ten simply select the first one. A careful user might
select a replica in the same geographic area. But this
guess might not be very good: replicas physically close
can be very distant in network “geography”. A replica
served by the same Internet-service provider but hun-
dreds of miles distant may be closer than one served
by a different backbone provider in the same city.

Automatic replica selection is important to address
these problems. A single URL specifies replicated data
so that a user is not forced to select from a long list.
When the URL is interpreted a replica near to the user
is automatically selected. Automatic selection allows
use of more sophisticated distance metrics often pro-
viding better performance than manual selection.

This paper examines the assumptions behind one ap-
proach to providing automatic replica selection for ex-
isting web browsers accessing existing web and FTP
servers. This simple architecture accommodates sev-

@S

& &

Figure 1: A client asks the replica selector for
a nearby server.

eral different metrics of nearness. We describe and
compare them. Prior work (discussed in Section 6) has
compared the impact of different metrics on the file re-
trieval time, but for small retrievals the time required
to perform replica selection can overwhelm overall re-
trieval time. We therefore evaluate the elapsed time of
these algorithms in our common framework. Finally,
we discuss a few simple modifications to existing sys-
tems which would allow our approach to provide better
service.

2 Architecture

Three agents are involved in our approach to replica
selection: a client, the replica selector, and a number
of servers. Briefly, the client queries the replica selec-
tor which recommends a particular server, as shown in
Figure 1. This section describes each component and
its underlying assumptions.

The client in our system is an unmodified web
browser. The user presents the URL for a replicated
resource to the browser (by typing it in or clicking on
a link). That URL queries the replica selector which
then redirects the client to a nearby server to provide
the data. We exploit the HTTP/1.0 temporary redi-
rection message (return code 302) to perform this redi-
rection [1]. All existing browsers we are aware of re-
spond to this message by transparently resubmitting
the request to the newly suggested URL.

Our basic architecture makes no assumptions about
client location, but some replica selection algorithms
are more stringent. We describe these in the next sec-
tion.

The servers in our architecture are unmodified
HTTP or FTP servers. An HTTP-knowledgeable
client is required for the redirection mechanism, but
the ultimate server can be any type supported by the
client.

The servers replicate a common set of data. We as-
sume a moderate number (2-50) of geographically dis-
tributed replicas, some of which will be closer to the
client than others. With co-located replicas simpler
solutions (for example, round-robin DNS records [12])
will probably provide a simpler solution than our sys-
tem. Large numbers of replicas (20-100’s) may require
caching or hybrid approaches to replica selection to
limit selection time; we discuss these in Sections 3.6
and 4.

We assume that all replicas are kept in loose consis-
tency through an external mechanism. By loose con-
sistency we mean that all replicas are sufficiently up-
to-date or that data changes rarely enough that users
do not care which the access. A number of existing
replication mechanisms can keep web replicas consis-
tent in this manner; examples include web and FTP
mirroring which provide master/slave replication and
peer-to-peer replicated filing systems such as Ficus [7]
which provide wide-area, optimistic replication.

The replica selector does the actual work in our sys-
tem. It handles HTTP-requests from the client and a
returns redirect message after selecting a nearby rep-
lica. Several approaches to measure and approximate
nearness are described in the next section. The se-
lector can be implemented as a stand-alone server or
with the common gateway interface under an exist-
ing web server. We use the later approach, although
the straightforward adaptation to a stand-alone server
would improve performance.

Logically there is a single replica selector per repli-
cated service. To improve availability and distribute
load we expect most services implement multiple (rep-
licated) replica selectors with mechanisms such as
round-robin DNS records [12]. Because the messages
exchanged between the selector and the client and
server are brief, the geographic location of selectors will
not substantially affect performance and so the client’s
choice of selector is relatively unimportant.

Our architecture assumes that backwards compat-
ibility is important enough that a solution must be
provided without changes to either the clients or
servers. This opportunity for incremental deployment
distinguishes our work from other approaches such as
Sonar [15] and most current proposals for URNs [18].
Although our system is backwards compatible with ex-
isting clients and servers, minor changes to the client
can improve the user-model, performance, and accu-
racy of our system. We describe these changes in Sec-
tion 4.

3 Algorithms

Replica selection is intended to improve web per-
formance by directing clients to quickly responding
servers. In general, a replica selector compares some
value across different replicas and directs the client
to the server with the minimum measure. This sec-
tion examines why we believe propagation latency is
a good approximation for nearness (the network com-
ponent of response latency) and then considers several
approaches to measure or approximate latency.

Hop-count, bandwidth, and propagation latency all
might be compared as a measure of nearness between
clients and servers. Our algorithms uniformly compare
approximations of latency. Hop-count can be thought
of as a simpler approximation of latency, thus latency
seems preferable. Although Guyton and Schultz pre-
ferred weighted hop-counts to latency [8], the technical
reasons for their choice seem to have been eclipsed by
hardware improvements. We measure latency rather
than bandwidth because latency can often be more eas-
ily measured and that low latencies are correlated with
high bandwidths. Crovella and Carter found band-
width a slightly better predictor of performance, but
by a only by a small margin [5].

3.1 Random selection

A first approach makes no attempt to select a server
intelligently. It simply chooses one at random. This
approach is very fast, but better results should be pos-
sible. This algorithm is similar in effect to round-robin
server selection with DNS records [12]. We consider it
only for comparison to other approaches.

3.2 Domain-name-based approximation

Our next approach to very roughly approximate la-
tency is to compare top-level domain names of the
client and servers. A client is sent to a randomly chosen
server with the same top-level domain name (TLD), to
a server with a geographically adjacent TLD to the
client, or to a random TLD.

The main advantage of this approach is that looking
up domain names is very fast. It has several disadvan-
tages, though. First, with 20-30 replicas there will be
many TLDs that have no matching or adjacent servers.
Second, generic TLDs (particularly .com) are interna-
tional in scope and so have substantial variation in la-
tencies. Third, several very large, flat domains (such as
.com and .edu) often have many replicas which show
substantial variation in latency. In such flat name-
spaces a name-based approximation may not be sub-
stantially better than random selection.

3.3 Geographic approximation

A third approach is to assume that geographic loca-
tion approximates network latency. We can determine
the geographic location of a site by mapping its host-
name through a whois database [9], then mapping the
telephone number or address in the database entry into
latitude and longitude. Proposals have also been made
to add geographic location to the DNS.

This approach addresses both the second and third
problems of domain-name-based approximation. Hosts
with the same TLD which are geographically dis-
tributed can be distinguished, distinguishing between
hosts in an international TLD and in large, flat TLDs.

There are several problems with whois-based queries,
though. Whois databases can be fairly slow (up to
tens of seconds) and can require several queries to re-
solve a domain name to the administrative informa-
tion. Whois records do not have a consistent format;
heuristic methods are currently used to extract either
the address or telephone number. Also, there are sev-
eral whois databases covering different parts of the do-
main system. It’s not always clear which database has
authority over which portions of the namespace. Fi-
nally, geographic location doesn’t necessarily equate
with network locality.

Most of these problems would be addressed with
DNS-based per-host physical location information.
Unfortunately, maintenance of this information might
be difficult and universal deployment will not occur in
the immediate future.

3.4 Measurement of propagation latency

Rather than approximate latency one could directly
measure latency from the client to each server. ICMP
echo-request, packets are one way to measure latency
directly (as implemented in the “ping” utility). Unfor-
tunately, the replica selector in our architecture does
all selection measurements and the selector may be dis-
tant from both the client and the server.

We consider two approaches to avoid this problem.
First, we assume that the replica selector is co-located
with the client, perhaps by embedding it in the browser
as a plug-in or through Java. Second, the selector can
use IP-level source routing to direct its pings through
the client to the server.

Several packets must be exchanged to get repro-
ducible latency measurements, so a disadvantage of
this approach is that the replica selection step may
become noticeably slow to the user. Standard imple-
mentations of the Unix ping command measure latency
with ICMP echo message, but they are not tuned to

take measurements accurately. Section 4.3 discusses
our optimizations to make ping suitable for replica se-
lection. Also, source-routed packets are often filtered
out because of potential security issues. In Section 5.1
we describe how readily source routing is possible.

3.5 Routing information as an
approximation

Routing protocols such as currently maintain net-
work distance estimates. Unlike hostnames, routing
is directly related to packet forwarding and so should
be well correlated with network distance and latency.
Routing information is also attractive because it is al-
ready maintained locally for packet forwarding.

Autonomous-system (AS) numbers provide a high-
level association of hosts with “networks”. Unfortu-
nately, they suffer many of the problems associated
with hostnames when applied to replica selection. A
single AS-number can include a large variation of range
of latencies and network distance.

BGP routing distances characterize network dis-
tance as hop-counts. Protocols to locate appropriate
routers and extract this information still need to be
developed if these metrics are to be used outside of
routers.

We have not yet implemented routing-based replica
selection algorithms.

3.6 Hybrid algorithms and server load

Combinations of these algorithms are possible. Hy-
brid approaches are particularly interesting when an
time to evaluate a individual replicas is high. For
example, one can quickly prune 100 replicas with a
domain-name-based algorithm to 10-15 for input to
the geographic-based algorithm, substantially improv-
ing run-time.

Although propagation delay predicts the network
component of response latency, server load is also an
important part of total response latency. Unfortu-
nately, server load is difficult to obtain and changes
rapidly. We have not yet experimented with combin-
ing server and network load measurements, but such an
approach would support trading network utilization for
server utilization, using remote but idle servers instead
of near but busy ones.

4 Implementation Issues

This section describes several important implemen-
tation issues. Replica binding time has implications on
the “user-interface” (what URLs are display and kept
in bookmarks) of replication. We then consider im-

plementation options if client or server changes were
permitted. Finally we consider optimizations which
improve algorithm performance.

4.1 Replica binding time

Replica selection translates a replica-independent
name to a replica specific name. For example,
http://ref.isi.edu/RFC/rfc1945.txt (the replica-
independent name) might be mapped to ftp://-
ftp.isi.edu/in-notes/rfc1945.txt for a user in
Los Angeles where the site is located. Because replica
selection is done with the HTTP redirect mechanism,
this process consumes the replica-independent name.
The user’s browser will show the URL specific to the
chosen replica.

Although this approach works well for one brows-
ing session, if the user creates a bookmark to the
post-selection URL, future uses of that URL will by-
pass replica selection and remain fixed on one rep-
lica. In some situations this behavior may be de-
sired, but often re-selection would be preferred. A
simple solution to this problem is possible if client-
side changes are allowed. The replica selection can
return a new field “Permanent-URL” with the redi-
rection message. The permanent URL would vector
through the replica selector, while the session URL
would refer to the specific replica and be used only for
one browsing session. The client browser would man-
age these two URLs in parallel. Continuing the above
example, the replica selector would return a session
URL of ftp://ftp.isi.edu/in-notes/rfc1945.txt
and a permanent URL of http://ref.isi.edu/RFC/-
rfc1945.txt. This approach is analogous to how some
Unix shells maintain logical and physical pathnames to
the current working directory when a user traverses a
symbolic link.

4.2 Client or server changes

If one is allowed to change the client or server, the
replica selector can be co-located at one or the other.
Embedding the replica selector in the client is difficult
because of the variety of clients, but browser plug-ins
and downloaded Java code may make this approach
feasible.! Adding the selector to the server is attrac-
tive since there are few servers to change (relative to
the number of clients), but web server software is not
always under the administrative control of the person
replicated the data.

If the replica selector can be co-located with the

LCurrent Java security models limit network connections and
protocols; these may need to be relaxed for some selection algo-
rithms.

client or server, then availability of IP-level source
routing (described in Section 5.1) is no longer an is-
sue. It may also be possible to overlap data retrieval
with replica selection, avoiding replica selection run-
time such as communication and the overheads of a
CGI-based selector (described in Section 5.2).

4.3 Implementation optimizations

Optimizations to latency measurement and caching
of slow-to-retrieve data are both important to good
replica selection operation.

Latency-based replica selection algorithms measure
replica distance with ICMP echo messages. The Unix
ping program is a typical implementation of this proto-
col. Two optimizations to ping are needed to make it
useful for replica selection. First, traditional ping im-
plementations send echo requests periodically, perhaps
once per second. Since we average several pings to es-
timate round trip, these pauses can lead to substantial
delay. Instead we issue additional echos as replies re-
turn. Second, since we may be considering distance to
several replicas we take RTT measurements in parallel.

In addition to latency measurement optimizations,
determining the geographic location of hosts has sub-
stantial cost. We determine location through whois
queries on the domain name. Since whois queries take
a substantial amount of time and location information
changes very slowly, caching it at the replica selector
can save substantial time. Caching latency measure-
ments can also be helpful, but must be done with con-
sideration to route stability [6].

5 Algorithm Evaluation

Section 3 described several approaches that can be
used to select replicas. These algorithms have different
levels of network and run-time overhead and can gen-
erate different quality results. This section evaluates
these algorithms considering replica selection run-time.
Measurement, of propagation latency requires IP source
routing, a service which is often disabled because of
security concerns. We describe how frequently source
routing is possible in today’s Internet.

5.1 Source routing availability

Because we assume that the client and the replica
selector are not co-located we measure latency with
source-routed ICMP echo messages. Unfortunately,
source routing is not universally supported across the
Internet. Source routing at gateways is optional [2] and
is often disabled because of security concerns.

Since the effectiveness of direct latency measurement

degree of source

routing support hosts
full 25
unidirectional 14
none 48
host unavailable 13
total 100

Table 1: Evaluation of support for source rout-
ing in the Internet. Experiment taken on 25 Octo-
ber 1996.

is dependent on support for source routing we have
measured how frequently source routing is available.
To quantify source routing availability we attempted
source-routed pings with three hosts: from a single
client at ISI, a replica selector (also at ISI), and several
different FTP servers. The list of FTP servers was the
union of sites storing the Perl and Linux archives in
Fall 1996 (a total of 100 sites from around the world).
We attempted source-routed pings both from replica
selector through the server to the client and from rep-
lica selector through the client to the server.

Table 1 summarizes of one day’s measurement.
Source routing worked in either direction (through
client to server or through server to client) for about a
quarter of the hosts; it failed for completely for about
half. Since the client is at ISI and ISI supports source
routing through our regional network provider (Los
Nettos) to two backbone providers, we conclude that
source routing is disabled at about 50% of servers we
measured.

Because source routing can be prevented at any hop
in the routing path and routes change over time [6]
we made observations for 10 consecutive days. Table 2
summarizes these results. Full source routing was sup-
ported by 27 hosts (about 30%) at some time and never
available at the other 64 hosts. Of hosts where source
routing is possible at some time, it was disabled (pre-
sumably at some intermediate segment of the route)
for 5 (18%) of these hosts occasionally (10-40% of the
time).

From these measurements we conclude that source
routing is suitable for experimental use in replica se-
lection algorithms, but its availability is too limited for
production use at this time.

5.2 Algorithm run time

Replica selection adds a certain overhead to web
page retrieval. If the amount of data received is small,
this overhead can substantially reduce or eliminate the

source routing availability hosts

always supported 22
available about 90% of time 3
available about 60% of time 2
never supported 64
total available hosts 91

Table 2: Availability of full source routing over
a 10 day period. Experiment taken from October
16-25, 1996.

algorithm primary cost
random selection C-to-S RTT
domain-name based C-to-S RTT

time to do whois lookup
RS-to-S-to-C ping time
time to query router

geographic
latency
routing information

Table 3: Primary component of elapsed-time
cost for each algorithm.

benefits of selecting a nearby replica. We therefore
next examine the performance of the algorithms we
consider, both in the abstract and as measured from
our implementation.

Table 3 lists the primary components of the costs
of each algorithm in terms of the client (C), server
(S), and replica selector (RS). Some have minimal
overhead (C-to-S RTT), while latency measurements
require pings (which take several round trips) and ge-
ographic measurements require a whois lookup.

To evaluate the actual performance of these algo-
rithms, we ran a series of tests with the the replica se-
lection engine runs as a CGI program on a web server
and services requests from a co-located client. The re-
quest, for all algorithms is for a file of size 10KB, chosen
arbitrarily from the CPAN archives. A measurement
program at the client records the time taken by the se-
lection engine to return a nearby replica and the time
taken for final retrieval.

Top level domain name matching and random selec-
tion both require no external information and so are
fairly quick at about 2s (Table 4). When compared to
the retrieval time, these figures are not high; the aver-
age ratio of redirection time to retrieval time are well
under 1 for both algorithms. Much of this cost is due
to CGI startup and could be eliminated by merging
the replica selection algorithm with a web server.

Selection by geographical distance or by latency
measurements are both substantially more expensive
than a 10KB retrieval. Latency measurement is expen-

algorithm response time
random selection 1.87s (0.53)
domain-name based 2.04 (0.56)
geographic 8.97 (11.70)
latency (direct) 4.91 (1.07)
latency (source routed) 14.15 (9.34)
caching 2.86 (0.49)

Table 4: Replica selection times for each algo-
rithm. Values are the mean of 200 runs; stan-
dard deviations are given in parenthesis.

sive because of the several RTT measurements required
to estimate latency. Whois servers used for geographic
distance are not optimized for speed and the occasional
need for multiple queries leads to high variability in
geographic location. While these algorithms are too
expensive to be used for short retrievals, caching mea-
surements (shown in the last line of Table 4) substan-
tially improves performance.

In practice, Figure 4 suggests that source-routed la-
tency measurements are much slower than direct mea-
surements. This difference is much larger than would
be expected due to additional propagation delay or net-
work overhead. Instead, this difference arises because
of lack of support for source routing on the Internet.
Latency measurements are based on several round-trip
packet exchanges. When packets are silently lost (as
when source routed packets are rejected by a router)
our latency measurement program takes several sec-
onds to time out.

Based on these measurements we believe replica se-
lection requires either caching or very simple algo-
rithms (such as domain-name based) to be appropriate
for short web documents.

6 Related Work

A number of proposals have been made examining
replica selection in the Internet, both in general and
for web applications. This section briefly reviews this
work.

Guyton and Schwartz examine the cost of locating
servers through several schemes [8] including forms
of broadcast and triangularization [10]. They com-
pare hop count and round-trip packet latency, choosing
weighted hop-count because of poor clock resolution
and RTT variability. They assume an active client and,
in some cases, additional servers (beacons) deployed
throughout the network. Their work focuses mainly
on network bandwidth costs of replica selection rather

than end-user elapsed times as ours does.

Crovella and Carter have compared the effective-
ness of hops count and latency distance metrics, con-
cluding that latency is a better predictor of perfor-
mance [5]. They also explored approaches to measure
bandwidth, annotating links based on expected trans-
fer times [3]. They find that replica selection based on
bandwidth measurements performs substantially bet-
ter than random selection, while bandwidth and best-
of-5-RTT measurements perform comparably.

The CPAN Multiplex Dispatcher automatically
matches file requests to a nearby replica of a Perl FTP
archive [4]. It uses client and server TLDs as its near-
ness metric. Our work explores additional algorithms
and algorithm performance. Commercial applications
of similar approaches exist (for example, IBM’s Wom-
Plex and systems under development at other compa-
nies) but are difficult to compare because of lack of
publicly available implementation details.

The primary goal of Uniform Resource Names
(URNSs) is to provide a “globally unique, persistent
identifier” [18]. URN protocols are still being dis-
cussed, but most of the implementation proposals for
URNSs employ some form of replication to provide high
availability. URNs are a complementary approach to
our mechanisms and may eliminate the binding-time
issues we observe (see Section 4.1); URN mechanisms
could employ replica selection algorithms such as we
describe to improve performance.

Like URNs, PURLs (Persistent URLs) provide a per-
sistent identifiers [17]. PURLs are implemented with
the same redirection mechanism we employ. Currently
PURLs do not employ replication.

Another URN-like system is the Resource Cata-
loging and Distribution System (RCDS) [15]. RCDS
provides a multi-step resolution system where URNs
are converted to Location Independent File Names
(LIFNs) which are mapped to nearby standard web
or FTP servers with the help of a Sonar service. Sonar
servers are assumed to be co-located with the clients
and determine and cache round-trip time to the servers
as an estimate of nearness.

Proxy caches are similar to web replication in that
they make copies of data at distributed servers to im-
prove performance [13]. A primary difference between
caching and replication is that caching is typically on-
demand (with lazy evaluation), client-based, and best
effort. Replication is often pre-emptive, server-based,
and pre-meditated. Replication can thus reduce start-
up costs (since the data is pre-replicated) and can be
purchased and deployed as desired by the information
provider (since it is server-based and pre-meditated).

Caching can allow easier deployment and can adapt
better to changing use, however.

A number of replication schemes have been proposed
or deployed for web use. Caching file-systems such as
AFS are attractive [11] and have been used to for rep-
licated, co-located servers [12]. Wide-area, peer repli-
cated file systems such as Ficus support independent
update at different sites [7, 16]. In addition, a number
of application-level approaches to replication or mir-
roring exist (for example, Lee McLoughlin’s program
“mirror” [14]).

7 Future Work

Several directions exist for extensions of our work.
Our current framework for replica selection makes it
easy to experiment with new distance measures; we
would like to explore additional metrics.

Our current architecture takes as an assumption that
neither the client nor the server can change. Oppor-
tunities now exist to extend incrementally the client
with plug-ins and Java. Client modification can offer
more accurate distance estimation, simpler and more
robust algorithms (for example, source routing could
be avoided).

Another opportunity for client-side improvement is
separate permanent and session-specific URLs as de-
scribed in Section 4.1.

We would like to compare the different algorithms in
actual use over the long term to estimate their effects
on perceived performance.

8 Conclusions

This paper described an approach to replica selec-
tion suitable for use with existing web clients and web
and FTP servers. The architecture supports a range of
replica selection algorithms. We presented algorithms
based on domain names, geographic, and two kinds
of latency measurements. We compared the run-time
performance of these algorithms to determine how they
affect response latency. We also examined feasibility of
source routing in the current Internet and explored the
option of client-side software changes. As individual
web services grow to serve millions of users we expect
that automated replica selection mechanisms using ap-
proaches similar to those outlined in this paper will
become necessary.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol—HTTP/1.0. RFC 1945, Inter-

[13]

[14]

net Request For Comments, May 1995.

R. Braden. Requirements for Internet hosts—
communication layers. RFC 1122, Internet Request
For Comments, October 1989.

Robert L. Carter and Mark E. Crovella. Dynamic
server selection using bandwidth probing in wide-area
networks. Technical Report 96-007, Boston University,
March 1996.

Tom Christiansen. CPAN multiplex dispatcher. At
http://www.perl.com/CPAN, 1996.

Mark E. Crovella and Robert L. Carter. Dynamic
server selection in the internet. In Proceedings of the
Third IEEE Workshop on the Architecture and Imple-
mentation of High Performance Communication Sub-
systems. IEEE, August 1995.

Ramesh Govindan and Anoop Reddy. Analysis of
internet inter-domain topology and route stability.
In Proceedings of the IEEE Infocom, pages 851-858,
Kobe, Japan, April 1997. IEEE.

Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald J. Popek, and Dieter
Rothmeier. Implementation of the Ficus replicated
file system. In USENIX Conference Proceedings, pages
63-71, Anaheim, CA, June 1990. USENIX.

James D. Guyton and Michael F. Schwartz. Locat-
ing nearby copies of replicated internet servers. In
Proceedings of the ACM SIGCOMM, pages 288-298,
Cambridge, Massachusetts, August 1995. ACM.

K. Harrenstien, M. Stahl, and E. Feinler. NIC-
NAME/WHOIS. RFC 954, Internet Request For Com-
ments, October 1985.

Steven Michael Hotz. Routing Information Organi-
zation to Support Scalable Interdomain Routing with
Heterogeneous Path Requirements. PhD thesis, USC,
1996.

John Howard, Michael Kazar, Sherri Menees, Da-
vid Nichols, Mahadev Satyanarayanan, Robert Side-
botham, and Michael West. Scale and performance in
a distributed file system. ACM Transactions on Com-
puter Systems, 6(1):51-81, February 1988.

E. D. Katz, M. Butler, and R. McGrath. A scalable
HTTP server: The NCSA prototype. In Proceedings of
the First International World Wide Web Conference,
pages 155-164, May 1994.

Ari Luotonen and Kevin Altis. World-Wide Web prox-
ies. In Proceedings of the Fourth International World
Wide Web Conference, December 1994.

Lee McLoughlin. Mirror. A perl program to du-
plicate FTP-able directory trees, available from
http://www.perl.com/CPAN /scripts/ftpstuff/mirror-
2.8.tar.gz, 1996.

[15]

[17]

[18]

Keith Moore, Shirley Browne, Stan Green, and Reed
Wade. Resource cataloging and distribution service
(RCDS). Technical Report 97-346, University of Ten-
nessee, January 1997.

T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner,
P. Reiher, A. Goel, G. H. Kuenning, and G. J. Popek.
Perspectives on optimistically replicated peer-to-peer
filing. Software—Practice and Ezperience, 28(2):155—
180, February 1998.

Keith Shafer, Stuart Weibel, Erik Jul, and Jon Fausey.
Introduction to persistent uniform resource locators.
http://purl.oclc.org/OCLC/PURL/INET96, 1995.

Karen Sollins and Larry Masinter. Functional require-
ments for uniform resource names. RFC 1737, Internet
Request For Comments, December 1994.

