
Multi-way Rendezvous in the Web�

USC TR 98-687

John Heidemann Wenhui Zhao
University of Southern California/Information Science Institute

December 4, 1998

Abstract

Web Rendezvous is the meeting of information pub-
lisher and subscriber, allowing the subscriber to cre-
ate and maintain a list of links (indices) to publish-
ers' pages. Rendezvous is diÆcult because pages may
move and unauthorized publishers may seek to add
their pages to the index (spamming). Current ren-
dezvous approaches are work-intensive or restricted to
very limited domains. We provide a taxonomy of web
rendezvous methods. We identify automated methods
which allow a subscriber to maintain an index of many
pages with only a �xed amount of e�ort. Our methods
leverage existing web search engines to be robust to
page movement, and use encryption to prevent index
spamming. We have designed and implemented two
di�erent rendezvous methods; we summarize our expe-
rience using them, �nding that we can securely track
index changes in a few days with publisher support,
and eventually even without publisher support.

1 Introduction

One of the distinguishing features the web added to
prior Internet information systems was the link (taken
from earlier hypertext systems). Links allow a page to
point to nearly any other resource on the Internet. Web
pages often organize Internet information with lists of
links (or indices), from simple employee home pages to
hierarchical indices such as Yahoo.

As these lists grow, link maintenance becomes a seri-
ous problem. If the index author also creates the pages
pointed to by the list, this maintenance is merely a

�The authors can be contacted at 4676 Admiralty Way,
Marina del Rey, CA, 90292-6695, or by electronic mail to
johnh@isi.edu and wzhao@usc.edu. John Heidemann's work was
partially funded under the VINT project (DARPA grant ABT63-
96-C-0054) and the LSAM project (DARPA grant J-FBI-95-
185).

session 1
 paper a
 paper b
session 2
 paper c
 paper d
...

index.html

subscriber publisher A

target_a.html

publisher B

target_b.html

Figure 1: De�ning the terms of web rendezvous.

chore. Tracking link changes becomes more and more
diÆcult, though, as the index and page maintainers
become more distant. Consider creating and maintain-
ing a list of papers submitted to a conference: links
will point to pages maintained many di�erent groups,
and these links will change over time as authors move.
Without care, the quality of the index will quickly de-
grade as more and more links are broken. This is an
example of the noti�cation problem identi�ed by Field-
ing [6].

This paper examines the problem of index creation
and maintenance. We view this problem as arranging
a rendezvous between information publishers (the cre-
ators of the pages pointed to by the index) and the sub-
scriber (the index creator), as shown in Figure 1. Links
in the current web are a very fragile way to rendezvous
because they are one-way (subscriber to publisher) and
manually maintained. Working within the constraints
of the current web (HTML and URLs), we show how
links can be made robust to movement of the subscriber
and publisher, and how a subscriber can maintain an
index of many pages with a constant amount of e�ort
(adding new pages to the index does not require ad-

1

ditional subscriber e�ort). Our approach is based on
including link information at both the subscriber and
the publisher and automating link maintenance with
existing web search engines. Search engines are fre-
quently vulnerable to spamming, the association of ir-
relevant content with keywords, often for the purposes
of advertising. We show how cryptographic techniques
can avoid unauthorized rendezvous.
Although we describe our results in the context of

the World-Wide Web, they could easily be generalized
to other information systems where full-text search-
engines exist. Similar approaches could also be used
to manage symbolic links (also known as aliases or
shortcuts) in �le systems. Also, although we focus on
multi-way rendezvous where a subscriber keeps links to
many other pages, our approaches are also applicable
to rendezvous between two people.
We begin with a taxonomy of rendezvous types and

the problems of index creation and maintenance. We
propose designs for several important cases of ren-
dezvous and show how application of search engines
and cryptography can address the index creation and
maintenance problems. We have implemented sev-
eral rendezvous mechanisms; we describe interesting
and unexpected implementation details and our expe-
riences using these services. Finally we compare our
approach with others.

2 Rendezvous Classi�cation

A rendezvous is the process of connecting an informa-
tion publisher with a subscriber with a link. The link
has a source in the subscriber's document and it points
to a target in the publisher's document. Figure 1 shows
a sample subscriber with two publishers. The sub-
scriber maintains the source (index.html), while each
publisher maintains their target (paper a.html and pa-
per b.html).
In the web today, the publisher makes data available.

The subscriber somehow �nds out about this informa-
tion, determines a URL for it (the target), then adds
this URL to an existing HTML page (the source).
There are several disadvantages with this process.

First, it is very labor-intensive for the subscriber who
must �nd the target, copy the link, and add it to his
source. Finding the target is often diÆcult, particu-
larly when the link crosses administrative boundaries.
Copying the link and updating the source can be error-
prone. WYSIWYG tools can alleviate the work re-
quired somewhat, but it is still costly. Second, this pro-
cess doesn't scale for indices containing links to many
targets. For example, imagine constructing a list of all

papers appearing in a conference or all project pages
in a business. The work just described for one link
must be duplicated for each other link. Finally, manu-
ally established links often break if the source or target
move.
This basic rendezvous process provided by HTML

and URLs is fairly limited: the link is always manually
created and maintained, it links a single data publisher
to a single link subscriber, and the security and correct-
ness of this link is manually veri�ed. We can provide
a much more useful rendezvous service if we generalize
each of these link characteristics:

expected targets Is the link intended to point to a
single target or many potential targets?

source creation The subscriber must always initiate
the link source. When creating multi-target links,
is publisher or subscriber interaction required for
each target?

target creation The publisher must always author
the contents of the link target. Is publisher or sub-
scriber interaction required to secure the target-
side of the link?

security Is the link created in a secure manner, or is
it possible for third-parties to duplicate the source
end of the link or add additional link targets?

Varying these parameters provide a variety of kinds
of rendezvous. Table 1 summarizes the characteristics
of several cases we explore in the next section.
With this taxonomy, several problems are apparent

in multi-way rendezvous.

index degradation Both the subscriber and the
publishers can move. When links are maintained
manually, they will break over time if movements
are coordinated with link updates. Over time the
quality of the index will degrade.

excessive subscriber work Manual creation and
maintenance of a rendezvous to n targets requires
O(n) work by the subscriber. As n grows this
cost can become very expensive. A better system
would require a constant amount of work by the
subscriber.

link forgery A private subscriber may wish to limit
the set of valid publishers which can participate in
the index. Ideally, this is possible without man-
ually verifying each target. Search engine spam-
ming is an example of link forgery.

2

expected source target

type targets creation creation security section

manual one | subscriber manual 2
CGI many publisher | none 3.1
CGI+password many publisher | password 3.1
keyword search many subscriber | none 3.2
magic-word one/many subscriber publisher none 3.3
magic-word+password one/many subscriber publisher password 3.4
magic-word+pub. key one/many subscriber subscriber+publisher pub. key 3.5

Table 1: Some di�erent types of rendezvous considered in this paper.

link modi�cation A publisher must prevent unau-
thorized link modi�cation once links have been
added.

In the next section we consider these problems across
di�erent rendezvous approaches.

3 Rendezvous Design

We have already described manual rendezvous cre-
ation. This section looks at several approaches to au-
tomate rendezvous creation and maintenance.
To illustrate these designs we use the example of a

conference chair wishing to make a list of all papers to
appear at a given conference.

3.1 CGI Scripts

The Common Gateway Interface (CGI) provides a
standard approach to extend web server services. A
CGI program could remove the subscriber from the
process of index creation and maintenance. The sub-
scriber would create a CGI program to manage the
index and announce this program to potential publish-
ers. A publisher would then use this program to update
the index to refer to new content.
CGI scripts have the advantage that avoids exces-

sive subscriber work. They also su�er from index
degradation; they require manual publisher interven-
tion to accommodate publisher movement and have
no mechanism to correct subscriber movement. Sub-
scriber movement can be addressed by adding an edit
capability to the CGI script, but this raises the prob-
lem of unauthorized link modi�cation. Finally, link
forgery remains a problem.
Addition of a password to the CGI program will pre-

vent link forgery at the cost of password distribution.
In many cases, the password can be broadcast with
moderate security (for example, by announcing it at
a conference or on a mailing list). A single password

makes revocation costly, however, individual publisher
passwords add linear subscriber work. Publishers need
to know the location of subscriber to run the CGI pro-
gram. If there are more than one subscribers mak-
ing the index, publishers have to run each subscriber's
CGI program individually. When a publisher moves,
he can run the subscriber's CGI program to tell the
subscriber his new location. However when the sub-
scriber moves, he has to �nd a way to notify all pub-
lishers. Finally, CGI programs are somewhat diÆcult
to install and maintain in many environments.

An example of the CGI approach can be seen in the
Comprehensive Perl Archive Network (CPAN [4]). It
employs passwords and thus linear subscriber work,
but it is otherwise quite powerful.

3.2 Keyword Search

Keyword search is the action of subscriber searching
for some keywords to �nd the location of publishers.
The keyword is chosen by the subscriber independently.
Publishers are not involved in keyword search. Key-
word search is used widely by most index creators.
When a subscriber wants to index of a group of publish-
ers, he will connect to some search engines and search
for some keywords which he think appear in the pub-
lisher's page. Then the subscriber makes the index
based on the search result. The connection between
publisher and subscriber is minimal since there is no
interaction between the publisher and subscriber.

Keyword search accomplishes our main goal: it is
robust against index degradation. Subscriber can dis-
cover publisher movement by periodically re-searching
for the keywords. Publishers do not care about sub-
scriber's migration since publishers are not involved in
the index making process. Keyword search is also ro-
bust to link modi�cation.

Three problems preclude use of keyword search for
general rendezvous. First, it can be diÆcult for sub-
scriber to �nd a proper set of keywords which uniquely

3

locate all desired publishers. It is possible that there
is no common keyword appear to all publishers' pages.
Even if such keyword exists, subscriber has no way to
know it.

Second, keyword search is vulnerable to link forgery.
Although techniques to minimize spamming exist, they
are at best imperfect as shown on many current search
engines. In the example scenario, authors of rejected
papers could covertly add them to the index of ac-
cepted papers, and completely unrelated pages (per-
haps selling things) could be added as well, thus de-
stroying the value of the index.

An additional problem is that search engines often
return stale links, links to pages that no longer exist.
We would like to �lter these out.

We have implemented an automatic keyword search
service and describe our experiences in Section 5. Al-
though it is very valuable when publishers are not in-
volved, it is clearly not suitable for a general purpose
rendezvous mechanism.

3.3 Magic Word Search

Magic Word Search modi�es keyword search with pub-
lisher participation. Publishers puts a magic word, a
sequence of characters unique on the web, in each of
their targets, allowing the subscriber to locate all pub-
lishers by searching for this magic word. The magic
word is thus the connection between the publisher and
subscriber. It may be distributed by the subscriber
to all publishers or it may be an agreement among all
publishers and distributed to subscribers. In Section 4
we describe how we automatically chose these words;
in practice a long enough string of random characters
is suÆcient.

Like keyword search, magic word search is resistant
to index degradation and link modi�cation. Periodic
automatic searches update links broken due to sub-
scriber of publisher movement. Since the rendezvous
between subscriber and publisher is based on a search
for the magic word, the success of rendezvous depends
on the frequency and completeness of search engines.
An ideal search engine which will locate all pages con-
taining the magic word does not exist, but in Section 5
we evaluate the e�ectiveness and performance of cur-
rent search engines at this task and suggest how they
could be improved for our needs.

The major problem with magic word search is link
forgery. Just as with simple keyword search there is
nothing to prevent unauthorized publishers from steal-
ing magic words and adding forged links to the index.
Thus magic word search is a general solution only if

the user population is trusted as perhaps on a private
web or intranet.

In Section 4 we describe the program we imple-
mented to generate magic words. With our implemen-
tation of keyword search this provides an implementa-
tion of rendezvous with magic word search.

3.4 Magic Word Search with Secret

Key Encryption

In order to solve the authentication problem in magic
word search, we can add secret key encryption. A se-
cret key (implemented as a password) is shared by pub-
lishers and subscribers. Publishers place, in addition
to the (clear-text) magic word, an encrypt version of
some known constant and the URL of their page.

To �nd valid publishers, the subscriber �rst searches
for all pages with the magic word. To prevent link
forgery we then validate the page by decrypting the
encrypted block with the secret key. Failure to de-
crypt indicates a forgery. Successfully decrypting the
known constant indicates possession of the secret key,
but does not indicate who had the key (after all, a
clever forger could have copied the encrypted text from
a valid publisher). We therefore fetch the page pointed
to by the encrypted URL and consider that a candi-
date for adding to the subscriber's index. Thus copying
crypt text from valid target A into a forged target F
results in only additional links to A, not to F. We then
suppress duplicate links. Security for this process as-
sumes that DNS and the web server, the mechanisms
for URL resolution, are secure.

As described, this algorithm will correctly identify
pages and reject forgers who copy the encrypted block
from a good page. However, this does not provide pro-
tection against index degradation: is a publisher moves
a page without adjusting the encrypted block the valid
but moved page will be rejected as a forgery. We ex-
pect users to recompute this block when moving the
page as a matter of course, but we would prefer to not
require that. We can solve this in two ways: �rst, if
we can relax the rule about URL comparison to allow
some pre�x matches to be considered correct. If the
required pre�x matches only URLs controlled by the
user or trusted friends then it protects against spam-
ming while allowing some page movement without re-
computation. Second, if we include a checksum in of
the page contents (without the encryption block) in
the block than we can recognize and accept unmodi-
�ed pages that occur anywhere in the net.

Some of the contents encrypted are publicly known.
To protect against attacks using this known text we

4

add a random amount of padding before the URL.
Thus the �nal algorithm is as follows:

1. Publishers and subscribers choose magic word: M1,
padding P and secret password: K1. The publisher
chooses page contents text .

2. Publisher computes cksum over text and puts

text ;M1; fP;URL; cksumgK1

into the target page.

3. Subscriber connects to search engines and searches for
the magic word: M1. For each page he extracts the
URL For each URL�nd returned from the search en-

gines, do the following:

Subscriber downloads the page content: text ; eblock
for the URL�nd .

If text does not includes M1 then

discard the URL�nd .

Else

Decrypt the encrypted block eblock with K1

to get URLclear and cksumclear .

If URLclear pre�x matchesURL�nd then

add URL�nd to index

Else if cksumclear = cksumovertext then

add URL�nd to index

Else discard URL�nd
End If

End If

Magic word search (Section 3.3) provided links which
are robust to index degradation and link modi�cation.
The addition of secret key encryption meets the �nal
goal of preventing link forgery. Excessive subscriber
work is avoided if the secret key can be distributed ef-
�ciently. Key distribution is an area of active research
and absolute security may not be possible without re-
quiring the subscriber do speci�c work for each client.
In practice, however, there are many cases where suÆ-
ciently private (but not absolutely secure), or relatively
eÆcient solutions are possible. For example, eÆcient
relatively secure opportunities for key broadcast exist if
the subscriber and publishers are at a common meet-
ing, or if a private e-mail list exists. Alternatively,
secure but only relatively eÆcient approaches to dis-
tribution might include piggybacking the secret key on
an existing per-publisher message. In our example, this
could be done by including the secret key in the paper
acceptance message sent by the program chair. We ex-
plore another example with our �nal algorithm in the
next section.
We have implemented magic word search with se-

cret key encryption and describe our experiences in
Section 4.

3.5 Magic Word Search and Public

Key Encryption

The magic word search and secret key encryption al-
gorithm needs a secure channel to distribute secret
key. We can avoid the requirement of secure channel if
the subscriber knows the public key of all publishers.
Rather than encrypting the known content and URL
with a shared secret key, the publishers can do this
encryption with the private key portion of their public
key pair. The algorithm is as follows:

1. Publishers and subscribers initialize magic word: M1.

2. Publisher computes cksum over text and puts

M1; fURL; cksumgK�1

into the target page (K�1 is the private part of the
publishers public key pair)

3. Subscriber connects to search engines and searches for
the magic word. For each URL�nd returned from the

search engines, do the following:

Subscriber downloads the page content: text ; eblock

for the URL�nd .

If text does not includes M1 then

discard the URL�nd .

Else

Decrypt the encrypted block eblock with K

to get URLclear and cksumclear .

If URLclear pre�x matchesURL�nd then

add URL�nd to index

Else if cksumclear = cksumovertext then

add URL�nd to index

Else discard URL�nd

End If

End If

The algorithm requires that the subscriber know
each publisher's public key in advance. This requires
the subscriber do an O(n) amount of work, violating
our goal of avoiding excessive subscriber work. The
magic word searching with public key encryption there-
fore only meets our goals if the subscriber already
knows the publishers' public keys for some other rea-
son. In our example this would be the case if the au-
thors already were required to submit their public keys
with their papers.

We have not implemented magic word search with
public keys.

5

4 Implementation

Our implementation consists of several programs for
the publisher and subscriber and a library for interact-
ing with search engines.

Our implementation is in Perl with calls to PGP
for encryption. We use the WWW::Search library [8]
to interact with web search engines. WWW::Search
provides a Perl API to querying web search engines.
A common front-end drives searches, while separate
back-ends interact with 24 di�erent search engines (as
of November 1998).

4.1 Keyword Rendezvous

Our keyword-based rendezvous is provided by the pro-
gram AutoSearch. A user runs it the �rst time, speci-
fying the set of keywords to search for. It is then run
periodically (for example, from a cron job under Unix
or as a scheduled event under Windows). Each time
it is run it updates a list of pages with the required
keywords. Output is an set of HTML �les, one for
the master list and an addition �le with the changes
from each run. Output format can be speci�ed by a
template.

AutoSearch uses any search engine supported by
the WWW::Search library. It can use advanced
searches when supported by the search engine and
WWW::Search. Therefore keywords can be not only
text in web pages, but also particular parts of web
pages such as URLs referring to other pages.

4.2 Secure Rendezvous

Secure rendezvous is provided by the magic word with
secret key encryption algorithm and is implemented by
three programs.

First, the subscriber runs MakeKey to generate the
magic word and a secret key. Currently both a pseudo-
random strings of eight letters, but they can be made
arbitrarily long to probabilistically insure uniqueness.
The subscriber distributes these to each publisher
through out-of-band, secure means.

The publishers use the program MakeHtml to anno-
tate a web page they wish to publish with the infor-
mation provided by the subscriber. The magic word
is placed in a meta tag for search engines to �nd it.
The URL is encrypted with the secret key. Publish-
ers have some control of the formatting and ordering
of their link on the subscribers page; they optionally
specify the text to be used for the link and a sorting
key. Finally, to encourage rapid discovery rendezvous

with the new page, MakeHtml automatically submits
the target to several search engines.
Finally, the publisher constructs an empty index

page and then runs the program AutoLink periodically.
AutoLink queries one or more search engines and adds
links to the index. Unlike AutoSearch, AutoLink can
take the union of the results of multiple search engines.

5 Evaluation

We have designed and implemented two web ren-
dezvous mechanism to prevent the problems outlined
in Section 2: index degradation, excessive subscriber
work, link forgery, and link modi�cation. This sec-
tion examines our keyword search mechanism and our
magic word search with secret key encryption to eval-
uate how well they work and how fast they respond
to changes. Using this experience we re
ect on how
we customize a search engine to better support web
rendezvous.

5.1 Keyword-based rendezvous

We have used keyword-based rendezvous to maintain
several lists of pages related to several technical sub-
jects in web development (load balancing, persistent
connections, etc.) and lists of pages that pointed to a
subtree of the web. Each list was automatically main-
tained for about a year. Some are currently active
while others are discontinued.
We examined our uses of keyword-based rendezvous

to evaluate how e�ective it is at maintaining indices.
The �rst problem with keyword-based searches is se-
lecting the keywords. Our initial applications were to
track research on web technologies such as caching and
performance from 1996-1997. Searches on these very
terms quickly became very long, exceeding both the
number of results permitted in our search-engine query
and our patience at examining the results. A later ap-
plication was to index all pages that reference a partic-
ular web server and URL pre�x (using the AltaVista
url: advanced search option). This more constrained
search has been much more e�ective.
An e�ective user interface for large keyword-based

searches is critical to making them useful. In addi-
tion to the basic index listing all pages that match the
query we provide a page summarizing changes from
the most recent run. A serious problem with accu-
rately reporting changes to an index is that not all web
search engines return complete or consistent results.
Frequently many targets will be missing one week to
be found again the next week, resulting in redundancy

6

-80

-60

-40

-20

0

20

40

60

80

100

0 50 100 150 200

days since experiment began

pa
ge

s
ad

de
d,

 d
ro

pp
ed

, o
r

re
ta

in
ed

dropped

added

retained

Figure 2: Keyword-based rendezvous results over time.

in the weekly change report. Figure 2 shows weekly
search results illustrating this problem. For example,
just before day all targets were missing, most of these
reappeared over the next two weeks. We discuss rea-
sons for this problem and possible solutions below in
Section 5.3.
We did not observe problems with link forgery in our

uses of keyword search. However, our uses were quite
modest; we expect spamming to be in proportion to
the visibility of a given query.
We did not directly measure time for a particular

target to appear in our index for keyword-based ren-
dezvous. We used keyword rendezvous for opportunis-
tic target discovery rather than for tight collaboration
between publisher and subscriber. Time for their tar-
gets to be added to an index is dependent on how
quickly they are found by a search engine. Since in-
formation publishers do not know about subscribers
we cannot assume they explicitly submit their pages
for early searching.

5.2 Magic Word Search

Although keyword-based rendezvous is useful when the
publishers are not involved, we believe that a secure
algorithm will be preferred when both parties are aware
of the rendezvous. This section evaluates how long it
takes to set up a new rendezvous using magic word
search and how rapidly it adapts to target movement.
In our experiments we used our implementation of

secure rendezvous (Section 4.2) with queries to four
search engines, AltaVista, Infoseek, HotBot and Lycos.

case 1 case 2

day AV Is rv. act. AV Is rv. act.

1 0 0 0 13 0 0 0 10
2 9 0 9 13 10 0 9 10
3 13 0 9 10 11 0 9 9
4 13 0 9 10 11 0 9 9
5 13 0 9 10 11 0 9 9
6 12 0 10 10 10 0 9 9
7
8
9 12 0 10 10 7 1 7 9
10 10 0 10 10 7 1 7 9
11
12 12 10 10 10 6 9 9 9
13 12 10 10 10 10 9 9 9
14
15 12 10 10 10 10 9 9 9
16
17
18 13 10 10 10 8 9 9 9
19 12 10 10 10 10 9 9 9
20 13 10 10 10 10 9 9 9

Table 2: Results of secure rendezvous over time.

Abbreviations: AV, AltaVista; Is, Infoseek; rv., secure
rendezvous; act., actual pages existing. Data was not
taken on blank days.

We examined two cases with separate subscribers. In
the �rst case, we created 13 pages publishing them with
MakeHtml. On the third day we withdrew three pages
and moved one to a new location. In the second case,
we created 10 pages and withdrew one on the third day.
Each time we created or moved a page we submitted
its URL to the search engines.

Table 2 shows the results of this experiment. For
each case we show how many pages were returned by
AltaVista (AV), InfoSeek(Is), secure rendezvous (rv.),
and the actual number of pages containing the magic
word (act.) for most of the �rst 20 days. HotBot
and Lycos did not return any pages for the duration of
our experiment. From the experiment we can see that
the delay between submitting a page it appearing in
a search is either 1{2 days, 9{12 days, or more than
20 days for these search engines. A secure rendezvous
service will therefore have at least a 1{2 day latency
when updating an index.

Two other surprising features appear in this data.
First, AltaVista keeps links to stale pages around
for the duration of the experiment (even after two
months). Second, as observed in keyword-based ren-
dezvous, AltaVista searches are not necessarily stable

7

from day to day. This instability reduced the targets
reported by rendezvous in days 9 and 10 of case 2. We
discuss ways to work around these problems in the next
section.
From this experiment we conclude that secure ren-

dezvous can be used when a few days of latency are al-
lowed between publisher and subscriber. The amount
of latency is very dependent on the search engines used.
In these cases a small amount of extra publisher e�ort
(running MakeHtml to update the security information
and submit the new URL) allows the subscriber to pro-
vide a secure index with no additional e�ort. The main
advantage of rendezvous is that even if the publisher
isn't vigilant in running MakeHtml, the subscriber will
eventually �nd out about the new location. (Although
within the limitations of the matching rules.)

5.3 Search engines and rendezvous

We next consider the characteristics of an ideal search
engine for web rendezvous, some reasons why existing
engines are not ideal, and approaches applications can
use to work around these di�erences.
For web rendezvous, an ideal search engine would

have a very rapid time between submission and index-
ing, it would rapidly purge stale pages, and it would
report consistent results over time. Accomplishing all
of these goals is not easy, so we should mention that
it does not need to index the full-text contents of the
web for magic-word rendezvous. Our purposes require
only indexing the presence and contents of any magic
words.
Search engines do not meet this ideal for several

practical reasons. With many pages in the web, engines
cannot immediately fetch new pages to index, and even
with page data they likely stage updates to the index
database. Lawrence and Giles present several reasons
search engines are slow to purge stale pages [11]. Fi-
nally, engines return inconsistent results because they
are optimized for output to humans rather than other
programs. Some search engines such as Inktomi's Hot-
Bot intentionally return partial results to achieve high
availability or load balance [7]. For most humans, 100
hits quickly are more valuable than 200 hits in minutes
or the message \cannot process your request".
Fortunately, secure rendezvous mechanisms can

work around the later two problems. The secure algo-
rithm includes a page validation step where we found
pages are include the magic word and encrypted URL.
Stale pages will fail this step. We can accommodate
inconsistent results by treating the prior runs as input
into the current run. In e�ect, we do a meta-search
including ourselves as one of the sources.

The problem of rapid indexing at the search engine is
more diÆcult. Creation of a search engine dedicated to
web rendezvous would help. The database portion of
a dedicated rendezvous search engine could be much
smaller other engines, and priority could be given to
submitted requests, thus allowing rapid update and in-
dexing.

6 Related Work

6.1 Broken Link Detectors

There are both commercial and academic programs to
automatically detect broken links in WWW. MOM-
Spider uses robot to traverse all links in a web site [5].
Broken links are reported to the maintainer. The bro-
ken link detectors only detects broken links automat-
ically. Fixing the broken links still need to be done
manually.

6.2 Persistent Names

There are a number of research groups investigating
the issue of providing a Persistent Names for Internet
resources.
The Internet Engineering Task Force (IETF) has

been working on the issue of devising a general naming
scheme for Internet resources. They introduce a global-
unique, location-independent naming scheme, Uniform
Resource Names (URNs) [3]. URNs separate object
identi�cation from location with the goal of providing
persistent logical names for objects. As URN systems
are developed and standardized, we expect them to
provide stable names to web objects
WebLinker is a similar scheme which uses Local Re-

source Names (LRNs) as the logical name of object
within a site [1]. All references to the objects of the
site are through the LRNs. When an object is ac-
cessed, the LRNs is resolved by a linker server residing
on that site. LRNs provide logical name to objects in
one site. However if the site moves to a di�erent server,
the LRNs can not be resolved correctly. The site needs
a URN as a logical name.

Persistent Uniform Resource Locator (PURL) is an-
other scheme to augment URLs [12]. Instead of point-
ing directly to the physical location of an Internet Re-
source, a PURL points to a intermediate resolution
service. The resolution service return the actual URL
associated with the PURL to the client. The client can
then continue the Web transaction in normal fashion.
Unfortunately, the persistent names approach pro-

vides only one component of a solution. Persistent

8

names identify individual object; they cannot point to
multiple objects. A URN for the business oÆce page
would not adapt to the split of the business oÆce into
accounting and human resources, for example. In addi-
tion, many persistent-names systems simply provide a
level of indirection: resolving a persistent name implies
mapping it to a location. This approach moves the link
maintenance problem from the index maintainer to the
maintainer of the persistent name. �nally, persistent
names do not aid the task of index creation: each re-
source must be gathered and manually added to the
index.

6.3 New Link Schemes

There are some other research groups aims to avoid the
broken link problem by inventing new link schemes.
In W3Object Model, web resource are represented

as W3Object which encapsulate internal state and well
de�ned behavior [9]. Accessing W3Object is through
the interface. W3Reference, a �rst-class referencing
object, is used for addressing. W3Reference contains
the location of an object. Referential integrity is guar-
anteed by forward referencing. An object is replaced
with a forward reference at migration time|invocation
can be redirected through the forward reference. How-
ever the chain from reference to the object maybe bro-
ken due to space crash or network partition. W3Object
uses name service and callback to guarantee referen-
tial integrity. Reference holder register the object with
some name servers. When object migrates, it informs
the name server. Reference holder can get the path
to the object from name servers. The reference holder
itself can also register a callback to the object. The
object inform the reference holder directly when it mi-
grates.
In W3Object model, indirection invocation will tra-

verse through a chain. The performance at invocation
time is a�ected. Although short-cutting may be used
to decrease indirections, it will take long time for ref-
erence holder to point to the object directly. It is dif-
�cult to deploy the name server in world wide web.
The name server approach is somewhat similar to our
work. Reference holder uses name server to access ob-
ject. In web rendezvous approach, subscriber use ex-
isting search engines to access publisher. There is no
extra work in construction of the name server in our
Web Rendezvous model.
The Hyper-G system from University of Technology,

Graz, Austria has a super�cially similar architecture
to the World Wide Web: servers provide documents
to client browser [2]. Unlike WWW client, Hyper-G
clients talk to a single Hyper-G server for the entire ses-

sion. If information from remote server is needed, local
server fetch the object and passes it to the client. Each
Hyper-G server maintains its own document manage-
ment system. Links in Hyper-G are not stored within
documents but in a separate link database. The ref-
erential integrity between local resource is achieved by
updating or deleting links to a resource when it is re-
moved. Referential integrity for remote resources is
maintained by propagating update information to re-
mote servers using a
ooding algorithm [10]. The up-
date information contains deletion or migration of ob-
jects and creation or deletion of links.

All Hyper-G server are involved in the remote server
update mechanism since the information is broadcast
to all servers. The network traÆc is proportional to
the number of servers. It can not scale to the rapid
growing World Wide Web.

The new link schemes may prevent broken links if
widely deployed. However, switching the link structure
in current World Wide Web to the new link schemes
may require extensive work. In addition, the new link
schemes can not solve the multi-way rendezvous prob-
lem. In the index making problem, subscriber still need
excessive work to locate publishers.

6.4 Automatic Home Page Finders

Several groups have independently developed auto-
mated indexes of local pages. For example, some or-
ganizations automatically maintain lists of home pages
or projects. Most of the examples we've seen appear
to search an external database (for example, the list of
the organization's home directories) or use CGI scripts.
Thus these approaches either fail to address the prob-
lems of link forgery and modi�cation or avoid these
problems by assuming a trustworthy user community
or with a solution which is limited to a single organi-
zation. We are not aware of an implementation which
addresses all of the problems presented here.

7 Conclusions and Future Work

We have describe the problem of web rendezvous: al-
lowing a subscriber to �nd links to a number of pub-
lisher's web pages about a given topic. Successful ren-
dezvous faces several problems, particularly the grad-
ual erosion of links over time as pages move (index
degradation), placing too much work on the subscriber,
and spamming (link forgery).

We suggested seven solutions to the rendezvous
problem, and implemented two: keyword rendezvous,

9

which does not require publisher involvement, and se-
cure rendezvous, which uses encryption to prevent link
forgery. These approaches are somewhat complemen-
tary because of these trade-o�s, but we believe that
secure rendezvous is better when possible.
We evaluated both of keyword and secure ren-

dezvous, examining utility and timeliness. With pub-
lisher involvement, secure rendezvous can update links
in 1{2 days. Robust implementation of rendezvous
depends on understanding of existing search engines.
Based on our experiences we suggested ways ren-
dezvous can be accomplished with existing search en-
gines, and ways future engines can better support this
kind of application.
We believe that wider use of web rendezvous can

result in easier subscriber maintenance of large indices.

Acknowledgments

Several people have made substantal contributions to
web rendezvous. Joe Touch and Kedar Jog had the
idea and did the initial implementation for keyword-
based rendezvous. William Schedding implemented
the second version of keyword-based rendezvous using
the WWW::Search library. The authors also thank
Ted Faber and Joe Bannister for comments about the
paper.

References

[1] Nikos Drakos Alberto Aimar, James Casey and
etc. Weblinker a tool for managing WWW cross-
references. Computer Network and ISDN systems,
28(1&2):99{107, Dec 1995.

[2] Keith Andrews, Frank Kappe, and HermannMau-
rer. Serving information to the web with Hyper-
G. In Proceedings of the Third International

World Wide Web Conference, Darmstadt, Ger-
many, April 1995. In Computer Networks and
ISDN Systems, 27(1995).

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uni-
form resource identi�ers (URI): Generic syntax.
RFC 2396, Internet Request For Comments, Au-
gust 1998.

[4] CPAN. Comprehensive perl archive network.
http://feenix.metronet.com/perl/CPAN.html.

[5] Roy T. Fielding. Maintining distributed hypertext
infostructures: Welcome to MOMspider's web. In

Proceedings of the First International World Wide

Web Conference, Geneva, Switzerland, May 1994.

[6] Roy T. Fielding, E. James, Jr. Whitehead, Ken-
neth M. Anderson, Gregory A. Bolcer, Peyman
Oreizy, and Richard N. Taylor. Web-based devel-
opment of complex information products. Com-

munications of the ACM, 41(8):84{92, August
1998.

[7] Armando Fox, Steven D. Gribble, Yatin
Chawathe, Eric A. Brewer, and Paul Gau-
thier. Cluster-based scalable network services. In
Proceedings of the 16th Symposium on Operating

Systems Principles, pages 78{91, St. Malo,
France, October 1997. ACM.

[8] John Heidemann. Www::search.
http://www.isi.edu/lsam/tools-
/WWW SEARCH/index.html, October 1996.

[9] D. B. Ingham, S. J. Caughey, and M. C. Little.
Fixing the broken-link problem: The W3Objects
approach. In Proceedings of the Fifth Interna-

tional World Wide Web Conference, pages 1255{
1268, Paris, France, May 1996.

[10] F. Kappe. A scalable architecture for maintain-
ing referential integrity in distributed informa-
tion system. Technical report, Graz University
of Technology, Austria, 1995. ftp://ftp.iicm.tu-
graz.ac.at/pub/papers/p-
ood.pdf.

[11] Steve Lawrence and C. Lee Giles. Searching the
world wide web. Science, 280:98{100, 3 April
1998.

[12] PURL. Persistent uinform resource locator.
http://purl.oclc.org.

10

