This paper is a draft that will appear in IEEE/ACM Transactions on Networking.

Final editing is still expected.

Please replace it with the final version when published.

Modeling the Performance of HT'TP
Over Several Transport Protocols*

John Heidemann

DRAFT

Abstract

This paper considers the interaction of HT'TP with
several transport protocols, including TCP, Transac-
tion TCP, a UDP-based request—response protocol,
and HTTP with persistent TCP connections. We
present an analytic model for each of these proto-
cols and use that model to evaluate network overhead
carrying HTTP traffic across a variety of network
characteristics. This model includes an analysis of
the transient effects of TCP slow-start. We validate
this model by comparing it to network packet traces
measured with two protocols (HTTP and persistent
HTTP) over local and wide-area networks. We show
that the model is accurate within 5% of measured
performance for wide-area networks, but can underes-
timate latency when the bandwidth is high and delay
is low. We use the model to compare the connection-
setup costs of these protocols, bounding the possible
performance improvement. We evaluate these costs
for a range of network characteristics, finding that
setup optimizations are relatively unimportant for
current modem, ISDN, and LAN users but can pro-

*This research is supported by the Defense Advanced
Research Projects Agency (DARPA) through FBI contracts
#J-FBI-95-185 entitled “Cities Online”, and #J-FBI-95-204,
“Global Operating Systems Technologies”. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Department
of the Army, DARPA, or the U.S. Government.

The authors can be contacted at 4676 Admiralty Way, Ma-
rina del Rey, CA, 90292-6695, or by electronic mail to johnh,
katia or touch, each @isi.edu.

This paper is copyright (©1997 by the Institute of Electrical
and Electronics Engineers.

Katia Obraczka

Joe Touch

June 6, 1997

vide moderate to substantial performance improve-
ment over high-speed WANs. We also use the model
to predict performance over future network charac-
teristics.

1 Introduction

The World Wide Web [1] has rapidly become one of
the most popular Internet services [2]. The popular-
ity of the web has resulted in a corresponding popu-
larity for HTTP, the standard Hyper-Text Transport
Protocol [3, 4]. HTTP is layered over TCP.

The strengths of TCP are well known. TCP
is a well understood protocol with carefully tuned
flow control and congestion avoidance algorithms [5].
These characteristics make TCP an excellent proto-
col for bulk data transport in congested networks.

Web traffic is not ideally matched to TCP, how-
ever. In practice, web access is request-response ori-
ented with bursts of numerous requests and small,
unidirectional responses. Retrieval of a complete web
page requires separate requests for text and each em-
bedded image, thus making traffic inherently bursty.
Responses are small to keep transmission times down;
several studies have documented typical response size
as less than 1KB [6], 6KB [7], or 21KB [8]. Finally,
web users often bounce rapidly from site to site, as
verified by both client [6] and server side traces [8].!

lFor example, from the 1995-96 Boston University sur-
vey [6] we can deduce that an upper bound on the mean num-
ber of unique URLs read from each site is 15.5. The NCSA
server-side traces suggest that clients read a mean of 2.92 text
pages at their site per-browsing session.

Unfortunately, TCP is poorly suited to frequent,
short, request-response-style traffic. Frequent con-
nection setup and tear-down costs burden servers
with many connections left in TIME_WAIT state [9,
10]. Short connections can interact poorly with
TCP’s slow-start algorithm for congestion avoid-
ance [10]. Finally, TCP’s initial three-way handshake
adds latency to each transaction [10].

These mismatches between the needs of HTTP and
the services provided by TCP contribute to increased
latency for most web users. Fundamentally, TCP is
optimized for large-scale bulk data transport, while
HTTP often needs a light-weight, request-response
protocol. Other request-response-style services, in-
cluding transfer of short e-mail messages or files and
RPC protocols, would also benefit from protocol im-
provements.

Prior work in this field (reviewed in the next sec-
tion) has identified and proposed solutions to each of
these problems. This paper builds upon that work in
several ways. First, we present analytic models for
HTTP traffic over several transport protocols. These
models allow us to compare current and future pro-
tocols in a common framework. We can also predict
protocol performance on proposed networks. We vali-
date our models by comparing them to measurements
from an actual system. Finally, we use the insight
provided by the models to reflect on the needs of
protocols for HTTP traffic.

This paper makes several contributions to the field.
First, we provide a detailed examination of the tran-
sient effects of TCP connection start-up. We show
that the start-up behavior of TCP’s slow-start al-
gorithm depends on the acknowledgment policy of
the receiver and that this fact often results in the
congestion window opening significantly slower than
has often been described. These effects are par-
ticularly important for HTTP (and similar short,
request-response protocols) where transient effects
often dominate performance. Second, we provide an
analytic model for web transport over several pro-
tocols and use this model to compare these proto-
cols and to validate the experimental results of prior
researchers. Third, we apply our model to predict
protocol performance in a broad range of network
characteristics including future networks characteris-

tics. Finally, we apply these predictions to evaluate
the performance of proposed HTTP enhancements.
We find that, while proposed enhancements such as
persistent HTTP are effective with high-bandwidth
network characteristics, they offer much more mod-
est gains in the medium- and low-bandwidth network
characteristics common to most Internet users today.

2 Related Work

This section summarizes previous and current work
in the areas of HT' TP performance evaluation as well
as transport protocols that have been proposed as
alternatives to TCP.

A simplified version of the HTTP over TCP and
caching TCP models of this paper can be found else-
where [11]. That paper focuses on comparison of
HTTP with and without persistent connections; this
paper more accurately models slow-start and work-
loads and analyzes additional protocols in more de-
tail.

2.1 Persistent-Connection HTTP

Padmanabhan and Mogul conducted experiments to
quantify the cost of using TCP as HTTP’s trans-
port mechanism [10]. Their examination of a typical
HTTP request-response demonstrated throughputs
for short responses as small as 10% of the through-
put obtainable by bulk data transfers under similar
network conditions. They attribute these costs to
TCP’s connection setup and slow-start mechanisms.

To amortize TCP’s connection overhead over mul-
tiple HTTP interactions, Padmanabhan and Mogul
propose a “persistent-connection” HTTP, or P-
HTTP, a variant of HTTP that uses one TCP con-
nection to carry multiple HTTP requests [10]. Mogul
also investigates trace-driven simulations of HTTP
and P-HTTP, demonstrating that P-HTTP can avoid
these setup costs and achieve significantly better per-
formance than HTTP when there is temporal locality
in web accesses [12]. By requiring fewer TCP connec-
tions than HTTP, P-HTTP also conserves server and
network resources.

Padmanabhan and Mogul’s results have been
corroborated by Simon Spero in an unpublished
study [13]. A version of P-HTTP is part of the spec-
ification of HTTP/1.1 [4].

Both Padmanabhan and Mogul’s and Spero’s anal-
yses of HTTP overhead were founded on mea-
surements between relatively well-connected Inter-
net hosts (bandwidth about 1Mb/s, round-trip time
70ms). We show that our analytic model of perfor-
mance allows us to extend these results to other net-
works. We validate their results for well-connected
hosts; in such cases P-HTTP will improve perfor-
mance. We also show that when either bandwidth
or delay degrade (perhaps due to wide-area conges-
tion, bottleneck links such as a modem or ISDN, or
co-location of hosts), then P-HTTP performance im-
provements are much more modest.

A recent technical note has suggested that use
of pipelining is important to get good performance
from the HTTP /1.1 implementation of P-HTTP [14].
Pipelining reduces the number of packets transmitted
and supports request independence (as discussed in
Section 4.1). We discuss the performance implica-
tions of HTTP /1.1 with pipelining in Section 5.5.

2.2 Transaction TCP

Transaction TCP, or T/TCP [9, 15], was proposed to
bridge the gap between the services provided by UDP
and TCP for request-response applications.? T/TCP
improves TCP performance by caching per-host in-
formation sufficient to bypass the TCP’s three-way
handshake and avoid slow start.> T/TCP also short-
ens TCP’s TIME_WAIT period from 240 to 12 sec-
onds, reducing the duration that per-connection state
is retained.

Stevens compares the time to complete a client-
server transaction using TCP, UDP, and T/TCP for
different sizes of the request and reply over Pentium-
based hardware on a 10Mb/s Ethernet [16]. As ex-

2A T/TCP “ransaction” is a request-response exchange,
not a database-style transaction.

3While the functional specifications for T/TCP suggest
that congestion window be cached, the reference implemen-
tation (at ftp://ftp.isi.edu/pub/braden/TTCP.tar.Z) does not
cache this value.

pected, the UDP-based client-server yields the small-
est latency (11 to 81ms, depending on packet size),
and the TCP-based interaction takes the longest to
complete (36 to 105ms). In Stevens’ experiments,
T/TCP is about 5ms more expensive than UDP for
a given packet size (and therefore 55-18% faster than
TCP).

We extend Steven’s results by modeling HTTP
traffic over T/TCP. We also show that, with re-
spect to connection establishment costs, HTTP traf-
fic over T/TCP and persistent-connection TCP (P-
HTTP over TCP) behave identically.

2.3 UDP-Based Request—Response
Protocols

The Asynchronous Reliable Delivery Protocol
(ARDP) is one example of a reliable message passing
protocol built atop UDP for request-response-style
interactions between a client and a server. ARDP
was proposed and implemented as the transport
mechanism for the Prospero information discovery
tool [17].

ARDP’s main design goal is to provide a reli-
able yet light-weight communication mechanism to
transport requests and responses between clients and
servers. The current version of ARDP (in develop-
ment) borrows TCP-style flow-control, congestion-
avoidance, and retransmission algorithms.* ARDP
avoids TCP’s three-way handshake, instead ran-
domly selecting connection identifiers. This approach
trades connection setup overhead for a chance of ac-
cidental (or intentional) connection identifier reuse.

We will show that although avoiding the three-way
handshake is helpful, caching congestion-control in-
formation is important for optimal performance.

3 Network and Traffic Model

To understand the performance of HTTP over dif-
ferent transport protocols we must characterize the
network and the traffic we expect to send. We con-
sider each of these in turn.

40lder versions of ARDP have a fixed window size of 16
1250-byte packets and do not do slow-start.

rtt round-trip time
bw bandwidth
mss maximum segment size
stt segment-transmission time
muws maximum useful window size
Table 1: Network characteristics affecting

HTTP performance.

3.1 Network Model

Figure 1 shows the beginning of a typical TCP packet
exchange. Several parameters are needed to charac-
terize this exchange; we list these in Table 1.

The first three parameters listed in Table 1, round-
trip time, bandwidth, and maximum segment size®
are all properties of a given network path (although
observed round-trip time and bandwidth may change
due to variations in network and server load). The
remaining two parameters can be derived from the
others. Segment-transmission time, the time it takes
to send the largest possible packet, is directly related
to bandwidth and segment size:

stt = mss/bw

Maximum useful window size is the bandwidth—
delay product expressed in an integral number of
packets. This final parameter represents the num-
ber of segments which must be in flight to keep the
network “pipe” full. When the current window size
is less than muws there will be a delay while acknowl-
edgements return to the sender; when window size is
at least muws segments then there will be continuous
flow of data. Analytically, muws is:

muws = [rtt/ stt]

Note that muws is the bandwidth—delay product
expressed in an integral number of packets.

A final network characteristic not considered here
is transmission error rate. We discuss the effects of
packet loss on our results when we validate our model
in Section 5.3. The primary goal of this paper is to ex-
amine startup effects of transport protocols. A com-
plete discussion of the effects of error on transport

50ur segment sizes already account for link-level headers.

HTTP HTTP
Client Server
A
| round-trip
setup | time (RTT)
initial
request *
server
| Y "think time"
A
| Asegment
reply | y transmission
A time
I
I I
stall | |
slow
| | start
v |
I
I
I
| sustained
transfer
| fi
O |

Figure 1: Packets exchanged in an HTTP over
TCP connection not limited by bandwidth.
Bold arrows indicate data transfer while thin arrows
show SYN- or ACK-only packets.

performance are beyond the scope of this paper, so
for the remainder of this paper we assume error-free
transmission

Having defined these parameters, we can now
quantify them for the networks in which we are in-
terested. These values are given in Table 2.

Our models will use these parameters to predict
performance across a range of networks. Where
possible we have directly measured these parame-
ters on actual systems. For Ethernet, we use ob-

network rit bw mss stt muws
Ethernet 0.7ms 8.72Mb/s 1460 B 1.28ms 1 pkts
Fast-Ethernet 0.7 100 1460 0.111 7
Slow-Internet 161 0.102 512 38.5 5
Fast-Internet 89 1.02 512 3.85 24
Modem 250 0.0275 512 142 2
ISDN 30 0.122 512 32 1
WAN-Modem 350 0.0275 512 142 3
WAN-ISDN 130 0.122 512 32 5
ADSL 30 6 512 0.651 47
DirecPC 500 1 512 3.91 128
N-Ethernet 0.7 8.72 1460 1.28 1
N-Fast-Internet 80 1.17 1460 9.52 9
N-Modem 150 0.0275 1460 396 1

Table 2: Network characteristics for several existing networks. N-Ethernet, N-Fast-Internet,

and N-Modem are discussed in Section 5.5.

served bandwidth and latency measured between
two Sun SPARC 20/71 hosts connected by a ded-
icated 10Mb/s Ethernet. For the Internet we em-
ploy two different values, “fast” and “slow” Inter-
net, which corresponds to measured communications
speeds between well-connected hosts on the same and
different continents, respectively.® Actual Internet
performance represents a continuum between these
points. The fast-Internet case corresponds roughly to
characteristics present in Mogul’s and Spero’s stud-
ies [12, 13]. DirecPC also presents measured values
from a system with satellite down-link and a modem
back-channel [18]. (We assume that the back-channel
is not a factor limiting performance.)

For several other networks we have had to estimate
these parameters. Modem and ISDN figures employ
measured latencies and theoretical bandwidths. Fast-
Ethernet and ADSL use theoretical bandwidths and
latencies suggested by similar systems (10Mb/s Eth-
ernet and ISDN, respectively). We look forward to
replacing these estimates with actual measurements
as these systems become available.

Finally, only the Slow- and Fast-Internet figures
consider wide-area limitations on latency and band-

6For the fast-Internet case we measured communications
between darkstar.isi.edu and prep.ai.mit.edu, for the slow case,
between darkstar.isi.edu and ftp.connect.org.uk. These mea-
surements were taken on a Saturday afternoon (7 hours west
of UTC), 11 May 1996.

width; other cases assume that the client is directly
connected to the server by the given networking
technology. We can reflect wide-area limitations by
adding latency and capping bandwidth to that ob-
served in the Slow- and Fast-Internet cases. For Mo-
dem and ISDN we therefore show WAN version with
100ms additional latency. For faster technologies
(ADSL, DirecPC, Slow- and Fast-Ethernets) band-
width and latency can be approximated by the Slow-
to Fast-Internet cases.

We can already observe that muws is fairly low
in many current networks, with the exception of the
fast-Internet case. Once the transmission window
has opened up past this value, acknowledgments of
outstanding packets are returned as fast as packets
are transmitted. muws is directly related to protocol
overhead; we will show later that when it is small,
connection setup optimizations have little to opti-
mize and so provide performance similar to HTTP
over TCP.

Traffic Model

Performance of transport protocols also depends
upon the traffic characteristics of HTTP. We con-
sider several potential HTTP workloads:

3.2

small page A single 5KB web page.
medium page A single 25KB web page.

large page A single 100KB web page.

small cluster A single 6,651B page with embedded
3,883B and 1,866B images.”

medium cluster A single 3,220B page with three
embedded images, sizes 57,613B, 2,344B, and
14,190B.8

large cluster A single 100KB page with 10 embed-
ded 25KB images.

Notice that at each change in size (from small
to medium to large), the total amount of data ex-
changed is about five times larger.

Each of the cluster workloads requires multiple
HTTP requests, one per page or image. In multi-
request exchanges we assume that all requests are
independent. Requests A and B are independent if
request B can be initiated before request A has com-
pleted. Although a simple client program would se-
quentially request each item, modern multi-threaded
browsers initiate multiple parallel image requests as
the basic HTML page is received, thus allowing some
degree of request independence.

Choice of traffic will influence our protocol evalua-
tion. The small and medium cases are representative
of typical web pages today. We consider the large
cases representative of what may become common in
the future as networks with higher bandwidth become
more widely available.

Finally, we also need to model the size of HTTP
requests and the time it takes a server to parse and
interpret the request (server processing time). To
simplify our model we assume a constant request
size of 256B and zero processing-time. A more com-
plex model of request size is not warranted since
requests almost always fit in one segment and so
performance is dominated by response size. The
zero processing-time assumption is clearly incorrect;
request-handling overhead depends strongly on server

"The front page (http://www.yahoo.com) at Yahoo on May
1, 1996.

8The front page (http://www.gnn.com) at GNN on May 1,
1996.

9Some older browsers had substantially longer requests [13].
Performance concerns are one reason modern browsers keep
requests short.

hardware, software, and load. We remove this effect
from our computations to focus instead on the net-
work protocol aspects of HTTP instead of server im-
plementation. We reconsider processing-time when
we validate our model in Section 5.

4 Protocol Analysis

We next examine protocol performance for the net-
works and traffic patterns we are considering. We
examine the interactions between HTTP and several
classes of protocols:

TCP HTTP currently runs over TCP, opening a
new connection for each transaction.

Connection caching protocols To avoid connec-
tion setup overheads, P-HTTP and T/TCP
cache connections or connection information
across multiple requests.

UDP-based request—response protocols
ARDP employs UDP to avoid TCP setup costs.

To examine these protocols against a consistent
baseline we first consider a lower bound on trans-
action time.

4.1 Minimum Transmit Times

Logically, the minimum possible transaction time is
the one round-trip time delay inherent in communi-
cation, plus the time it takes to send the request and
receive the reply, and any time spent at the server:

Tmin = rtt (1)
+remin
+processing
+replymin
Tedmin reqg;ze/ bw
replypmin = TePlYgize/ bW

This equation is straightforward and can be re-
duced to data size divided by bandwidth. We present

it in this detail to illustrate the differences and simi-
larities between different transport protocols.

A series of n independent requests will incur only
one round-trip latency because they are pipelined.
The total required time will therefore be:

Smin = T+ zn:(Tmm(Z) — rtt) (2)

The assumption of independent requests implies a
browser which is multi-threaded or which pipelines
requests and that the subsequent requests are sent
immediately without waiting for the prior response.
(In particular, we assume that the second request can
be made before the complete results of the first re-
quest have returned.) If we were to assume a single-
threaded browser making n sequential requests we
would then add an additional (n — 1) x rtt delay to
Equation 2 while the client determines and requests
the next page. If we assume that no additional re-
quests could be made until the first was completed
(as would be the case in a multi-threaded browser
where all image references are in the last segment of
the first page), we would add one additional rtt.

Because of our assumptions about request size and
processing-time, the primary factor influencing min-
imal transmission times will be reply,,;,. Table 3
summarizes the minimum possible transmission times
for the networks and workloads we consider.

4.2 Simple Model

We can construct a very simple estimate of when
transport protocol overhead will be significant by
comparing the ratio of the bandwidth—delay product
to the transaction size. In any streaming transport
protocol several round-trip exchanges are required
to reach steady-state performance (assuming net-
working conditions are not known a priori). When
the offered transaction is too small, stability is not
achieved, and transient effects are amplified.

We can approximate the minimum amount of time
a connection would have to stabilize by comparing
the ratio of transmitted data to pipe size. For an
HTTP transaction, assuming that reqg;,, is zero, this
ratio is:

replygize
bw x rtt

(3)

When this ratio is small we would expect protocol
setup costs to dominate performance; when it is large
setup costs would be amortized.

An alternate view of the same concept inverts this
ratio to get the pipe size in reply-sized units.

rtt
replyg;re/ bw

(4)

This equation is a good approximation for one
round-trip overhead per reply (the exact value would
be rtt/Ty,in)- We can use this equation to provide
a first approximation for setup overheads. To esti-
mate overhead for single page retrievals we apply this
equation directly. For clusters of retrievals we use the
harmonic mean'® of ratios for each retrieval if each
retrieval requires a separate connection. If connec-
tion overhead is amortized across all of a cluster’s
replies (as it would be if retrievals were batched over
a single connection) we treat all replies as a single
large response.

Table 4 shows these ratios, highlighting exchanges
where the overhead approximation exceeds 25%.
These simple equations provide a good predictor of
where transient effects will be high, but they fail
to accurately capture these effects when the band-
width/delay product rises. To accurately estimate
performance of actual network protocols in these
cases we next consider the effects of congestion avoid-
ance protocols.

4.3 HTTP over TCP

We next consider the overhead present in TCP when
compared to the minimum transaction time. TCP
adds several sources of overhead: protocol headers,
the three-way handshake at connection setup, the
slow-start algorithm, and retransmissions and con-
gestion control delay due to packet loss. Packet loss
rates depend on a number of factors beyond the scope

10The harmonic mean of n values is n/(> 1/x;).

network small-page medium-page large-page small-cluster medium-cluster large-cluster

Ethernet 5.4ms 23.3ms 90.5ms 12.2ms 69.3ms 317ms
Fast-Ethernet 1.11 2.67 8.53 1.7 6.68 28.3
Slow-Internet 565 2100 7870 1150 6050 27300
Fast-Internet 129 283 860 188 678 2800
Modem 1740 7430 28800 3910 22000 101000
ISDN 366 1650 6450 853 4930 22600
WAN-Modem 1840 7530 28900 4010 22100 101000
WAN-ISDN 466 1750 6550 953 5030 22700
ADSL 36.8 62.9 161 46.7 130 489
DirecPC 541 697 1280 600 1100 3260

Table 3: Minimal theoretical times to send different workloads across different networks.

small- medium- large- small- medium- large-
network page page page cluster cluster cluster
Ethernet 0.16 0.03 0.01 0.19 / 0.06 0.04 /0.01 0.02 /0.00
Fast-Ethernet 1.79%* 0.36* 0.09 2.22% 0.74* 0.47% 0.12 0.28% 0.03
Slow-Internet 0.42%* 0.08 0.02 0.52*% 0.17 0.11 /0.03 0.07 / 0.01
Fast-Internet 2.31% 0.46* 0.12 2.87% 0.96*% 0.61% 0.15 0.36%* 0.03
Modem 0.18 0.04 0.01 0.22 / 0.07 0.05 /0.01 0.03 / 0.00
ISDN 0.09 0.02 0.00 0.12 / 0.04 0.02 /0.01 0.01 /0.00
WAN-Modem 0.25 0.05 0.01 0.30*/ 0.10 0.07 /0.02 0.04 / 0.00
WAN-ISDN 0.41%* 0.08 0.02 0.50*% 0.17 0.11 / 0.03 0.06 / 0.01
ADSL 4.61% 0.92* 0.23 5.71% 1.90*% 1.22% 0.30*% 0.72*% 0.07
DirecPC 12.80* 2.56* 0.64* 15.86% 5.29*% 3.39% 0.85* 2.01% 0.18

Table 4: Approximation of one round-trip overhead per transaction (Equation 4). Highlighted val-
ues indicate ratios more than 0.25 where transient effects may dominate performance. For cluster workloads
ratios are given assuming separate and single connections.

of this paper; we therefore consider only the first
three sources of overhead. We discuss how packet
loss would impact our model in Section 5.3.

An idealized packet trace for a request-response
transaction over TCP is shown in Figure 1. In this
packet trace we can see how the three-way handshake
(labeled setup) adds one round-trip time overhead.
We next consider the effects of TCP’s slow-start al-
gorithm.

4.3.1 TCP slow-start

TCP’s slow-start algorithm limits transmission by
a congestion window (cwnd) which is initialized to
one segment and increases each time an ACK is re-
ceived [5]. The size of increase changes: initially
cwnd grows in one segment increments (the slow-start
phase), then later by 1/cwnd (congestion avoidance
phase). TCP is thus “clocked” by the flow of ac-
knowledgments.

For high bandwidth /delay-product paths, TCP ini-
tially alternates between segment transmission and
stalls waiting for ACKs from these segments to re-
turn. The number of segments sent per stall in-
creases exponentially during slow-start until enough
segments are in flight that ACKs return continuously.
To model slow-start behavior we therefore need to
know how many segments are sent between stalls,
how much time each stall wastes, and how many stalls
occur until steady state is reached or transmission
ends.

We originally expected that the number of packets
between each stall would follow a simple exponen-
tial pattern: 1, 2, 4, 8, and so on. Modern TCP
implementations deviate from this behavior for two
reasons. First, in BSD-derived TCP implementa-
tions the ACK of the SYN packet on the HTTP
server opens the congestion window, so the cwnd
for the reply begins at 2. Second, TCP’s delayed-
acknowledgment algorithm normally causes the client
to ACK every other segment, not each segment [19].
Because the congestion window opens per ACK re-
ceived rather than per segment acknowledged, the
slow-start window opens much slower than is usu-
ally assumed. We develop the exact relationship and
review the details of slow-start and delayed acknowl-

no delayed delayed ACK every
stall ACKs ACKs segment
1 2 (2) 2 (2) 2 (2)
2 3 (5) 3 (5) 4 (6)
3 3 (8) 5 (10) 8 (14)
4 6 (14) 8 (18) 16 (30)
5 9 (23) 2 (30) 32 (62)
6 2 (35) 8 (48) 64 (126)
7 8 (53) 27 (75) 128 (254)
8 27 (80) 41 (116) 256 (510)
9 42 (122) 62 (178) 512 (1022)
10 63 (185) 93 (271) 1024 (2046)

Table 5: Number of segments between slow-
start stalls for different acknowledgment poli-
cies. The cumulative number of segments sent
is given in parentheses. These columns represent
€98, da(?) (csegsy, 1,(1)), segsq,(i) (csegsg,(i)), and
segsge(t) (csegsge(i)) from Appendix A, where ¢ is
the stall number.

edgments in Appendix A. Table 5 summarizes our
findings for three different acknowledgment policies.
The rightmost column illustrates our original expec-
tations, the left column shows a lower-bound on slow-
start performance.

Not all the time of each stall is completely wasted:
an increasing part of each stall is spent sending pack-
ets, until cwnd opens past muws. Appendix A quan-
tifies this cost with the formula slowstart pcp. In the
next section we use this result to develop HT'TP over
TCP transaction time.

4.3.2 Performance and discussion

We can summarize the cost of accessing an object via
HTTP over TCP by including the extra round-trip of
the setup and the slow-start costs:

+reqmin

+processing

+replyrop
replyrop = slowstartpop

+replymin

small- medium- large- small- medium- large-

network model page page page cluster cluster cluster
Ethernet TCP 1.13 1.03 1.01 1.17 1.04 1.02
caching 1.13 1.03 1.01 1.06 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
Fast-Ethernet TCP 2.16%* 1.62%* 1.19 2.92% 1.79%* 1.64%*
caching 2.16* 1.62%* 1.19 1.76* 1.19 1.06
ARDP 1.58* 1.36%* 1.11 1.69* 1.37* 1.37*
Slow-Internet TCP 1.50%* 1.13 1.04 1.74% 1.19 1.11
caching 1.50* 1.13 1.04 1.25 1.05 1.01
ARDP 1.22 1.06 1.02 1.32%* 1.08 1.05
Fast-Internet TCP 2.94%* 2.11% 1.36* 4.60%* 2.55% 2.23%
caching 2.94% 2.11% 1.36* 2.84% 1.37* 1.11
ARDP 2.26* 1.79% 1.26%* 3.18%* 2.03* 1.88%*
Modem TCP 1.14 1.03 1.01 1.19 1.05 1.03
caching 1.14 1.03 1.01 1.06 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
ISDN TCP 1.08 1.02 1.00 1.11 1.02 1.01
caching 1.08 1.02 1.00 1.04 1.01 1.00
ARDP 1.00 1.00 1.00 1.00 1.00 1.00
WAN-Modem TCP 1.30%* 1.07 1.02 1.42% 1.10 1.06
caching 1.30%* 1.07 1.02 1.14 1.03 1.01
ARDP 1.11 1.03 1.01 1.16 1.04 1.02
WAN-ISDN TCP 1.49%* 1.13 1.03 1.72% 1.18 1.11
caching 1.49%* 1.13 1.03 1.24 1.05 1.01
ARDP 1.21 1.06 1.01 1.31% 1.08 1.05
ADSL TCP 3.87* 3.12% 1.88%* 6.01% 4.08%* 3.99*
caching 3.37* 3.12% 1.83%* 2.87* 1.67* 1.27*
ARDP 2.56* 2.64* 1.64%* 4.08* 3.10* 3.32%
DirecPC TCP 3.74% 4.44% 3.56* 7.60* 7.57* 9.30*
caching 3.74% 4.44* 3.56* 3.47* 2.35% 1.93*
ARDP 2.82% 3.72% 2.97* 5.10%* 5.75% 7.61%

Table 6: Ratios of predicted protocol transaction times to minimum transaction time for
different protocol models, workloads, and network characteristics. Ratios are for the HTTP over TCP model
(SToP/Smin); HTTP over TCP with connection caching, assuming no cache hit (S ., fe-miss/Smins With
cache hits the performance ratio is always 1); and HTTP over ARDP (S 4ppp/Smin)- Highlighted values
indicate overheads larger than 0.25.

10

The cost of a series of independent requests is then:

Srep = rit+ Y (Tpep(i) —rt) (6)

We can now define the overhead of HTTP over
TCP as:

overhead pp STtopP/Smin (7)

The TCP lines of Table 6 show overheadpop
(given by Equation 7) for a variety of workloads and
network characteristics (we describe the other lines of
this table in the following sections). To highlight sig-
nificant overhead we indicate ratios higher than 1.25
with italics.

We can draw several conclusions from these results.
First, overhead for the Ethernet, modem, and ISDN
networks is reasonable (less than 25% overhead) for
all workloads (although adding WAN delays raises
small-page and small-cluster overheads to significant
levels). These networks have a muws at most 2 and so
do not pay any slow-start penalty. The extra round-
trip cost of the three-way handshake is proportionally
largest for short responses, but even there, overhead
is less than 25%.

On the other hand, network such as Fast-Ethernet,
Fast-Internet, ADSL, and DirecPC have substantially
higher overheads because they have much higher
muws sizes. The high bandwidth—delay product of
these networks requires 7-128 segments in-transit to
fill the communications “pipe”; for small files, sub-
stantial time is spent waiting for packet acknowledg-
ments. These overheads are most pronounced when
smaller workloads are processed, since larger work-
loads are able to expand the congestion window and
amortize the connection setup cost over the duration
of the connection.

Local-area networks behave differently than wide-
area networks in two ways that affect performance.
First, many TCP implementations disable slow-start
on LANs where congestion control is done at the link
layer. Second, most LANs allow TCP segments much
larger than are typical in WANs (1460 bytes instead
of 512 or 536 bytes), although wide deployment of

11

\
\ \\\
\\§

Figure 2: TCP congestion avoidance over-
head for various bandwidth—delay products
(STcop/Smin), for a 512B segment size and the
small-cluster workload.

path-MTU discovery supports larger WAN segment
size [20]. An interesting observation is that employ-
ing slow-start does not substantially affect perfor-
mance over 10Mb/s Ethernet because large segment-
size and low round-trip time result in a small muws.

To explore the effects of these overheads for a wider
variety of network characteristics, Figure 2 examines
a single workload (the small-cluster workload) with a
fixed segment size (512B) and a range of bandwidths
and round-trip times.

Again, we observe in this graph that overhead is
fairly low when the bandwidth—delay product (and so
muws) is small, either because of small bandwidths or
small round-trip-times. Overhead rises sharply when
the product of these values grows. Finally, overhead
tops out at about 9 times the minimal transfer time.

This workload-dependent limit indicates network
characteristics where all transmission time for all
transactions is spent in the slow-start realm. (For
the medium-cluster case the maximum possible over-
head is about 16 times minimal, for large-cluster it is
about 55 times minimal.)

Note that these high overheads occur only when

the bandwidth—delay product is very large, as in a
satellite connection. It is well known that TCP is
not the best protocol for such situations. When either
bandwidth is low or delay is very low, TCP performs
much better.

4.4 HTTP over TCP with connection
caching

P-HTTP [10] has been proposed as a solution to
several problems resulting from running HTTP over
TCP, and persistent connections are part of the
HTTP/1.1 standard [4]. P-HTTP reuses a single
TCP connection to amortize connection setup and
congestion avoidance costs across several HTTP re-
quests. When a transaction is completed, the TCP
connection is left open for subsequent transactions.
This connection is reused for subsequent requests; it
will be closed if server or client demand is high, or
when idle for a given length of time.

Stevens has suggested the use of T/TCP for HTTP
traffic [16]. T/TCP [9] is an extension of TCP
enhanced to support transactions. T/TCP caches
TCP connection setup information so that subse-
quent TCP connections avoid the three-way hand-
shake and reduce slow-start cost. Thus, like P-
HTTP, T/TCP pays the full cost of TCP setup for
the first connection and avoids setup costs for subse-
quent connections. Cached T/TCP information will
be flushed using algorithms similar to those for break-
ing P-HTTP connections (for example, using a least-
recently used or a periodic time-out).

Although P-HTTP provides connection caching at
the user level and T/TCP does so in the kernel, a
series of requests in either protocol performs iden-
tically (at the level of detail we consider here). In
each protocol the first request pays the full cost to
open a standard TCP connection, but subsequent
requests avoid the three-way-handshake and con-
tinue to develop the slow-start window. We there-
fore model these protocols together as “HTTP over
caching TCP” protocols.

There are two possible costs for caching protocols,
with and without cache hits:

12

Tcache—miss

Trop (8)

T

min

Teoche-hit 9)

In a series of requests to a new server the first will
always be a miss and subsequent requests will usually
be hits.

To quantify a series of requests we make the sim-
plifying assumption that after the first exchange
the congestion window will be completely opened.
For the purpose of our model, the congestion win-
dow is fully opened when cwnd > muws, since
opening the window further will not impact perfor-
mance. Therefore, for our assumption to be true,
cwnd(stalls([replyg;,o/mss|)) > muws after the first
exchange, where reply,, .. is the size of the first reply
from the server. (We analyze cwnd and stalls in Ap-
pendix A.) Our workloads satisfy this assumption for
the networks listed in Table 2 satisfy this assumption.

Given this assumption, all requests after the first
will be cache hits under conditions of normal load
(under high load the client or server may terminate
connections causing additional cache misses). The
first request may or may not be a cache hit depending
on the user’s browsing pattern and server load. We
therefore define two formulas for series of independent
accesses, one assuming that the first request is a cache
hit and one assuming that it’s not:

Sﬁrst—miss T¢oche-miss(1) (10)
n
+ Z(Tcache-hit(i) — rtt)
i=2
n
Sﬁrst-hit rtt + Z(Tcache-hit(i) — rtt) (11)
i=1
Smin

Finally, overhead is again:

overheadgy.oy miss = Sﬁrst—miss/smm (12)

Overheadﬁrst—hit Sﬁrst_hit/smm (13)

=1

The caching lines of Table 6 show the perfor-
mance results of our workloads assuming that the
first web page access does not use a cached connec-
tion (Overheadﬁrst—miss in Equation 12). Note that
for the cluster workloads, accesses after the first are
cache hits.

Several observations about HTTP over connection-
caching TCP protocols are apparent from this table.
First, HTTP over caching TCP performance is the
same as standard HTTP over TCP performance for
single page queries. Second, caching-TCP perfor-
mance is somewhat better than standard TCP for
the cluster cases because connections after the first
need not pay for three-way handshake or slow-start.
We explore this relationship further in Section 6. Fi-
nally, overhead is still high for the Fast-Ethernet and
Fast-Internet cases with cluster workloads. In these
cases, the large bandwidth—delay product results in
significant overhead while the congestion window is
opened even when amortized over an entire series of
connections.

Finally, if we assume that the first transaction
results in a cache-hit for a caching-TCP protocol
(Equation 13), then caching-TCP has no overhead.
Thus, when caches last long enough to encompass ac-
cess of multiple clusters, caching protocols are very
helpful. Implementation issues can limit this benefit,
however [21].

4.5 HTTP over Multiple, Concurrent
TCP Connections

Many web browsers open multiple concurrent con-
nections to mitigate TCP start-up costs (HTTP over
parallel connections). We can bound their perfor-
mance by HTTP over TCP with and without con-
nection caching. Our HTTP-over-TCP model over-
estimates transmission time by not considering paral-
lelism in the concurrent slow-start of each connection.
HTTP over connection caching underestimates trans-
mission time by assuming that there is no penalty

13

for slow-starts of later requests in a cluster. A better
approximation might be obtained by treating rit as
if it were rtt/n, for n concurrent connections. Com-
pletely specifying behavior with multiple parallel con-
nections is an area of continuing work.

4.6 HTTP over UDP-Based
Protocols

Since web access is typically request—response ori-
ented, we examine the performance of HTTP over
a request-response style protocol such as ARDP.
ARDP avoids TCP’s three-way handshake, while
it keeps TCP’s slow-start algorithm for congestion
avoidance. Therefore, the time to complete a HTTP
transaction over ARDP is:

rtt
+treqdARDP

+processing
+T’eplyARDP

Te9min
= slowstart TCP

+replyg; e/ bw

TyrDP (14)

TEIARDP
reply s\RDP

The total time to complete a series of independent
HTTP requests is given by:

SArpp = rtt+ Y (TAgpp(i)—rtt) (15)

i=1

and the overhead by

overhead gqppp = SARDP/Smin (16)

The ARDP lines of Table 6 show overhead 4 ppp
(Equation 16 for the different workloads and network
characteristics). Note that for the Ethernet, modem,
and ISDN networks, HTTP transactions over ARDP
result in minimal transaction times. This confirms
that because of their small maximum useful window
size (muws), these networks do not pay any slow-start
penalty.

On the other hand, ARDP’s overhead becomes no-
ticeable in the higher bandwidth—delay-product cases
(Fast-Ethernet, both Internets, ADSL and DirecPC).
ARDP also incurs higher overhead than TCP with
connection caching for the cluster workloads. This
overhead is due to the fact that ARDP always slow-
starts, while caching the connection setup parameters
allows the caching protocols to avoid slow-start every
time.

Avoiding the three-way handshake is especially
helpful for single, brief request-response interac-
tions. For a series of requests to the same server,
though, ARDP performance suffers because we do
not cache congestion information between calls. As
a result of this observation we plan to provide simple
congestion-information caching in a future version of
ARDP.

5 Validation

To relate the analytic results of the prior section to
real-world performance we next validate them using
traces of actual HTTP traffic. This validation has
three goals: first, to show that we model aspects
of the protocol relevant to performance. Second, to
show that comparisons between the modeled proto-
cols are valid. Finally, we will look for areas where
implementations can be improved.

Since it would be impractical to validate each of
the 150 combinations of workload, network, and the
protocols described in this paper, we instead consider
only four cases: HT'TP over simple and caching TCP
transport protocols with the small-cluster workload
and Ethernet and Fast-Internet networks.

5.1 Methodology

Our experiments consisted of the four combinations
of Ethernet and Fast-Internet networks and HTTP
over simple and caching TCP protocols. In all cases
our server computer was a Sun SPARC model 20/71
running SunOS 4.1.3 with some TCP/IP modifi-
cations (IP-multicast support and a 16KB default
TCP window size). We describe server software and
client hardware configurations below. In all cases our

14

HTTP client was a custom-written Perl script retriev-
ing the small-cluster workload.!! We also logged all
relevant TCP traffic on the server’s network.

For experiments over Ethernet, the client computer
was a Sun4-20/71 identical to the server. These com-
puters were connected by a dedicated 10Mb/s Ether-
net. Note that SunOS bypasses TCP slow-start when
both computers are on the same physical network.
We wanted to measure the effects of standard TCP
in a high-bandwidth, low-latency environment rather
than that of a particular TCP implementation, so we
removed this optimization for our experiments.

For the Fast-Internet experiments the client com-
puter was a Sun SPARC-20 running unmodified
SunOS 4.1.3. Measurements between the server (lo-
cated in Los Angeles) and the client (in Washing-
ton, D.C.) were taken over the Internet with evening
(U.S. West-coast time) background traffic present.
Average round-trip time was 133ms and bandwidth
was 0.734Mb/s (as measured by repeated FTP of a
1.5MB file) over the 11 hops between the client and
our server at ISL

Our implementation of HTTP over simple TCP
was HTTP/1.0 with an Apache 1.0.5 server. The
client made HTTP/1.0-style requests.

For HTTP over caching TCP protocols we used
the fourth beta version of Apache 1.1 with some
modifications. This server implements “keep-alive”
HTTP connections, an experimental implementa-
tion of persistent connection HTTP (abbreviated
HTTP/1.0+KA) similar in character to persistent
connections recently standardized as HTTP/1.1 [4].
This server was slightly modified to avoid two in-
teractions between P-HTTP and TCP which sub-
stantially reduce performance [21]. Our client
made HTTP/1.0-style requests with the “Connec-
tion: Keep-Alive” header; the server returned MIME-
style headers and page contents with page size deter-
mined by the Content-Length header.

11 Although the program is interpreted, we have verified that
it can saturate our Ethernet and so does not pose a perfor-
mance bottleneck.

5.2 Slow-Start Validation

We have observed that a key aspect of HTTP over
TCP performance is slow-start behavior. Slow-start
performance is dependent upon the client’s ACK
rate; when a client acknowledges every other segment
with delayed acknowledgments the congestion win-
dow opens much more slowly than if every segment
is explicitly acknowledged. Table 5 summarizes these
effects based upon bounds of the slow-start rate de-
veloped in Appendix A.

To validate that our bounds on the slow-start rate
are accurate, we examined a number of packet traces
of HTTP over caching TCP (HTTP/1.0+KA) and
FTP traffic between Los Angeles and Washington,
D.C., hosts. Figure 3 shows a representative plot
of the packets exchanged for the HTTP/1.0+KA re-
quests for the small-cluster workload. As can be seen
from this graph, the round-trip time is about 133ms
and the client acknowledges every other packet. From
the pattern of ACKs we can infer that no timeout-
induced delayed acknowledgments occurred in these
transactions.

To validate our slow-start model we will exam-
ine two parts of the total exchange, the first request
(from time 0 to 0.7s) and the second (from 0.7 to
0.9s).

In the first request we see the pattern predicted by
the no-delayed-acknowledgment analysis of Table 5:
2, 3, 3, and 6 segments, each with an ~ 1 rtt de-
lay stall between them. (Note that in the 6-segment
stall the sixth segment advances the sequence num-
ber by only 19 bytes and so is plotted nearly on top of
the fifth segment, and that the ack for this segment
was piggybacked on the next request.) From this we
conclude that, in the absence of delayed acknowledg-
ments, we correctly predict segments per stall.

In BSD implementations of TCP the delayed ACK
timer fires every 200ms, independent of packet ar-
rival. We expect that delayed ACKs will speed up
opening of the slow-start window by causing occa-
sional single-segment ACKs instead of delays until
two packets have been received. In practice we ob-
serve that delayed ACKs sometimes alter both the
pattern of packet transmission between stalls and the
stall delay. For the small-cluster workload, delayed

15

ACKs seem to have little effect on overall perfor-
mance.

In the second request we see back-to-back trans-
mission of all nine segments (again, the final segment
is short and is obscured by the previous segment on
the plot). This behavior is consistent with our model
of the congestion window; the window started at two
and was opened by one for each of the seven acknowl-
edgments received.

Based on analysis of packet traces from which
these examples are drawn we conclude that our lower
bound for segments-per-stall is accurate assuming
that no delayed ACKs are triggered.

5.3 Model Adjustments

Our model focuses on transport-layer issues and
therefore makes several simplifying assumptions
about client and server software. To validate our
results we must account for these assumptions. In
particular:

server processing-time Our basic model assumes
zero processing-time. In our experiments we ob-
serve an average 3.7ms server processing-time,
so we must add 3.7ms per page to our adjusted
model.

request independence Our basic model assumes
that all requests are independent. Unlike mod-
ern browsers, our simple client is not multi-
threaded and so issues dependent requests (as
described in Section 3.2). We can see two such
stalls (marked “dependent delay”) in Figure 3.
We correct for this artifact by adding 1 rtt delay
per page after the first.

inexact bandwidths Our basic model assumed
that Fast-Internet bandwidth was 1Mb/s with
89ms rtt. We selected these characteristics to
emulate experimental characteristics of other re-
searchers. Our validation experiments instead
observed a bandwidth of 0.734 Mb/s and a rtt
of 133ms; we correct for this using observed net-
work characteristics in our revised estimate.

i .
. irst request = second third
request request
I I I
X
12000 | dependent delays X =
request O ‘ X
data X X ¢
10000 | X _
7 ack © X ©
g X
a X o
£ 800 | X]
= X <
g stall 3 X
g X
c 6000 | X <o —
8 tall 2 X
stal
5 X o
% X
3 4000 | stall 1 X (o] —]
X
handshake X <o
|le———» X
2000 | X [V n
X
X <o
X
0 l g | | | | | 10 | m |
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 09 1

time since first SYN (in seconds)

Figure 3: A packet trace of the HTTP over caching TCP (HTTP/1.0+KA) requests for the

small-cluster workload.

Table 7 shows our original predictions and our pre-
dictions adjusted for these factors. We interpret these
results in the next section.

Finally, our model assumes no packet loss. We be-
lieve that we experienced no packet loss in our Eth-
ernet experiments and loss in only one of the fast-
Internet transactions. Packet loss depends heavily on
congestion. Because packet loss is detected by time-
out and causes re-evaluation of congestion control,
even low packet loss rates can cause measured val-
ues substantially longer than predicted by our model.
In such cases, connection setup costs would likely be
overwhelmed by loss-recovery, and therefore, the ben-
efits of connection caching protocols less noticeable.

5.4 Model Validation and Discussion

We undertook this validation with two goals: to com-
pare our analysis to reality and to insure that com-
parisons among our analytic results are valid. We
evaluate these goals below. In addition, in the pro-
cess of validation we found several interactions be-

tween P-HTTP and TCP which substantially reduce
performance.

Except for the case of HTTP/1.0 over Ethernet,
our validation suggests that the model, when ad-
justed, is accurate within 5% of measured values.
The HTTP /1.0 over Ethernet case shows a discrep-
ancy of about 40%. A high bandwidth and low de-
lay link (like Ethernet) makes modeled network over-
head small, so other kinds of overheads (which are
not modeled) can be noticeable. Furthermore, the
modeled overhead is very sensitive to latency at high
bandwidths as is shown in Figures 2 and Figure 4.

Another source of error in our model results from
interactions between the application-level behavior
and the underlying TCP implementation. In the
course of validation we found two such interactions
that crippled HTTP/1.0+KA performance [21]. In
both cases, packets shorter than maximum-segment-
size caused our TCP connection to wait for a de-
layed acknowledgment, stalling data transfer for up
to 200ms. We worked around both these prob-
lems with small application-level changes, eliminat-

16

prediction ratio
protocol implement. network basic adjusted measured m:a
TCP HTTP/1.0 Ethernet 12.8ms 26.8ms 36.8ms(10ms, +2.0ms) 1.37
caching-TCP HTTP/1.0+KA Ethernet 11.4 25.4 26.6 (8.8, £1.7) 1.05
TCP HTTP/1.0 Fast-Internet 977 1730 1716 (101, £20.1) 0.99
caching-TCP HTTP/1.0+KA Fast-Internet 536 1070 1103 (48, £9.5) 1.03

Table 7: Validation experiments for our models. All experiments used the small-cluster workload.
Basic indicates our basic (unadjusted) model, adjusted is the model corrected as described in Section 5.3,
measured indicates the average over 100 trials with the standard deviation and 95% confidence intervals
given in parentheses, ratio m:a shows the ratio of measured to prediction/adjusted times.

ing these sources of error. Other interactions be-
tween the application-level interface and our TCP
implementation result in the transmission of short
segments. We do not believe that this interaction
causes the catastrophic performance loss observed in
the other interactions, but it is a source of some
model error.

We believe that our second goal has also been met:
valid comparisons of what is modeled can be made
between the protocols. The Ethernet case suggests
that care must be taken when transaction time is
small (say, less than 50ms), but the performance of
wide-area HTTP exchanges is dominated by network
protocol behavior described in our model. Since the
models capture the essence of performance in such
networks, comparisons between the models should
correspond to comparisons between the protocols op-
erating in actual networks.

5.5 Additional Validation

A recent technical note by the World-Wide Web Con-
sortium has suggested that pipelining substantially
reduces packet counts for HTTP/1.1 [14]. We call
the resulting protocol persistent-connection HTTP
with pipelining, abbreviated HTTP/1.1+P. A com-
parison of their results with our model’s predictions
is particularly interesting both because their observa-
tions are made with different client and server soft-
ware and because they have optimized the buffering
of their system to improve performance. This com-
parison provides an additional level of validation of
our model.

17

Their experiments compare first-fetch and the
cache validation of a 42KB web page with 41 em-
bedded images totalling 125KB. They examined per-
formance for three networks: high bandwidth, low
latency; high bandwidth, high latency; and low band-
width, high latency. These nearly match our Ether-
net, Fast-Internet, and Modem results and are shown
in Table 2 as N-Ethernet, N-Fast-Internet, and N-
Modem, although each case used a 1460B mss. (We
estimated bandwidth for N-Fast-Internet based on
examination of their traces; they presented band-
widths and rtts for the other cases.) They consid-
ered four protocols: HTTP /1.0 with multiple parallel
connections, HT'TP /1.1, HTTP/1.1 with pipelining,
and HTTP/1.1 with pipelining and compression. We
consider only the case of HT'TP/1.1 with pipelining,
designating it HTTP/1.14+P. (We did not consider
HTTP/1.0 because we do not model parallel connec-
tions, HTTP/1.1 because of the buffering problems
they experienced, and HTTP /1.1 with pipelining and
compression because we do not model compression.)
Their client software was either a custom robot in the
cases we consider. Their server software was either
Apache or Jigsaw. A complete description of their
methodology can be found in their technical note [14].

Table 8 summarizes the results of their measure-
ments and our predictions. The adjusted portion
of the prediction corresponds to addition of a 3.7ms
server processing time.

The N-Ethernet and N-Fast-Internet cases show
substantial discrepancy from our predicted values.
We do not have enough information about their
traces to understand the discrepancy for the N-

prediction ratio
protocol implement. network server basic adjusted measurement m:a
caching-TCP HTTP/1.14P N-Ethernet Jigsaw 160ms 316ms 690ms 2.18
caching-TCP HTTP/1.1+P N-Ethernet Apache 160 316 520 1.64
caching-TCP HTTP/1.1+P N-Fast-Internet Jigsaw 1470 1620 2860 / 1860 1.77 / 1.15
caching-TCP HTTP/1.14+P N-Fast-Internet Apache 1470 1620 3500 / 2419 2.16 / 1.49
caching-TCP HTTP/1.1+4P N-Modem Jigsaw 49600 49800 52810 1.06
caching-TCP HTTP/1.1+4P N-Modem Apache 49600 49800 52360 1.05

Table 8: Additional validation experiments for our models. These experiments use the workload
described in Section 5.5. Basic indicates our basic (unadjusted) model, adjusted is the model adjusted for
processing time, measurement indicates performance as measured in [14] with two values for N-Fast-Internet
as described in Section 5.5, ratio m:a shows the ratio of the measurement to prediction/adjusted.

Ethernet case at this time, although, as described in
Section 5.4, in LANs, per-packet processing (which is
not considered in our model) can overwhelm connec-
tion startup costs.

For the N-Fast-Internet case we also found sub-
stantial discrepancy (1.77-2.16 times slower perfor-
mance than predicted). Examination of their traces
for this network configuration shows a consistent stall
of about 1 second following the third segment of the
reply. We believe that this stall is due to an in-
teraction between a short TCP segment and TCP
silly-window avoidance [22] similar to the odd/short-
final-segment problem we encountered in our experi-
ments [21]. If so, this interaction can be avoided by
appropriate buffering. We correct for it by subtract-
ing 1 second from the measured times. With this
correction our model is much closer to the measured
values which are 1.15-1.49 times slower.

For the N-Modem case the prediction corresponds
closely to observed performance. These experiments
corroborate our validation, suggesting that although
our models can be inaccurate when applied to LANs,
they can provide guidance to protocol designers for
wide-area and low-bandwidth network conditions.
We also note that models can provide a useful “san-
ity check” against observed performance and led us to
investigate the anomaly in the N-Fast-Internet case.

18

6 Protocol Discussion

We have presented analytic models for HTTP over
several transport protocols and demonstrated that,
with care, these models can be applied to current
as well as future network characteristics. From this
work we can draw several conclusions about the inter-
actions between HTTP and different transport pro-
tocols.

First, HTTP over TCP overhead is fairly low un-
der networking characteristics today. Figure 4 shows
a contour plot of TCP overhead for various network
characteristics for the small-cluster workload. In this
two-dimensional representation of the graph of Fig-
ure 2 we solve for overhead (S7op/Spin) for a set
of representative points and employ linear interpola-
tion between them. We show contour lines at every
50% increase in overhead. Of networking technolo-
gies deployed today, only the Fast-Internet case shows
substantial overhead. Modem and ISDN technologies
used for the “last mile” of the Internet today show
moderate overhead when coupled with wide-area la-
tency, but little overhead if the server is nearby.

Second, TCP overhead becomes significant when
the bandwidth—delay product rises. Again referring
to Figure 4, the fast-Internet performance shows sub-
stantial room for improvement (current performance
is 5.20 times slower than the theoretically minimal
transfer time), as do developing last-mile technolo-
gies such as ADSL and DirecPC!2.

12The DirecPC region falls out of scale and is not shown in

03 |-

0.25 -

0.15 -

latency (sec)

0.05

\: Fast-Ethernet
le+07 1le+08

0
10000 100000 1e+06
bandwidth (bps)

Figure 4: Predicted overheads of HTTP over TCP relative to minimum possible costs. The
two axes show primary network parameters bw and rtt; segment size and workload are fixed at 512 and
small-cluster, respectively. Contour lines show the surface corresponding to TCP overhead (S7cp/Smin)i
solid lines are a factor of 1, dashed lines 0.5 times minimum. Label centers indicate bandwidth and latency
points corresponding to the sample networks described in the text.

19

In these cases HT'TP optimizations become impor-
tant. Figure 5 shows the advantage of connection-
caching protocols in different network configurations.
In this graph, the long dashed line shows when
standard HTTP takes 1.5 times as long as caching
protocols, while dotted lines show intervals of 0.1.
As can be seen, performance is marginally better
in many cases (Modem, ISDN, and Slow-Internet);
caching protocols are 80% faster only when presented
with network characteristics similar to Fast-Internet
(moderate bandwidth and latency), ADSL (high-
bandwidth, low-latency), or DirecPC (high band-
width and latency). The performance improvement
always approaches a workload-dependent limit as
the bandwidth—delay product rises; in this case the
asymptote is 2, the ratio of 8:4 (non-caching:caching)
round-trip delays.

A recent technical note by W3C has suggested
that pipelining substantially reduces packet counts
for persistent-connection HTTP [14]. Although they
substantially reduce packet counts, their measure-
ments of elapsed times support the conclusion that
HTTP over caching-TCP protocols offer compara-
tively modest performance improvements over low-
bandwidth—delay connections today but can provide
substantial improvement when conditions approach
the Fast-Internet case.

We note that our model can be used to predict
HTTP performance for network technologies only
now being deployed such as ADSL and DirecPC. The
ability to vary workload and network characteristics
is important here.

Finally, our protocol analysis has influenced de-
sign of UDP-based protocols at ISI. We are cur-
rently in the process of adapting ARDP to use TCP-
like congestion avoidance algorithms. As a result of
this study we have concluded that ARDP must cache
information about recent congestion window behav-
ior to provide good performance for large request—
response exchanges.

the graph.

7 Conclusions and Future
Work

This work makes three contributions to the study of
HTTP. First, we have developed a simple analytic
model for HTTP performance over different networks
and transport protocols. Second, we have used this
model to compare the relative performance of exist-
ing protocols for various network characteristics and
workloads. Finally, this model has given us insight
into the needs of request-response-style protocols.

Our analytic model of request-response perfor-
mance is important both because it allows compari-
son of existing protocols under current network char-
acteristics and because it allows prediction of proto-
col performance under future networking and work-
load characteristics. Our model predicts web perfor-
mance within 5% of measured values for wide-area
traffic. For networks with high bandwidth and low
delay it becomes less accurate as non-modeled costs
become noticeable. With this caveat, we believe that
the model can be an effective means of comparing
different protocols at a given network configuration
and across different network characteristics.

In addition to providing a model useful for HTTP,
our analysis of slow-start behavior applies to other
uses of TCP where transient behavior cannot be ig-
nored. Applications might include RPC-systems, and
transfer of short e-mail messages or FTP of short files.

By applying our model to existing protocols and
networks we were able to draw several conclusions
about their behavior. We confirmed that TCP over-
head is low when the bandwidth—delay product is
low. In the Ethernet, modem, and ISDN cases over-
head was consistently less than 25% for our work-
loads. Even when latency rose to WAN levels, mo-
dem and ISDN overhead was only moderate for cer-
tain workloads. We demonstrated that overhead was
very significant when the bandwidth—delay product
was large.

Connection caching protocols reduce overhead for
the cluster cases (where a cluster represents the text
and images that make up a single web page); we
therefore conclude that these protocols will be useful
even if users visit only single “pages” on sites before

20

osl 11123 14186 17 18 19 ' i
: B Vo B Vo B B B
0.25 - Modém' \ R
\\
0.2 i \ B
g Lo
3 : SR
- . Slow-Internet
) \o
g 015 \ R
9] : oA
® : LAY
" WAN:ISDN;
01 [' E
. Fastinternet
0.05 1
ADSL
0 | | X Ethqrnet | _Fast-Efhernet
10000 100000 1le+06 le+07
bandwidth (bps)

1le+08
Figure 5: Predicted ratio of HTTP over TCP to HTTP over caching TCP, assuming no
initial connection caching. The two axes show primary network parameters bw and rtt; segment size

and workload are fixed at 512 and small-cluster, respectively. Contour lines show the surface corresponding
to the ratio STCP/Sﬁrst—miss; long dashed lines are a factor of 0.5; fine dashed lines, 0.1. Label centers

indicate bandwidth and latency points corresponding to the sample networks described in the text.

21

changing servers.

Finally, validation of our model has led to in-
sight into request-response protocol design and sug-
gested several areas for future work. Validation of
these experiments have detected interactions between
application- and kernel-level networking that sub-
stantially reduce performance [21].

A broader question is how to optimize TCP for
brief, request-response-style traffic. We are currently
exploring two approaches to this problem. We are
examining how TCP congestion-control information
should be initialized for multiple connections sepa-
rated by space or time [23]; this work investigates
alternatives to divide bandwidth among existing and
new connections and for reusing cached congestion
information. Given a large initial window, we are in-
vestigating how a rate-limited addition to slow-start
can prevent overloading intermediate routers [21].

We have generalized our experiences with TCP
to other transport protocols. We have also found
that the performance of protocols that fail to
cache congestion-control information suffers in high-
bandwidth—delay conditions, and have modified our
design for ARDP accordingly.

Acknowledgments

We would like to thank Kedar Jog for his early work
on our HTTP benchmarking scripts. The authors
would like to thank Ted Faber for his discussions
about web performance analysis, and B. Clifford Neu-
man, Rod Van Meter, Steven Augart, Brian Tung,
Geoff Kuenning, Joseph Bannister, Jon Postel, and
the anonymous referees for comments about the pa-
per. Finally, we are grateful to Allison Mankin,
Dante DeLucia, and B. Clifford Neuman for access
to computer facilities for our cross-Internet measure-
ments.

Software Availability
We plan to make the software used in the validation

of these measurements available, including the HT'TP
benchmarking programs and the programs used to

22

evaluate the models. Please contact the authors for
details, or watch (http://www.isi.edu/lsam/).

References

[1] T. Berners-Lee, R. Cailliae, A. Luotonen, H. F.
Nielsen, and A. Secret, “The World-Wide Web,”
Communications of the ACM, vol. 37, pp. 76-82,
Aug. 1994.

[2] V. Paxson, “Empirically-derived analytic models of
wide-area TCP connections,” ACM/IEEE Transac-
tions on Networking, vol. 2, pp. 316-336, Aug. 1994.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hy-
pertext transfer protocol—HTTP/1.0,” RFC 1945,
Internet Request For Comments, May 1995.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
and T. Berners-Lee, “Hypertext transfer protocol—
HTTP/1.1,” RFC 2068, Internet Request For Com-
ments, Jan. 1997.

[6] V. Jacobson, “Congestion avoidance and control,”
in Proceedings of the SIGCOMM ’88, pp. 314-329,
ACM, Aug. 1988.

[6] C. Cunha, A. Bestavros, and M. Crovella, “Charac-
teristics of WWW client-based traces,” Tech. Rep.
95-010, Boston University, Apr. 1995.

[7] J. Touch, “Defining ‘high speed’ protocols : Five
challenges and an example that survives the chal-
lenges,” IEEE Journal of Selected Areas in Commu-
nication, vol. 13, pp. 828-835, June 1995.

[8] M. F. Arlitt and C. L. Williamson, “Web server
workload characterization: The search for invari-
ants,” in Proceedings of the ACM SIGMETRICS,
pp. 126-137, ACM, May 1996.

[9] R. Braden, “Extending TCP for transactions—
concepts,” RFC 1379, Internet Request For Com-
ments, Nov. 1992.

[10] V. N. Padmanabhan and J. C. Mogul, “Improving
HTTP latency,” in Proceedings of the Second Inter-

national World Wide Web Conference, Oct. 1994.

J. Touch, J. Heidemann, and K. Obraczka, “Anal-
ysis of HTTP performance.” Released as web
page http://www.isi.edu/lsam/publications-
/http-perf/, Currently submitted for publication,
June 1996.

[11]

[12] J. C. Mogul, “The case for persistent-connection
HTTP,” in Proceedings of the SIGCOMM ’95,
pp- 299-313, ACM, Aug. 1995.

S. E. Spero, “Analysis of HTTP performance prob-
lems.” http://sunsite.unc.edu/mdma-release/http-
prob.html, 1995.

H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. W. Lie, and C. Lilley,
“Network performance effects of HTTP/1.1, CSS1,
and PNG.” NOTE-pipelining-970207, available
as web page http://www.w3.org/pub/WWW/-
Protocols/HTTP/Performance/Pipeline.html, 7
February 1997.

R. Braden, “T/TCP—TCP extensions for transac-
tions functional specification,” RFC 1644, Internet
Request For Comments, July 1994.

W. R. Stevens, TCP/IP Illustrated, vol. 3. Addison-
Wesley, 1996.

B. C. Neuman, The Virtual System Model: A Scal-
able Approach to Organizing Large Systems. Ph.D.
dissertation, University of Washington, 1992.

D. DeLucia, “Direcpc performance.” Personal com-
munication., Oct. 1996.

R. Braden, “Requirements for Internet hosts—
communication layers,” RFC 1122 Internet Request
For Comments, Oct. 1989.

J. Mogul and S. Deering, “Path MTU discovery,”
RFC 1191, Internet Request For Comments, Nov.
1990.

J. Heidemann, “Performance interactions between
P-HTTP and TCP implementations,” ACM Com-
puter Communication Review, vol. 27, pp. 65-73,
Apr. 1997.

[22] D.D. Clark, “Window and acknowlegement strategy
in TCP,” RFC 813, Internet Request For Comments,

July 1982.

[23] J. Touch, “TCP control block interdependence,”
RFC 2140, Internet Request For Comments, Apr.

1997.

[24] S. Shenker, L. Zhang, and D. D. Clark, “Some obser-
vations on the dynamics of a congestion control al-
gorithm,” ACM Computer Communication Review,

vol. 20, pp. 30-39, Oct. 1990.

23

A The TCP Slow-Start
Algorithm in Detail

As described in Section 4.3.1, the TCP slow-start
algorithm limits transmission by congestion window
(cwnd) when a connection begins. Table 5 summa-
rizes our analysis of slow-start performance. This
appendix looks at the details behind this table, both
the rate at which the congestion window opens and
the amount of time spent waiting.

A.1 The slow-start rate

The basic slow-start algorithm (as presented in Ja-
cobson [5]) is that the cwnd begins at one segment
worth of data and then is increased by an additional
segment for each ACK received. This algorithm re-
sults in an exponential increase in cwnd; when cwnd
reaches a threshold (ssthresh, initialized to 64KB),
this increase is slowed to linear (1/cwnd per ACK
received). The exact rate of this exponential is de-
pendent on the receiver’s acknowledgment rate and
will be bounded by muws. In this appendix we as-
sume infinite muws and ssthresh and examine the ef-
fect of different acknowledgment rates. We also con-
tinue with the assumptions used in the rest of the
paper: connection bandwidth and rtt are stable over
the length of the connection and packet loss does not
occur. In a real system, cwnd growth will be limited
by packet loss due to congestion, buffer overflow, or
connection window size.

We can therefore divide TCP behavior into a pe-
riod consisting of a series of transmitted segments
followed by a stall.!®> Formally, we define segs(i) to
be the number of segments sent in the it period.
To derive segs(i) we will use cwnd(i), the congestion
window at the beginning of the period (measured in
segments), acks(i), the number of acknowledgment
messages sent in response to segs(i), and unacked(i),
the number of unacknowledged segments in period 1.
The number of segments sent in period ¢ is given by
the following recurrence relation:

13Since segments are sent only in response to an ACK, seg-
ments tend to be sent back-to-back (this behavior was first
noted by Shenker, Zhang and Clark in simulation experi-
ments [24]).

segs(t) = cwnd(i) — unacked(q) (17)
where,
cund(i) = cwnd(i—1)+ acks(i —1) (18)
cund(l) = 2

Our goal is to determine how many stalls occur
when sending a given number of packets. The cumu-
lative number of segments sent is helpful:

csegs(i) = Zsegs(i)

These formulae specify the sender-side aspects of
slow-start. The receiver influences slow-start by its
ACK rate. We will indicate the client’s ACK policy
with subscripts. For a client that acknowledges each
packet,

acksae(i) = segsge(?)
unackedge(i) = 0
so from Equations 17 and 18,
segsqe(t) = cwndge(?)
cundge(i) = cwndge(t — 1) + acksge(i — 1)
cundge(l) = 2

The recurrence relation for segsqe(:) simplifies to
the familiar exponential:

= 92

segsqe(t)

The fourth column of Table 5 shows sample values
of segsge(t) and csegsge(i), the cumulative number

24

of segments sent when clients acknowledge every seg-
ment.

These equations describe TCP behavior for older
(4.3BSD-Tahoe) implementations; modern imple-
mentations implement delayed acknowledgments [19].

A.2 Delayed Acknowledgments

TCP implementations with delayed ACKs send
ACKs only after receipt of two full-size segments or
a delay of up to a half-second. (Most BSD-derived
implementations limit this delay to 200ms.) This ap-
proach avoids ACKs for many short segments while
preserving TCP ACK-clocking. It risks transient ef-
fects in data-stream start-up [21], and it also reduces
the rate of cwnd growth.

We can place a lower-bound on the ACK rate by
assuming that delayed ACKs never occur (or that
they occur only when all segments have been ac-
knowledged). If we assume that delayed ACKs were
timed from receipt of the last (odd) packet, and if the
rtt was less than the delay, then delayed acknowledg-
ments will never trigger. We adjust for this in our
recurrence by halving the number of ACKs per stall,
rounding and carrying over appropriately:

. segs,, 1-(1) + unacked, ;. (i — 1)
acks, go(i) = { nda > nda
unacked,, ;,(0) = 0
unacked,, ;,(i) = segs,1,(i) + unacked,, j,(i — 1)

— acksyg,(i) x 2

Again, from Equations 17 and 18,

segs,da(i) = cwndy, ,(i) — unacked,, j,(7)
cwnd,, 7,() cwndy, 7,(i — 1) + acks,, ,(i — 1)
cundyg,(1) = 2

The effects of this algorithm on slow-start perfor-
mance are illustrated in the second column of Ta-
ble 5, with csegs,, ;,(i) shown in parentheses. Al-
though both csegsqe(i) and csegs,, ;,(i) grow expo-
nentially, csegs,, ;,(¢) lags substantially.

|

This description is slightly more pessimistic than
actually occurs in Berkeley TCP implementations.
In BSD the delayed ACK timer fires independent of
segment receipt every 200ms, so we expect delayed
ACKs to be generated occasionally, each time ac-
knowledging a single segment.

We can place an upper bound on Reno’s perfor-
mance by assuming that the delayed-ACK timer al-
ways fires immediately for the last odd-numbered
segment of any stall. This means that the re-
ceiver acknowledges every other packet and delay-
acknowledges odd packets. The revised relations are:

acks g,(i) = {756953(1 (©)]

unackedj,(i) = 0

And, from Equations 17 and 18,

segsg,(i) = cwndg,(i)
cwnd g, (i) = cwndg,(i — 1)+ acksg,(i — 1)
cundg,(1) = 2

Both segs;,(i) and csegs;,(i) are shown in the
third column of Table 5. While csegs;,(i) is some-
what larger than csegs,, ,(i), it is still much lower
than csegsge(?).

A.3 Amount of Wasted Time

We would like to quantify the amount of time wasted
during each stall. An upper bound on wasted time is
one rtt per stall: the time an ACK takes to return to
the server and its replacement segment to travel to
the client. A more accurate estimate would consider
that the ACK which triggers the start of the next
period is generated by the first one or two segments
of the current period. Following the ACK, therefore,
the client spends time usefully receiving any other
segments of the first period. We can see this in Fig-
ure 1; in the first stall, the second segment is received

25

after the first ACK has been sent. (The client here
must implement the ACK-every-segment policy.)

We can quantify the amount of useful work ac-
complished during a stall, and from there the exact
amount of wasted time:

(segs(i) — k) /bw
rtt — usefulstalltime(s)

usefulstalltime(i)

wastedstalltime(t) =

where k is either 1 (if every segment is acknowl-
edged) or 2 (if delayed acknowledgments are used).

To determine the amount of wasted time for an en-
tire transaction we must know the number of stalls
that occur over transaction. Let ss_segs be the num-
ber of segments sent while TCP slow-starts. A con-
nection will slow-start until it either runs out of data
to send, reaches muws (and so is sending data con-
tinuously), or reaches ssthresh and therefore begins
congestion avoidance. Thus:

ss_segs = min(muws, replyg;,./mss, ssthresh)

The number of stalls across ss_segs, stalls(ss_segs)
is then the smallest n such that:

ss_segs < csegs(i)

For a given ss_segs, stalls(ss_segs) can be obtained
from Table 5’s first column using the appropriate re-
ceiver’s ACK algorithm. Finally, we can determine
the slow-start delay for a transaction:

stalls(ss_segs)

>

i=1

slowstart pop = wastedstalltime(i)

