Stackable Design of File Systems

John Shelby Heidemann

University of California, Los Angeles
September, 1995

A dissertation submitted in partial satisfaction
of the requirementsfor the degree
Doctor of Philosophy in Computer Science

UCLA Computer Science Department
Technical Report UCLA-CSD-950032

Thesis committee:
Gerald J. Popek, co-chair
D. Stott Parker, co-chair

Richard Muntz

Rajive L. Bagrodia

Kirby A. Baker

(© Copyright by
John Shelby Heidemann
1995

To my family—
my mother Dorothy
and my brother Ben

Contents

Abstract Xiii
1 Introduction 1
L1 MOUVALION . . . o o e e e 1
111 Stacking e 1

112 CachecCoherence i i e e e 3

113 Featherweightlayering o 4

12 RelaedWork e 4
121 Symmetricinterfacesandstacking Lo 4

122 Filesystemstructure e e e e e e 5

123 Stackablefilingsystems 5

124 CachecConerence i i e e 5

125 Featherweightlayering o 5

1.3 Road MaptotheDissertation e 5

2 Stacking Model 7
21 Extensibility e 7
211 Evidenceof evolution 8

2.1.2 Alternativestomanagechange. 8

213 Designconstraints e e e e e e 8

22 SaCKing 9
221 DesSignconstraints e 10

222 Stackingand extensibilityo 10

223 Generalizedstacking L e e e 10

224 Stackingand CONCUITeNCY o . o v i e e e e e e e 10

23 Coherence e 10
231 Designconstraints e e 12

24 Model Summary e 12

3 Stacking Techniques 15
31 Layer Composition e 15
3.2 Layer Substitution L e e e 15
3.3 Multi-Layer ACCESS o e e 16
34 CooperatingLayers e e e 17
3.5 Compatibility WithLayers e 17
3.6 User-Level Development 18
37 Interpositiono e 18

4 UCLA Stacking Implementation

41 ExigingFile-Systeminterfaces
4.2 ExtensbilityintheUCLA Interface e
43 Stack Creation e e e

431 Stackconfiguration e e e

432 Flelevel stacking e e e

433 Stackdatacaching e
4.4 Stackingand Extensibility e
45 VFSStackingand Extensibility
4.6 Inter-MachineOperation e
4.7 Centraized Interface Definition L
4.8 Framework Portability

5 UCLA Stacking Evaluation
5.1 LayerPerformance e e e e
511 Micro-benchmarks
5.1.2 Interfaceperformance e
51.3 Multiplelayerperformance e e
5.2 Layer ImplementationEffort
521 Simplelayerdevelopment
522 Layerdevelopmentexperience. e e
523 Lagescaeexample L e e e
5.3 Compatibility EXpEriences o e e e
54 SUMmMaryo e e e e e e e e e e e

6 CoherenceArchitecture

6.1 General ApproachtoCacheCoherence i i e e e
6.2 Dataldentification

6.2.1 Cache-objectnaming: smplelayers

6.2.2 Cache-objectnaming: general layers.
6.3 Cache-Object Status e e e e e e
6.4 Deadlock Prevention e e e
6.5 RdationshiptoDistributed Computing. e
6.6 SUMMAY e e e e e e e e e e

7 Coherence lmplementation
7.1 Implementation OVErVIEW L . e
7.2 Cache-Object Classes
721 Wholefileidentification
7.2.2 Named-objectidentification
7.2.3 Byterangeidentificationo
7.3 Applicationand Optimizations
731 Datapagecaching e
7.3.2 Fileattributecaching. e
7.3.3 Directory namelookupcaching
734 Filedatalocks
735 Wholefilelocking
74 AnExtendedExample L

8

10

11

Coherence Evaluation

8.1 PeformanceComponents L
8.2 PerformanceExperimentsand Methodology
83 Cossof LayeredDataCaching
84 Cache-CoherenceBenefits
8.5 Cache-CoherencePerformance: NoInterference
8.6 Cache-CoherencePerformance: Interference.
8.7 Performance Experiences

Featherweight Layer Design and I mplementation

9.1 Potential Featherweight Layers. e e e

9.2 Costsof Fully General Layering i i e e e e
9.21 Whereistheexpenseof general layering? L.

9.3 Designof Featherweight Layering e

9.4 Implementation of Featherweight Layers.
9.4.1 Featherweight layer configuration
9.4.2 Featherweight layeringrestrictions. e
9.4.3 Commentary ontheimplementation,

95 Summaryo e

Evaluation of Featherweight Layering

10.1 ProgrammingModel e e
10.1.1 EXPresSVEPOWEN o o it e e e e e e e e
10.1.2 Programming model complexity

10.2 Performance e e e
10.2.1 Featherweight layer instantiationcosts o
10.2.2 Performance of featherweight layerdetails.
10.2.3 Macro-benchmarks. L

10.3 SUMMANY . . . o o e e e e e e e e e e e e e

Related Work
111 Stacking Fundamentals. L L
11.1.1 Filesystemstructure o o e e e e e
11.1.2 Modularfile-systems
11.1.3 Extensibility
11.1.4 Symmetricinterfaces. e e e e
1115 User-level layeringwithNFS o . o oo
11.1.6 Object-orienteddesign o
11.2 CoherenceFundamentals. e
11.2.1 Digtributedfiling e e
11.2.2 Multiprocessorsand distributed sharedmemory oL
11.2.3 Networkingprotocols e e
11.3 Featherweight LayeringFundamentals
11.4 ExtensibleDatabasesinGenesis
11.5 Hierarchical StorageManagement e
11.6 StackableFilingat SUnSoft. e
11.6.1 Rosenthal e
11.6.2 SkinnerandWong e
117 SPring . . o o o e e e e e e e e
1171 Stacking o e
11.7.2 Extensibility

11.7.3 Cache-coherenceinSpring. e
11.8 Meta-Descriptionsof Stackingo

12 Conclusion

12.1 Research Contributions. e e e
12.2 Future Work

12.2.1 Implementation enhancements

1222 Stacking e e
12.2.3 Extensibility
1224 Cachecoherence e
1225 Lightweightlayering o
123 ClosingRemarks o e

A Stacking Appendix

Al A SampleVnodeOperation
A.2 A SampleOperationDeclaration
A3 ASampleBypassRoutine e

B Cache-Coherence Appendix

B.1 Stack-Friendly InterfaceChanges L
B.2 Cache-Coherencelnterfaces
B.3 Cache-CoherenceStorage Options o i i i et e e e

References

viii

85
85
86
86
86
87
87
87
87

89
89
89
89

95
95
95
96

99

List of Figures

11

21
2.2
2.3
24

31
3.2
3.3
34
3.5
3.6

41
4.2
43
44

51
52
53

6.1
6.2
6.3

7.1
7.2

8.1
8.2
8.3
8.4

85
8.6

9.1
9.2
9.3

A sample application of the stackable layers. Each layer is connected by a standard interface. . . . 3
Two file-system stacks providing encryptionand compression. 9
Treatment of vop_set _ext ent _si ze by differentlayers. 11
A fan-out tree of file system layersto providedisk mirroring. 11
A treeof file-system layersexhibitingfan-in. 12
A compression service stacked over aUnix file-system.o 0oL 15
A compression layer configured with amodular physical storageservice. 16
Multiple-layer access through and beneath acompressionlayer. 16
Cooperating Ficuslayers. e 17
User-level layer development viatransportlayers. o oo 18
Interpositioninthe 1992 Ficusstack. e 19
A namespacecomposed of twosubtrees. L L 21
Instantiating aUFSwiththe Unix mountmechanism. 23
Instantiating an encryption layer over anexistingUFS., 23
Filellevel stacking. L e 24
Elapsedtimeaslayersareadded. 30
Systemtimeaslayersareadded. oL 31
Accessto Unix-based FicusfromaPC runningMS-DOS. 33
A sampleapplication of thecachemanager. L. 35
Levelsof cache-object identification. 37
Distributed cache-coherenceinvolving different network protocols. 39
A configurationof several layers. e 43
Lock mergingdueto layer addition. 44
Caching algorithmswith and without layering. 47
Benchmarks comparing a UFS with and without stack-friendly dataacquisition. 49
Layer configurationfor Ficusreplication. 50
Benchmarks comparing three null layers stacked over a UFS with and without coherent name-lookup

CaChing. e e e e e 51
Benchmarks comparing a UFS in kernelswith and without cachecoherence. 51
Benchmarks and parameters used to test cache interference for memory-mappedfiles. 54
Potential applications of featherweight-layeringtechnology. 58
Layering overhead asthe number of null layersvary. 59
A qualitative picture of desired featherweight layering performance. 61

iX

10.1
10.2
10.3
10.4
105

10.6

111
11.2

A.l
A.2
A3
A4
A5
A.6
A7

Annotated source code for the fsync featherweightlayer.
C source code for an implementation of vop_get .svemnanme. L.
Layer configuration for the featherweight layer macro-benchmarks.
Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services.
Benchmarks comparing the performance of general and featherweight layer configuration of seven
servicesto asingle-layerimplementation. e
Benchmarks comparing the performance of general and featherweight layer configuration of seven
services to asingle-layer implementation (find benchmark omitted).

Interpositionwithv_t op inRosenthal-stacking.,
A Cimplementation of cvnodesandivnodes.

Oldcaling sequenceforvop.create. o o i i i e e e e
Macro-based new calling sequenceforvop_create.
In-line-based new calling sequencesfor vopcreate.
Descriptive information accompanying each vnode operation.
Old and new implementationsof vop_create.,
Aninterfacedefinitionof vop_create.
Thebypassroutineforthenull layer.

67
69
70
70

73

List of Tables

21

41

51
52
53

8.1

8.2

8.3
8.4

9.1
9.2
9.3

10.1
10.2
10.3
104
105

111

B.1

Vnodeinterfaceevolutionin SunOS.
VFESoperationsprovidedin SUNOS4.X. o o o i e e e e

Modified Andrew benchmark comparison of thevnodeand UCLA interfaces.
Recursive copy and remove comparison of thevnodeand UCLA interfaces.

Elapsed- and system-time performance comparisons of UFS performance with standard and stack-
friendly cacheoperations.
Elapsed- and system-time performance comparisons of astack of three null layers over aUFS without
andwithname-lookupcaching. e e
Elapsed- and system-time performance comparisons of non-coherent and coherent caching kernels.
Elapsed- and system-time performance comparisons of files with and without cache contention.

Profiles of the five most expensive null-layer subroutinesfor threebenchmarks.
Operations vector configurationsfor several layer combinations..
Calling sequence of vop._r dwr for different layer combinations.

Initialization time to stack seven featherweight layersover anull layer.
File-system usage for non-stacking computersin an academic environment.
Estimates of parametersfor layer instantiation for memory usage in different system configurations.

Benchmarks comparing monolithic, general, and featherweight layer configuration of seven services.
Benchmarks comparing the relative performance of general and featherweight layer configuration of
seven servicesto asingle-layer implementation. o L.

Decomposed vnode Operations. oo e e e e e e e e e

Cacheregistration Options. L

B.2 Anadternateview of cacheregistrationoptions.

B.3

Interactions between anew cacherequest and existing cachedobjects.

Xi

50

52
52

60

67
68
69
71

72

8l

96
96
97

Xii

ABSTRACT OF THE DISSERTATION

Stackable Design of File Systems

by

John Shelby Heidemann
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1995

Professor Gerald J. Popek, Co-chair
Professor D. Stott Parker, Co-chair

This dissertation presents the design, implementation and evaluation of file-system
design with stackable layers. Stackable layering addresses two significant problems
in file-system development. First, existing services are difficult both to extend incre-
mentally and to re-use in new work. Stacking addresses this problem by constructing
sophisticated new services as astack of new and existing layers. Layerswork together
since each layer is bounded above and bel ow by the same (symmetric) interface; layer
configurationislimited only by semantic constraints. Layers can be independently de-
veloped and distributed as binary-only modulesto protect theinvestment in their devel -
opment. Incremental improvementsto existing services can be provided through new,
thin layers.

Second, evolution of filing interfaces presentsa problem to devel opment and main-
tenance of services. In some respects, evolution is often too fast, as when vendor
changes to interfaces invalidate existing third-party layers, greatly adding to their de-
velopment and maintenance costs. At the sametime, evolutionistoo limited and slow,
as when developers and especially third parties cannot provide new services because
of the constraints of old, centrally-managed interfaces. We address these problems by
providing an extensible layering interface which supports managed interface evolution
by both vendors and third parties. When interface changes are too large or are incom-
patible with existing practice, acompatibility layer can smooth over the changes. With
an extensible interface, alayer may be confronted by an operation it does not under-
stand. A standard mechanism allows layers to handle these operations by sending the
operation to alower layer for processing.

Stacking enables and simplifies several design techniques. A transport layer may
move operations between machines and allows user-level layer development. Our
stacking solution also includes a cache-coherence protocol to synchronize state across
stack layers and a lightweight layering protocol allowing the benefits of independent
development to extend even to very “thin” layers. We have constructed several layers
using our stacking facilities.

This dissertation describes both the implementation of these services and their
measurement and evaluation. We examinethe performance of the stacking framework,
cache-coherenceprotocols, and lightweight layers, concluding that stacking often adds
little or no cost to user-observed performance and minimal additional kernel overhead.
Finally, our experiences using stacking to develop and deploy several layers suggest
that new services can be provided significantly easier with stacking than with traditional
methods.

Xiii

Xiv

Acknowledgments

| first would like to thank my advisor, Jerry Popek, for
his advice and support during this research. His encour-
agement has helped take this work further than it other-
wise might have gone. | would also like to acknowledge
his contributions, both to the direction and focus of this
research and particularly to its presentation.

| have been very fortunate that this work has taken
place in the context of alarger research effort, the Ficus
project. | amindebtedto Richard Guy, David Ratner, and
Ashvin Goel for their discussionsand support throughout
this research. | would aso like to thank the other mem-
bers of the Ficus project. Chronologicaly, the project
hasincluded Ted Kim, Dieter Rothmeier, Wai Mak, Tom
Page, Yu Guang Wu, Jeff Weidner, Greg Skinner, Mi-
chial Gunter, Steven Stovall, Geoff Kuenning, John Sa-
lomone, Andrew Louie, Qian Qin, Noah Haskell, Mark
Yarvis, Alexy Rudenko, and Andy Wang. Each of these
people contributed to the project in a different way. |
would like to highlight Yu Guang Wu for his early work
on the null layer, Jeff Weidner, Ashvin Goel and Ted
Kim for implementing other layers, and Dieter Roth-
meier, Wai Mak, and David Ratner for being early users
of the new interface. | would especially like to thank
Janice Martin for a careful proofreading of the disserta-
tion (quotation placement and any remaining errors are
my responsibility). Finally, | would like to thank Alta
Stauffer for keeping Jerry’s life organized and parts of
this thesis on his plate, and Monique Bennarosh and
Janice Martin for keeping things together at UCLA.

As apart of thiswork | added a subset of the UCLA
stacking interface into the 4.4BSD operating system. |
am grateful to Kirk McKusick for this opportunity (as
well as some constructive criticism). | would aso like
to thank Jan-Simon Pendry for his loopback file-system,
upon which the 4.4BSD null layer was based.

This dissertation draws upon two papers for some
of its material, one published in ACM Transactions on
Computing [HP94], and the other in the ACM Sym-
posium on Operating Systems Principles [HP95]. In ad-
dition to those already mentioned, | am indebted to the
Greg Minshall, SOSP paper shepherd, and anonymous
reviewers of these papersfor their comments which im-

XV

proved those papers and, indirectly, this dissertation.

Systems performance analysis is greatly aided
by widely available tools and benchmarks. In this
work | have employed both kitrace, by Geoff Kuen-
ning [Kueds], and the Andrew benchmark from the
Andrew File-System project [HKM88], as modified by
John Ousterhout [Ous90].

| gratefully acknowledge the financial support of the
Advanced Research Projects Agency and the USENIX
Association toward thisresearch. Development of stack-
ing at UCLA would have been impossible without their
aid. In the course of this research | was supported
by ARPA contracts F29601-87-C-0072 and N00174-91-
C-0107, and the 1990-91 USENIX Graduate Research
Scholarship.

All trade-marked terms which appear in this docu-
ment, including Unix, SunOS, NFS, and PostScript, are
held by their respective owners.

Finally, | would like to thank Karen Schulz for her ad-
vice and encouragement during this work.

| welcome comments about this dissertation. | can be
reached by e-mail at (johnh@ficus.cs.ucla.edu).

Further information about his work can be
found on the World-Wide Web at (http://ficus-
www.cs.ucl a.edu/ficus-members/johnh/work.html).

XVi

Chapter 1

| ntroduction

Filing services are one of the most user-visible parts of
the operating system, so it is not surprising that many
new services are proposed by researchers and that a
variety of third parties are interested in providing these
solutions. Of the many innovations which have been
proposed, very few have become widely available in a
timely fashion. We believe this delay results from two
deficiencies in practices of current file-system develop-
ment. First, file systems are large and difficult to im-
plement. This problem is compounded because no good
mechanism existsto allow new servicesto build on those
which already exist. Second, file systemstoday are built
around a few fixed interfaces which fail to accommod-
ate the change and evolution inherent in operating sys-
tems development. Today’s filing interfaces vary from
system to system, and even between point releases of a
single operating system. These differencesgreatly com-
plicate and therefore discourage third-party devel opment
and adoption of filing extensions.

These problems raise barriers to the widespread de-
velopment, deployment, and maintenance of new filing
services. Thethesis of this dissertation is that alayered,
stackable structure with an extensible interface provides
amuch better methodology for file-system devel opment.
We propose construction of filing services from a num-
ber of potentially independently developed modules. By
stackable, we mean that these modules are bounded by
identical, or symmetric, interfaces above and below. By
extensible, we mean that these interfaces can be inde-
pendently changed by multiple parties, without invalid-
ating existing or future work.

To validate thisthesis we devel oped aframework sup-
porting stackable file-systems and used that framework
to construct several different filing services. This disser-
tation describes the design, implementation, and evalu-
ation of this system.

1.1 Motivation

This dissertation explores stackable layering in three
stages. First we discuss the issues and approaches in-
volved in stacking. We then explore issues in cache-
coherence and lightweight layering which follow from
this model. This section introduces each of these topics.

111 Stacking

Modularity is widely recognized as a necessary tool in
the management of large software systems. By divid-
ing software into small, easily managed pieces, modu-
larity provides advantages in organization and verifica-
tion throughout the software life-span. The hallmark of
modularity is a set of independent software components
joined by well-defined interfaces.

When modular interfaces are carefully documented
and published, they can also serve as an important tool
for compatibility and future development. By provid-
ing a common protocol between two subsystems, such
an interface allows either or both systems to be replaced
without change to the other. Improved modules can
therefore be independently developed and added as de-
sired, improving the computing environment. Interfaces
such as Posix.1 [IEE9Q0] and NFS [SGK85] are ex-
amples of interfaces widely used to provide operating
system and remotefiling services.

Because operating systems represent such a widely
used service, the development of modular systems in-
terfaces can have particularly wide impact. The best
example of standard systems interfaces is probably
Posix.1. Programs based on this interface are widely
portableand can execute on awide rangeof today’shard-
ware, from personal computersto the largest supercom-
puter.

One would like to see this same level of portability
currently present for application programs in operating

systems themselves. Large portions of an operating sys-
tem are hardware independent and should run equally
well on any computer. Such portability has been largely
achieved, as exemplified by portable operating systems
such as Unix [RT74].

What has not been achieved to the same extent is port-
ability of major kernel subsystems. Because of the exact-
ing nature of software, and because of the lack of modu-
lar interfaceswithin the operating system itself, the Unix
kernel has been slow to evolve to new software tech-
nologies. While individual vendors have adopted new
kernel technologies such as STREAMS [Rit84], new vir-
tual memory approaches, and new file-systems, such ad-
ditions have only come sowly and at considerable ex-
pense.

Micro-kernel designs are one approach to kernel
modularity. Kernels such as Mach [ABG86] and
Chorus [RAA9Q] divide the operating system into two
parts. a core of memory management, process control,
and simple inter-process communication; and a server
(or servers) supporting the remainder of the traditional
operating system, including accounting, protection,
file-system and network services, and backwards com-
patibility. For the case of Mach and Unix, as a figure
of merit, the core is on the order of 15% of the total
operating system kernel. This intra-kernel boundary
is an important structuring tool, particularly because it
offers a platform on top of which third parties can offer
avariety of services. But this approach does not provide
a total solution, as it fails to address the modularity of
the remaining 85% of the system.

File systems, a rich portion of the remaining ker-
nel, are an active area of research. Many file-system
services have been proposed, including version man-
agement, user-customizable naming, fast log-structured
storage, replication, and large-scale distributed filing.
All of these have well-devel oped prototypes, but appear-
ance in commercialy available systems has been both
dow and piecemeal.

Adoption of these new filing services has been slow
in part because file systems are large, monoalithic pieces
of code with limited internal modularity. Although re-
cent approachesto file-system modularity (such as Sun’'s
VFSinterface [K|e86]) allow easy substitution of entire
file-systems, they do little to support modularity within
file systems themselves. Asaresult, it is not easy to re-
place or enhance separate portions of the file system; for
example, keeping the physical disk management and in-
stalling a new directory layer.

Another problem with existing approaches to file-
system modularity is that they are particularly fragilein

CHAPTER 1. INTRODUCTION

the face of change, one of the goals modularity is inten-
dedtofacilitate. Evolution of thekernel to moreefficient
mechanisms, and addition of new file-systems have re-
quired frequent changes to the interface, resulting in in-
compatibility between vendors of similar operating sys-
tems and even between different releases of the “same”
operating system. Frequent change and the resulting in-
compatibilities have largely discouraged third-party in-
novation, restricting introduction of new filing services
to the primary operating system vendors alone [Web93].
This contrasts sharply with other operating system inter-
faces such as device access and graphical user interfaces,
where standard interfaces have allowed competition and
rapid devel opment of awide array of services.

The problems of re-use and change are recognized by
developers. Current approaches to file-system develop-
ment begin to address these problems, but few do so sat-
isfactorily. A common approach to filing development is
to take an existing system and begin modifying it. Dir-
ect modification achieves good code re-use but greatly
hinders change as new services become bound to the li-
censing and portability constraints of the original code.
An approach common in the operating systems research
community isto develop new services as user-level NFS
servers (for example, see Deceit [SBM90], semantic fil-
ing [GJS91], and Alex [Cat92]). Because the NFS pro-
tocol is very well specified and nearly universally avail-
able, this approach is very robust to external change,
but it offers no support for internal change. Interfaces
for new services must be supplied with new protocols
in paralel to NFS, at great expense in implementation
cost and maintenance, or with modifications to the NFS
protocol, greatly reducing portability. A final approach
commonly taken isto providea new service at the VFS-
level. A VFS can achieve some re-use, but this inter-
face provides little support to manage change. Third-
party experience developing for the VFS interface doc-
uments the burden in keeping up with inter- and intra-
vendor change [Web93].

Difficultieswith current approaches suggest that a bet-
ter solution to filing service design is needed. For inspir-
ation and potential solutionswe examine how these prob-
lems are managed in other large software systems which
allow third-party contribution.

Unix shell programming is one example of a success-
ful development environment. Individual programs are
easily connected by a flexible, standard interface, the
pipe [RT74]. Programs can be combined quickly and
easily in the shell with a simple programming language.
New programs are widely and independently devel oped
by a number of vendors. These features combine to

1.1. MOTIVATION

provide an excellent environment for rapid prototyping
and devel opment.

This approach to software modularity has also been
applied to kernel-level subsystems. The STREAMS sys-
tem is Ritchie's redesign of Unix terminal and network
processing. STREAMS modules are bounded above and
below by a syntactically identical interface, allowing
very flexible module configuration. Because this in-
terface is symmetric in this way, users are encouraged
to combine a number of small modules into protocol
stacks. Furthermore, because the interface is formally
defined these modules can be independently developed
by third partiesand combined to addressthetask at hand.
As aresult, third parties have built commercia quality
layers that integrate well with other protocol modules.
This modular approach allowing multiple, independent
groups to contribute to communications facilities is one
of the reasons Unix is attractive as a base for network-
ing and distributed systems software in engineering and
commercial use.!

Thisdissertation seeksto apply the principlesof stack-
able layering to file-system development. We envision
a situation where a user’s filing environment is com-
posed of stacks of independently developed filing lay-
ers. Like STREAMS, the interface between layers will
be symmetric to allow flexible configuration. The inter-
face must also be extensible and robust to internal and
external change. Chapter 2 exploresthese issues and re-
quirementsin more detail. Chapter 3 examines different
way's stacking can be used to address problemsuniqueto
filing. Finally, Chapters4 and 5 present and eval uate our
prototype system developed at UCLA.

1.1.2 Cachecoherence

Caching can be used to improve performancein asystem
with stackable layers just as elsewhere: commonly used
datais kept “on the side” by an upper layer to avoid re-
peating prior work. Stackablecachingisparticularly im-
portant for services such as encryption and compression
since the computation these layers perform is relatively
expensive.

In addition to caching as a performance optimization,
caching is also arequired filing service in modern oper-
ating systems. Many systems employ an integrated file-
system cache and virtual-memory system; such systems
reguire caching to implement program execution.

For these reasons caching is a required part of any
modernfiling environment. Cachingwill also beimport-

LIn fact, commercial systems such as Novell’s Netware-386 have
adopted the STREAMSS framework, presumably for similar reasons.

user

Y

\85/\

N

encryption

UFS
K
O

Figure 1.1: A sample application of the stackablelayers.
Each layer is connected by a standard interface.

ant infile systems constructed from stackablelayers. For
best results datawill be cached in the layer closest to the
user. With layering, though, auser may chooseto access
a stack through different layers at different times. For
example, administrative actions can be performed more
easily at lower stack layers. Distributed filing systems
too can produce data accesses to different stack layers
(we consider one such case in detail in Section 8.4). If
datais always cached near the point-of-access, access to
multiplelayersmay result inthe samelogical datacached
in different layers.

Data cachesin multiplelayersraise severa questions.
How can these caches be kept coordinated? If layersare
provided by different parties, how can they cooperateto
providecoherence? Consider Figure 1.1. Both layersare
likely to cache pages. However, when the same data is
cached in both the encryption and UFS layers, updates
to one cache must be coordinated with the other cache, or
reads can return stale data and multiple updates can lose
data. Some form of cache coherenceis required. These
problemsarenot issuesin amonolithicfile-systemwhere
thereis only one file system and one cache. If layersare
provided by different parties, how can they cooperateto
provide coherence?

Thus far we have presented the problem of file data
coherence in a multi-layer caching system. File-system
data is only one aspect of file-system state which re-
quires consistency guarantees. The more general prob-
lem isthat many assertions easy to makein amonolithic
system become difficult or impossible to make when

state is distributed across several layers of afile-system
stack. Several such assertions are important in file sys-
tems: file data coherence, file attribute (meta-data) co-
herence, name-lookup cache-coherence, user-level file-
locking consistency, and internal concurrency-control.
Therefore, to summarizetheissue of cache coherence:

1. File-system stacking, if feasible in practice, would
be very attractive.

2. Practical stacking often requires concurrent access
to multiple pointsin the stack.

3. Various stack layers must cache information of dif-
ferent sortsin order to provide satisfactory perform-
ance.

4. Thoseintra-layer caches must be kept coherent, or
the accesses implied in the second point above can
giveincorrect results.

5. A general framework for cache coherence is
needed, since no individual third-party layer can
solve the problem alone.

That is, cache coherenceis essential to allow stacking to
reachitsfull potential. Chapter 6 discussesthe character-
istics required of a solution to this problem. Chapters 7
and 8 present our prototype solution and evaluate its ef-
fectiveness.

1.1.3 Featherweight layering

Codereuseis on one significant motivation for stacking.
Large layers which encompass several abstractions and
services cannot easily be reused due to their weight and
inflexibility. Thus, an ideal filing environment would be
composed of stacks of several “thin” layers.

Two tensions push against the decomposition of filing
servicesinto multiplelayers. Firstisthe design effort re-
quired. Selection and definition of components requires
careful thought. There are often several different ways
to decompose a service; a poor selection can complicate
layer implementation and limit reusability.

Second, layering overhead also constrains service de-
composition. Our layering mechanism was designed
to minimize overhead, but full generality in a layering
mechanism implies a certain amount of overhead. Our
measurements suggest a 1-2% system-time overhead for
general-purpose layers (see Section 5.1.3 for details of
this evaluation).

Although a 1-2% system-time overhead is not signi-
ficant for a layer providing a new service to the user,

CHAPTER 1. INTRODUCTION

this overhead is a consideration if layering is to be used
internally to structure such services. This limitation is
unfortunate since there are several thin layers (such as
name-lookup caching, VM/file-system interaction, and
compatibility layers) that are common across a number
of filing services. These layers individually make only
minor alterationsto the interface, but they still incur the
overhead of thefull layering mechanism. Adding several
such layers to a stack would add noticeable overhead;
and several of these layers will often be added to each
layer of amulti-layer stack.? A general-purposelayering
mechanism s not suitablefor these lightweight services.

Featherweight layers are specia “lightweight” lay-
ers designed to address the problem of layer overhead.
Featherweight layers obtain performance improvements
over general layering mechanismsby restricting the cap-
abilitiesthey provide and by “piggy-backing” on the ad-
ministrative machinery of a“host” layer. Since feather-
weight layers provide only a subset of stacking function-
ality they cannot be used to implement all layered ser-
vices. Instead they provide the lightweight portions of a
stack in cooperation with afew general-purpose layers.

Chapters 9 and 10 present the design, implement-
ation, and evaluation of a featherweight layering ser-
vice. By placing a few limitations on layering func-
tionality they show that it becomes possible to create
featherweight layers with library-routine-like perform-
ancewhileretaining benefits of stackablelayering design
such as third-party development and late binding.

1.2 Related Work

Modularity in systems programming has a rich his-
tory. Our work builds upon this background, inspired
by advances in symmetric module design, general file-
system structuring, distributed shared memory proto-
cols. and some recent work on stackable filing. We next
briefly summarize related work. We cover the relation-
ship between our work and others more completely in
Chapter 11.

1.2.1 Symmetricinterfacesand stacking

Unix shell programming with pipes [RT74] is now
the widest use of a symmetric interface, for software
development and other applications [PK84]. Ritchie

2For example, vendors may configure compatibility layers onto all
stacks by default to insure backwards compatibility. Similarly, layers
implementing cache coherence would need to be configured into any
layer which might cache data.

1.3. ROAD MAP TO THE DISSERTATION

then applied these principles to kernel structure in his
STREAMS /O system [Rit84]. Suchwork hassince been
adopted in a number of versions of Unix.

The z-kernel [HP88] isanew kernel designed origin-
ally to provide customized network protocols. Using a
symmetric interface for al kernel services (“everything
isaprotocol”), great flexibility in protocol selection and
combination is provided. They employ both run-time
protocol selection and an efficient implementation to
demonstrate that layering can be performance competit-
ive with monolithic protocol implementations.

1.2.2 File-system structure

Research in the late 1960s and early 1970s modularized
operating systems, proposing a multi-layer implementa-
tion.

To provide for multiple filesystems, severa
“file-system switch” mechanisms have been de
veloped [Kle86, RKH86, KM86]. These typically
found quick use in the support of network file ac-
cess [SGK85, RFH86] and have since been applied
to the support of other file systems [Koe87]. None of
these approaches provide explicit support for stacking
or extensibility, but al provide basic modularity.

1.2.3 Stackablefiling systems

Sun Microsystems applied the vnode interface to build
two-layer file system stacks in their loopback and trans-
lucent file-systems [Hen90]. Internal to the operating
system, stacking is used to support device speciadl files.

More recently, Rosenthal [Ros90] and later Skinner
and Wong [SW93] at SunSoft have experimented with a
modified vnodeinterfaceto provide dynamic file-system
stacking. The Spring project (at Sun Laboratories) has
also developed stackable filing technology [KN934].

1.2.4 Cachecoherence

Our cache-coherence protocols build upon two areas
of prior research. First, we draw cache-coherence al-
gorithms from research in the areas of hardware mul-
tiprocessing, distributed filing, and distributed shared
memory. We review thiswork in Section 11.2. Second,
we build upon the cache-coherent stacking work of the
Spring project at Sun Laboratories [KN934].

1.2.5 Featherweight layering

Featherweight layering is inspired by the observation
that the performance of a layered system is often best
when logicaly independent layers share implement-
ation details. Others have suggested that perform-
ance of layered systems is improved by avoiding a
process-per-layer [Rit84, HP88] or by employing con-
tinuations [DBR91]. We improve file-system layering
performance by restricting layer state. We expand on
theseissuesin Section 11.3.

1.3 Road Map to the Dissertation

Thethesis of this dissertation isthat stackablefiling with
an extensible interface improves file-system develop-
ment. We begin exploring this thesis in the next chapter
by motivating the need for stackablelayering and extens-
ible interfaces. We also introduce the problem of main-
taining data coherence across layers of a stack, and we
suggest the need for very lightweight stackable layers.
The remainder of the thesis considers each of these top-
ics, discussing in turn the design, implementation, and
evaluation of stacking, cache coherence, and lightweight
layering. The dissertation concludes with an extended
discussion of related work and issues for future study.

CHAPTER 1. INTRODUCTION

Chapter 2

Stacking M odel

We have identified several problems that exist with cur-
rent approaches to file-system development, problems
that we believe stackable filing can address. In this
chapter we describe the characteristics which are desir-
able in an improved filing environment:

extensibility Filing must be robust to both internal and
external change.

stacking It must be possible to add new functionality to
existing services.

coherence Assertions about data consistency must be
possible across multiple layers.

In addition, several secondary goals place restrictions
on the final solution:

distributable Computers today are increasingly net-
worked with shared filing environments. Further-
more, microkernel operating systems may placethe
filing service in one or more server processes, each
with a different address space. Filing must work in
each of these environments.

scalability Each requirement must meet awide range of
demands. Extensibility must work equally well for
vendors, third parties, and independent devel opers.
Stacking must work both for complex services and
for small, lightweight additions. Distribution must
apply from different server processes of a micro-
kernel to multiplemachinesonaL AN to computers
cooperating across an internetwork.

ease-of-use If meeting these goals results in a system
which isdifficult to use, the ultimate goal of anim-
proved file-system-devel opment environment will
be defeated.

efficiency If these servicesimpose excessive overhead,
thenthey will not beused. The cost of servicesmust
be proportional to the service provided.

The remainder of this chapter discusses each of these
characteristics (extensibility, stacking, and coherence) in
light of these restrictions.

2.1 Extensbility

Webber characterizesthe dilemmaof third-party vendors
quite well [Web93]:

Unix kernels with a VFS architecture have
been commercially available for many years.
Sun Microsystems, for example, described
their VFS architecture in the 1986 Summer
Usenix proceedings [K1e86]. By many meas-
ures the VS concept has been quite success-
ful, but from a third-party point of view there
are two major problems:

e Few vendors have the same VFS inter-
face.

e Few vendors provide release-to-release
source or binary compatibility for VFS
modules.

We call these two problems the VFS portabil -
ity problem and the lock-step rel ease problem,
respectively. Together, they make VFS mod-
ules expensive to produce, expensive to port,
and expensiveto maintain.

To these observationswe add one additional problem:
few third parties can change and extend the interface.
We cadll this limitation the extension problem. If third
parties are to provide truly novel new services, then it

must be possible for them to add operations to the in-
terface. These new operations must be equivalent to
vendor-supplied operationsin terms of performance and
capability.

We view these problems as evidence that any file-
system interface which is successful in the long-term
must provideextensibility. We next consider evidence of
changein existing systems, waysto delay evolution, and
finally, how our secondary goalsinfluence this design.

2.1.1 Evidence of evolution

Rosenthal has examined the gradua evolution of the
SunOSfile-system interface [Ros90]. He found signific-
ant changesto theinterfacein every major operating sys-
tem release. Table 2.1 shows his comparison of changes.

Rosenthal’s study demonstratesthe frequency of evol-
ution through one version of Unix. It is aso interesting
to note that the designers of SVR4 Unix recognized the
inevitability of change and allocated space for the future
addition of 32 operations. We discuss later how space
reservation only addresses part of the problem in Sec-
tion 11.1.3.

2.1.2 Alternativesto manage change

Given the inevitability of software evolution, there are
surprisingly few ways to accommodate it in current fil-
ing interfaces. Without a formal way to manage evol-
ution, two kinds of problems quickly appear: develop-
ment without evolution, and managing change when it
does arrive.

Several approachesare possibleto avoid evolution. A
common one is to require that everyone use the same
version of software; change is prohibited by fiat. While
this approach works for small groups over short peri-
ods of time, it fails as scale and duration increase. The
longer a configuration is frozen, the greater users de-
mands for new software. As the user population grows
from tens of machinesto hundreds or thousands, the dif-
ferent goals and requirements of multiple administrative
domains mandate different software configurations.

Often, pressuresto adopt new toolsforce their use be-
fore change can be fully accommodated. If existing in-
terfaces must remain unchanged, the only aternative is
to create an additional, parallel interface. While this ap-
proach allows support of new services, it also complic-
ates the environment. Such work needlessly duplicates
existing efforts as similar goals are accomplished in dif-
ferent ways. In the long run, this ad hoc approach to

CHAPTER 2. STACKING MODEL

evolution will likely cause difficulties in maintenance
and further development.

Eventually, change must occur. Barriers to evolu-
tion imply that, in practice, widely used operating sys-
tem modificationsderive only from afew major systems-
software vendors and research ingtitutes in occasional,
perhaps annual, systems software releases. While this
policy of change delays problemsresulting from change
to an occasional event, eventually these difficulties must
be faced.

Because the authority of operating system change is
vested largely in the systems software vendor, potential
for third-party enhancement is greatly restricted. Un-
availability of source code, incompatibility with other
third-party changes and even vendor-supplied updates
together discourage third-party innovation. Finaly, the
methods used by manufacturersto improve services are
often not available to third parties. As a result, third-
party modifications suffer delay, increased complexity,
and performance penalties compared to vendor-supplied
improvements, further handicapping independent devel-
opment.

2.1.3 Design constraints

Third-party support for software evolution is critical to
the timely development of new capabilities. The filing
interface must be able to evolve as needs and capabilit-
ies change. Our secondary goalsinfluencethisdesignin
several ways.

It must be easy to provide extensibility in adistributed
file-system aswell asto layerson asingle host. Extens-
ibility requires that each operation be formally defined.
Support for extensibility in distributed filing requiresthat
this definition must include information sufficient to al-
low an RPC protocol to reproducethe operation on adif-
ferent machine or in a different address space.

Extensibility must be scalablein several ways. It must
scale in those allowed to initiate change. The process of
evolution cannot be controlled by any central authority.
Multiple organizations and individuals must be able to
contribute, and their extensions must co-exist in asingle
system. Scalahility also implies that there be no fixed
limit on the number of extensions provided.

Ease-of -useimpliesthat changescan occur increment-
ally and independently, and that they must not invalidate
existing or future services. Software must gracefully ad-
apt to its environment, both as a result of the presence
of unexpected, new extensions, and the lack of expec-
ted support. Ideally, anew software module could be ad-
ded without source code changesto it or any other mod-

2.2. STACKING 9

release vnodefields vnodesize operation count

SunOS 2.0 (1985) 11 fields 32 bytes 24 operations

SunOS 4.0 (1988) 14 40 29

SunOS 4.1 (1990) 14 40 30

SVR4 without fill (1989) 11 40 37

SVR4 with fill (1989) 19 72 69

Rosenthal’s prototype (1990) 6 20 39

Table 2.1: A dlightly expanded version of Rosenthal’s evaluation of vnode interface evolution in SunOS (derived
from [Ros90]). Fill indicates space left in SVR4 for future expansion; Rosenthal’s prototype is discussed in Sec-

tion 11.6.1.

ule. Finally, ease-of-userequirementsfor stacking imply
that layers are configured at run-time. We discuss these
requirements more in the next section, but for the inter-
facethey imply that thecaller and callee must be matched
at run-time; at least thislevel of dynamic bindingis re-
quired.

Since file-system operations are often in the tight loop
of computation, efficiency is of primary concern.

2.2 Stacking

File systems frequently implement very similar abstrac-
tions. Nearly all file systems ultimately are grounded
in disk access and file and directory allocation, for ex-
ample. This observation motivates file-system stacking.
If acomplex filing service can be decomposed into sev-
era layers, then potentially each layer can be devel oped
independently. Furthermore, in the future, layers can be
individually upgraded as need or desire arises. Finally, a
set of filing layers serve as building blocks for the con-
struction of future services. Together, these examples
show how stacking can reduce the cost of file-system de-
velopment.

Anexampleof layeredfilingisseeninFigure2.1. The
operating system vendor provided a standard file storage
layer (the Unix file-system, or UFS). On the left stack a
user has configured a compression layer over this basic
file service.

A key characteristic of a stackable layer isthat it pos-
sess a symmetric interface; it should export an inter-
facetoits clients which is syntactically the same as that
which it depends upon from layers it stacks over. Lay-
ers bounded by a symmetric interface can be inserted
between any existing stack layers (subject to semantic
congtraints, of course). For example, in the right-hand
stack of Figure 2.1, the user has “pulled apart” the com-
pression layer and UFS and inserted an encryption layer
for more secure data storage.

user
user *
* QS/\
QS/\ \

N

compression

compression

encryption

UFS

=

UFS
K
O

Figure 2.1: Two file-system stacks providing encryption
and compression.

10

2.2.1 Design constraints

Again, our secondary constraints of distribution, scalab-
ility, ease-of-use, and efficiency all have implicationson
the design of stacking.

Distributed stacking requiresthat layers can bridge ad-
dress space, protection domain, and machineboundaries.
A convenient way to cross protection domainsiswith a
transport layer which conceptually has endsin each do-
main and a transport protocol between. It may be ad-
vantageous to have multiple transport layers, each cus-
tomized to serve a particular need (for example, trans-
port between processes on a single machine compared to
acrossaLAN or WAN).

Layer scalability implies that the cost of each layer is
proportional to its capabilities. Very “thin” layersshould
be possible with minimal overhead, while “thick” layers
may require additional mechanism. To scale in numbers
of layers, per-layer memory requirements must be reas-
onable.

Layer ease-of-useisimproved by run-timelayer con-
figuration. It should be possible for a user to easily cre-
ate new layer instances as needed. In addition, dynamic
loading of new layers should be possible.

Finally, the performance cost of layering must be min-
imized. There are several aspects to layering cost (de-
scribed later in Section 9.2); the costs of providing layer
abstractionsand the cost of using those abstractions must
be proportional to the services provided.

2.2.2 Stacking and extensibility

Asdescribed thusfar, aconflict between stacking and ex-
tensibility is apparent. Stacking is based on the premise
that each layer isbounded (above and bel ow) by the same
interface. Extensibility impliesthat layer users caninde-
pendently change and evolve the interface.

Extensibility requiresthat layers be robust to change.
In a non-layered environment, this means that a layer
must respond to unknown operations with an error mes-
sage. For example, in Figure 2.2a the UFS must re-
ject vop_set _ext ent _si ze operation (returning an er-
ror code) which would be handled by an extent-based
file-system (in Figure 2.2b). Any system with extensibil-
ity must specify some (possibly configurable) default ac-
tion for unknown operations.

In alayered environment intermediate layers often act
as“filters’, providing asmall service by changing afew
operations, but relying on lower layers to provide most
aspectsof storage. When presented with an unknown op-
eration, intermediate layers therefore bypass that oper-

CHAPTER 2. STACKING MODEL

ation to a lower layer for processing. Figure 2.2c illus-
trates bypassing vop_set _ext ent _si ze.

2.2.3 Generalized stacking

Thelinear file-system stacks presented thus far arereally
a special case of genera layering. In general, trees of
layers are possible, a single layer can stack-upon or be
stacked-upon by multiple other layers.

We distinguish between two kinds of “forked” stack-
ing. Fan-out occurswhen alayer stacks* outwards’ over
multiple layers. Figure 2.3 illustrates how fan-out might
be used to implement disk mirroring.

Fan-in allows multiple clients access to a particular
layer. Fan-in is useful when when different clients of a
service desire different views of the data. For example,
in Figure 2.4 the UFS has fan-in. Section 3.3 discusses
advantages and uses of fan-in.

2.2.4 Stacking and concurrency

A complete definition of stacking must consider the ef-
fects of stacking on other processes. When stack config-
uration is changed by one process, how does this affect
other processesthat are actively using the stack? On one
hand, perhapsall processes should always see exactly the
same stack configuration. In this case, pushing a layer
on a stack should interpose that layer between the prior
layer and al of its clients. On the other hand, perhaps
clients should get what they asked for when they asked
for it. New clientswill, of course, see the new layer, but
existing clients should continue to see the configuration
they’ ve been seeing.

Different choices on thisissue make sense in different
contexts. If a“lock-out” layer were placed on a stack to
deny access, it might berequired to deny accessto all cli-
ents (current and future), not just future clients. On the
other hand, a client in the midst of reading an encrypted
file probably does not want to see decrypted data in the
middle of the data stream as some other client changes
the stack.

We discuss aternatives to this issue in more detall
later.

2.3 Coherence

In a monolithic file-system the file-system designer has
complete control over execution. Locking and caching
arefeasiblebecausethe designer has control over all data
access and execution paths, and can insure that deadlock

2.3. COHERENCE 11

user
* N\
\
\C_)S/\\
user user \ |
"y Yy !
encryption
o8 N e
Ny Ny ¢
UFS extent—fs extent—fs
(& (& (&
(a) set_extent_size rejected (b) set_extent_size accepted (c) set_extent_size bypassed

Figure 2.2: Treatment of vop_set _ext ent _si ze by different layers.

user

Y

\98/\

N

mirror—fs
UFS UFS
L \
O [

Figure 2.3: A tree of file-system layersto provide disk mirroring. The mirror-fslayer exhibits fan-out.

12

CHAPTER 2. STACKING MODEL

user
&\
user \
* encryption
\88/\ /
\ NFS (client)
encryption —
NFS (server)
UFS

Figure 2.4: A tree of file-system layers exhibiting fan-in.

and access to old data are not possible. In short, the de-
signer’s complete control over the situation allows him
or her to make assertions about file-system state.

The designer of a file-system layer loses this ability.
The layer may be combined at run-time with services
from other developers, each with their own views of
locking and caching. Late layer binding and distribu-
tion of functionality among layersfrom multiple vendors
makesit extremely difficult for the designer of any indi-
vidual layer to make assertions about the global state of
“filing”. Unfortunately, such assertions are required to
insure freedom from deadlock and coherence of cached
data.

To address the problem of state assertionsin a multi-
vendor, multi-layer system, ageneral coherencemechan-
ismisrequired. Animportant specia case of this mech-
anism is cache coherence: a protocol to keep copies of
datain different layers up-to-date.

2.3.1 Design constraints

The constraints of distribution, scalability, ease-of-use,
and efficiency affect coherence.

A number of protocolsfor distributed coherenceexist,
yet the wide variety of performance constraints present
from sharing on a single machine to across the Internet
make it unlikely that any single solution can meet all
needs. We discuss how this observation influences cache

coherencein stacking in Section 6.5.

Scaling is of concern in several different dimensions
for coherence. Coherence solutions must adapt to sup-
port alar